
© Kenneth M. Anderson, 2014

Learning from Bad Examples

CSCI 5828: Foundations of Software Engineering

Lecture 25 — 11/18/2014

1

© Kenneth M. Anderson, 2014

Goals

• Demonstrate techniques to design for shared mutability

• Build on an example where multiple threads access an “EnergySource”

• to demonstrate the problems that occur with bad design

• we will refactor the program

• until we’ve tamed shared mutability and have thread safe code

2

© Kenneth M. Anderson, 2014

Shared Mutability

• We’ve been talking at an abstract level about the dangers of shared mutability

• When we use the word “danger”, we mean that the code has the potential
to be unstable

• there may be deadlocks hiding in the code

• there may be race conditions, so the values of variables may behave
unpredictability

• And, the danger is that you can spend a lot of time trying to debug these
conditions

• If you work with concurrent code that uses shared mutability, then you need
to be able to identify the types of code structures that can lead to problems

• and learn how to eliminate them

3

© Kenneth M. Anderson, 2014

Controlling your variables (I)

• In a shared mutability design, you need to have a clear sense of which
threads can access which variables

• You can then design into the program the ways in which these variables
can be protected using the synchronization constructs discussed in
previous lectures

• In particular, avoiding the use of the keyword synchronized and,
instead, making use of the Lock interface from java.util.concurrent for
fine-grained access control

• Note: this example is written in Java but its lessons are more general and will
apply to other languages that provide access to low-level thread primitives

4

© Kenneth M. Anderson, 2014

Controlling your variables (II)

• If you have ensured that all mutable variables are either

• accessed by only one thread

• or accessed by multiple threads using Lock to coordinate updates

• then you can be confident that your program will be free from thread-related
dangers;

• If, however, a thread can access one of these variables

• without passing through the protections you put in place

• then the variable is said to have “escaped” and you are open to race
conditions and non-stable code

5

© Kenneth M. Anderson, 2014

Controlling your variables (III)

• A complex aspect to this analysis is the different ways in which values can
escape

• Imagine we have Class A that creates an instance of a collection class

• and

• Class A ensures that the collection is accessed in a thread safe way

• the instance variable is private

• all methods that update the collection make use of the Lock interface

6

© Kenneth M. Anderson, 2014

Controlling your variables (IV)

• All of these protections are null and void if one of Class A’s methods returns a
pointer to the collection

• public List getRecords() { return records; }

• At this point, Class A cannot protect this collection

• Any class that calls this method can then directly update the collection
without using Class A

• For instance, Class B might call getRecords() and make its pointer to Class
A’s collection class visible to other threads

• At this point the records variable has escaped and is no longer
protected

7

© Kenneth M. Anderson, 2014

Controlling your variables (V)

• The same is true if Class A decides to pass records to some other method as
input

• { ... ; records = foo.update(records); ... }

• If the object foo decides to keep a pointer to all of the collections passed to
its update() method, then records has escaped and all of Class A’s
protections are, again, useless

• Finally, if a class has public instance variables or public static variables then
any of these variables can easily escape

• Code can simply reach in and update the instances without the host class
knowing about it

8

© Kenneth M. Anderson, 2014

Controlling your variables (VI)

• By now it should be clear that visibility specifications

• public, protected, private

• have nothing to do with protecting a variable from access by multiple threads

• The values pointed at by “private” variables can be passed to other classes
who can then point at those values

• stripping them of their protection

• If you have a very small program, then you should be able to conduct the
analysis of whether a variable has escaped its protection or not

• but as your programs get larger, it becomes more and more difficult to keep
track of all the ways a variable is accessed

• and this is what causes the pain of debugging shared mutability designs

9

© Kenneth M. Anderson, 2014

Example: Step 1

• To demonstrate these issues, let’s look at a “bad example” of shared
mutability design

• EnergySource is a resource that maintains a certain amount of energy

• Clients can make use of this energy by calling useEnergy() and
specifying how much energy they need

• Internally, EnergySource starts a thread that will slowly replenish the
EnergySource if its energy level ever falls below the maximum

• I have augmented this example with client code that makes use of the
EnergySource

• a monitor that prints out the current level of the source on a periodic basis
and consumers who read the current level and then consume a random
amount of energy

10

DEMO

© Kenneth M. Anderson, 2014

Discussion

• As the book discusses, the EnergySource class is a HORRIBLE instance of
concurrent design

• it does pretty much everything wrong

• the internal thread is started incorrectly

• the internal thread can access the source before it has been initialized

• its internal instance variable is mutable and unprotected (race condition)

• the internal thread loops forever until a boolean flag changes state

• changing the boolean flag may not cross the memory barrier

• thread is stuck endlessly looping and sleeping, consuming resources

• one internal thread is created per instance; threads are expensive!

11

© Kenneth M. Anderson, 2014

Step 2: Fix creation of internal thread (I)

• We do not want to create threads in our constructor

• If we call start() on those threads in the constructor

• they may start accessing our object before it exits the constructor!

• as a result, they will be accessing the object in an inconsistent state

• We want the call to the constructor to complete before any other object
accesses the energy source

• This allows us to make sure the energy source is in a consistent state

• then, we can design the class such that each method

• starts in a consistent state, performs its service, and ensures that
it is leaving the object in a consistent state before it returns

12

© Kenneth M. Anderson, 2014

Step 2: Fix creation of internal thread (II)

• To address this problem, we make use of a factory pattern

• The constructor of the class is made private

• This prevents other classes from creating instances of EnergySource

• A private instance method (init) is created to create the internal thread

• A static method is created to allow classes to acquire an instance of
EnergySource

• the static “factory” method

• creates an instance of the class (constructor will fully initialize class)

• calls the init method to start the thread

• returns the instance to the caller

13

DEMO

© Kenneth M. Anderson, 2014

Step 3: Get rid of internal thread

• The internal thread was created so that periodically the EnergySource would
be replenished

• The original author probably felt that a thread was the only way to
accomplish this

• Java has a class called Timer that can be used to fire events on a periodic
basis

• but creating one Timer per instance of EnergySource is wasteful

• Instead, we’ll use a ScheduledThreadPoolExecutor

• It can allocate a certain number of threads and then reuse them to
handle the task of replenishing multiple energy sources

• The thread pool will be static, so it will be shared across all instances

14

DEMO

© Kenneth M. Anderson, 2014

Discussion (I)

• As a result of adding an instance of ScheduledExecutorService to EnergySource

• the private init() method is changed such that

• instead of creating a thread

• it now creates an instance of a task that it submits to the thread pool

• the task simply calls replenish

• we ask that the task be run every second

• the replenish method is now simplified: check level, increment if needed

• no more loop, no more sleeping

• the boolean flag goes away

• the request to stop the energy source, now just cancels the task

15

© Kenneth M. Anderson, 2014

Discussion (II)

• One complication

• With the addition of a static thread pool, we need to come up with a way
to shut the thread pool down

• We have two options

• Add a static shutdown() method to EnergySource

• Call this method when its time to shut our program down

• Configure the pool with a thread factory that sets all threads to be
daemon threads

• I chose the former; it’s simpler (at least for this example program)

16

© Kenneth M. Anderson, 2014

Step 4: Ensure visibility

• Our shared mutable instance variable (level) is not protected

• changes to it may not pass the memory barrier

• race conditions exist since multiple threads may try to read the value of
level at the same time and then try to consume energy based on that value

• Our Consumer thread has a transaction problem in this regard that we’ll
fix later

• We’ll start by fixing this problem by adding the synchronized keyword to all
methods that access the shared instance variable

• This protects the variable but greatly reduces performance

• If we have a lot of threads accessing EnergySource, most of them will
be blocked while one thread is inside one of these methods

17

© Kenneth M. Anderson, 2014

Step 5: Enhance Concurrency

• Use of the synchronized keyword is too restrictive in terms of performance

• We’ll change our instance variable from a long to an AtomicLong

• We can then get rid of our synchronized keyword and allow the threads to
access the energy source as fast as possible

• The AtomicLong will ensure that the minimum amount of synchronization
is used to protect its value from multiple threads

• Note: use of AtomicLong.compareAndSet(expected, new) in useEnergy()

• a thread says “here is the value that I think is current;

• if it is current, then change it to this new value

• Protects against situations where a thread reads a value and it gets updated
before it can write a new value; the update fails, if it gets expected wrong

18

© Kenneth M. Anderson, 2014

We still need a transaction

• Even with these protections, our consumers still get into problems

• Consumer 0 tries to consume 23: SUCCESS!

• Consumer 2 tries to consume 94: FAIL!

• Consumer 1 tries to consume 89: FAIL!

• Even though Consumer 0 had updated the EnergySource

• Consumer 1 and Consumer 2 both read the level of EnergySource at the
same time and tried to consume an invalid amount of energy

• We now need to address this problem with our consumers

19

© Kenneth M. Anderson, 2014

Step 6: Add a notion of transaction to consumer

• Our consumers are designed to

• read the value of the energy source

• use that value to generate a random amount of energy to consume

• and then consume that amount of energy

• The problem?

• they do not do this read/update in a transaction

• as a result, they can all read the same amount at the same time and then all
move on to consume different amounts, some of which will be invalid

• All of the work we’ve done in EnergySource does not solve this problem

• We’ll solve it via a shared lock; if we had more than one type of thread, we’d
have to place this lock in EnergySource; for now, we will create it in Consumer

20

© Kenneth M. Anderson, 2014

Step 7: Fix the problem with replenish

• We do have a problem

• even with the transaction, it’s possible that the replenish task slips in
between a Consumer’s read and write, incrementing the value, and
causing the Consumer’s write to fail

• This would manifest in the step06 program like this

• Consumer 7 tries to consume 2: FAIL!

• It’s very hard to make this happen, but it’s possible

• So, we need to share the lock between the consumers and the replenish task

• We add a public lock to EnergySource and update Consumers to use that
lock instead (deleting the lock inside of Consumer) and updating
replenish() to use that lock as well

21

© Kenneth M. Anderson, 2014

Step 8: Update semantics of replenish

• The way the program is written currently, we consume the energy of the
EnergySource very quickly

• Let’s allow replenish to do more than increment the level

• It can do this safely since all consumers will be blocked during its
update

• Let’s change the consumers to be more modest in their consumption

• We should now have a program in which the EnergySource stays at a
reasonable level, rather than stuck down at one or two units constantly

22

© Kenneth M. Anderson, 2014

Step 9: Ensure Atomicity

• The last change that the book makes is to add another mutable variable to
EnergySource

• This variable will track the number of times that the EnergySource is used

• The purpose of this change is to show that AtomicLong is insufficient to keep
changes to two separate variables coordinated

• Instead, we need a lock to ensure that both variables are updated in
tandem

• We’ll change our Lock to a ReadWriteLock, get rid of the AtomicLong, and
update Consumer, Monitor, and the replenish task to make use of the new
ReadWriteLock

• Everything works fine and we get the maximum amount of concurrency
that can occur, given our need to protect the two variables

23

© Kenneth M. Anderson, 2014

Summary

• Learned useful lessons about taming shared mutability

• Do not create threads in constructors; create in static factory methods

• Do not create arbitrary threads (replenish thread); use thread pools

• Ensure access to mutable variables cross memory barrier

• Evaluate the granularity of locks to promote concurrency

• avoid synchronized if at all possible

• Ensure atomicity of multiple mutable variables via locks

• Note: the final program is thread safe and as performant as we can make it

• unfortunately, the code is quite complex; an unavoidable aspect of the
shared mutability approach to the design of concurrent software systems

24

© Kenneth M. Anderson, 2014

Coming Up Next

• Lecture 26: The Design of Design

• Lecture 27: Return to our Concurrency Textbook

25

