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Learning from Bad Examples

CSCI 5828: Foundations of Software Engineering

Lecture 25 — 11/18/2014
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Goals

• Demonstrate techniques to design for shared mutability


• Build on an example where multiple threads access an “EnergySource”


• to demonstrate the problems that occur with bad design


• we will refactor the program


• until we’ve tamed shared mutability and have thread safe code
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Shared Mutability

• We’ve been talking at an abstract level about the dangers of shared mutability


• When we use the word “danger”, we mean that the code has the potential 
to be unstable


• there may be deadlocks hiding in the code


• there may be race conditions, so the values of variables may behave 
unpredictability


• And, the danger is that you can spend a lot of time trying to debug these 
conditions 


• If you work with concurrent code that uses shared mutability, then you need 
to be able to identify the types of code structures that can lead to problems


• and learn how to eliminate them
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Controlling your variables (I)

• In a shared mutability design, you need to have a clear sense of which 
threads can access which variables


• You can then design into the program the ways in which these variables 
can be protected using the synchronization constructs discussed in 
previous lectures


• In particular, avoiding the use of the keyword synchronized and, 
instead, making use of the Lock interface from java.util.concurrent for 
fine-grained access control


• Note: this example is written in Java but its lessons are more general and will 
apply to other languages that provide access to low-level thread primitives
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Controlling your variables (II)

• If you have ensured that all mutable variables are either


• accessed by only one thread


• or accessed by multiple threads using Lock to coordinate updates


• then you can be confident that your program will be free from thread-related 
dangers;


• If, however, a thread can access one of these variables


• without passing through the protections you put in place


• then the variable is said to have “escaped” and you are open to race 
conditions and non-stable code
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Controlling your variables (III)

• A complex aspect to this analysis is the different ways in which values can 
escape


• Imagine we have Class A that creates an instance of a collection class


• and


• Class A ensures that the collection is accessed in a thread safe way


• the instance variable is private


• all methods that update the collection make use of the Lock interface
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Controlling your variables (IV)

• All of these protections are null and void if one of Class A’s methods returns a 
pointer to the collection


• public List getRecords() { return records; }


• At this point, Class A cannot protect this collection


• Any class that calls this method can then directly update the collection 
without using Class A


• For instance, Class B might call getRecords() and make its pointer to Class 
A’s collection class visible to other threads


• At this point the records variable has escaped and is no longer 
protected
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Controlling your variables (V)

• The same is true if Class A decides to pass records to some other method as 
input


• { ... ; records = foo.update(records); ... }


• If the object foo decides to keep a pointer to all of the collections passed to 
its update() method, then records has escaped and all of Class A’s 
protections are, again, useless


• Finally, if a class has public instance variables or public static variables then 
any of these variables can easily escape


• Code can simply reach in and update the instances without the host class 
knowing about it
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Controlling your variables (VI)

• By now it should be clear that visibility specifications


• public, protected, private


• have nothing to do with protecting a variable from access by multiple threads


• The values pointed at by “private” variables can be passed to other classes 
who can then point at those values


• stripping them of their protection


• If you have a very small program, then you should be able to conduct the 
analysis of whether a variable has escaped its protection or not


• but as your programs get larger, it becomes more and more difficult to keep 
track of all the ways a variable is accessed


• and this is what causes the pain of debugging shared mutability designs
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Example: Step 1

• To demonstrate these issues, let’s look at a “bad example” of shared 
mutability design


• EnergySource is a resource that maintains a certain amount of energy


• Clients can make use of this energy by calling useEnergy() and 
specifying how much energy they need


• Internally, EnergySource starts a thread that will slowly replenish the 
EnergySource if its energy level ever falls below the maximum


• I have augmented this example with client code that makes use of the 
EnergySource


• a monitor that prints out the current level of the source on a periodic basis 
and consumers who read the current level and then consume a random 
amount of energy
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Discussion

• As the book discusses, the EnergySource class is a HORRIBLE instance of 
concurrent design


• it does pretty much everything wrong


• the internal thread is started incorrectly


• the internal thread can access the source before it has been initialized


• its internal instance variable is mutable and unprotected (race condition)


• the internal thread loops forever until a boolean flag changes state


• changing the boolean flag may not cross the memory barrier


• thread is stuck endlessly looping and sleeping, consuming resources


• one internal thread is created per instance; threads are expensive!
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Step 2: Fix creation of internal thread (I)

• We do not want to create threads in our constructor


• If we call start() on those threads in the constructor


• they may start accessing our object before it exits the constructor!


• as a result, they will be accessing the object in an inconsistent state


• We want the call to the constructor to complete before any other object 
accesses the energy source


• This allows us to make sure the energy source is in a consistent state


• then, we can design the class such that each method


• starts in a consistent state, performs its service, and ensures that 
it is leaving the object in a consistent state before it returns
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Step 2: Fix creation of internal thread (II)

• To address this problem, we make use of a factory pattern


• The constructor of the class is made private


• This prevents other classes from creating instances of EnergySource


• A private instance method (init) is created to create the internal thread


• A static method is created to allow classes to acquire an instance of 
EnergySource


• the static “factory” method


• creates an instance of the class (constructor will fully initialize class)


• calls the init method to start the thread


• returns the instance to the caller
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Step 3: Get rid of internal thread

• The internal thread was created so that periodically the EnergySource would 
be replenished


• The original author probably felt that a thread was the only way to 
accomplish this


• Java has a class called Timer that can be used to fire events on a periodic 
basis


• but creating one Timer per instance of EnergySource is wasteful


• Instead, we’ll use a ScheduledThreadPoolExecutor


• It can allocate a certain number of threads and then reuse them to 
handle the task of replenishing multiple energy sources


• The thread pool will be static, so it will be shared across all instances
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Discussion (I)

• As a result of adding an instance of ScheduledExecutorService to EnergySource


• the private init() method is changed such that


• instead of creating a thread


• it now creates an instance of a task that it submits to the thread pool


• the task simply calls replenish


• we ask that the task be run every second


• the replenish method is now simplified: check level, increment if needed


• no more loop, no more sleeping


• the boolean flag goes away


• the request to stop the energy source, now just cancels the task
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Discussion (II)

• One complication


• With the addition of a static thread pool, we need to come up with a way 
to shut the thread pool down


• We have two options


• Add a static shutdown() method to EnergySource


• Call this method when its time to shut our program down


• Configure the pool with a thread factory that sets all threads to be 
daemon threads


• I chose the former; it’s simpler (at least for this example program)
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Step 4: Ensure visibility

• Our shared mutable instance variable (level) is not protected


• changes to it may not pass the memory barrier


• race conditions exist since multiple threads may try to read the value of 
level at the same time and then try to consume energy based on that value


• Our Consumer thread has a transaction problem in this regard that we’ll 
fix later


• We’ll start by fixing this problem by adding the synchronized keyword to all 
methods that access the shared instance variable


• This protects the variable but greatly reduces performance


• If we have a lot of threads accessing EnergySource, most of them will 
be blocked while one thread is inside one of these methods
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Step 5: Enhance Concurrency

• Use of the synchronized keyword is too restrictive in terms of performance


• We’ll change our instance variable from a long to an AtomicLong


• We can then get rid of our synchronized keyword and allow the threads to 
access the energy source as fast as possible


• The AtomicLong will ensure that the minimum amount of synchronization 
is used to protect its value from multiple threads


• Note: use of AtomicLong.compareAndSet(expected, new) in useEnergy()


• a thread says “here is the value that I think is current;


• if it is current, then change it to this new value


• Protects against situations where a thread reads a value and it gets updated 
before it can write a new value; the update fails, if it gets expected wrong
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We still need a transaction

• Even with these protections, our consumers still get into problems


• Consumer 0 tries to consume 23:  SUCCESS!


• Consumer 2 tries to consume 94:  FAIL!


• Consumer 1 tries to consume 89:  FAIL!


• Even though Consumer 0 had updated the EnergySource


• Consumer 1 and Consumer 2 both read the level of EnergySource at the 
same time and tried to consume an invalid amount of energy


• We now need to address this problem with our consumers 
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Step 6: Add a notion of transaction to consumer

• Our consumers are designed to


• read the value of the energy source


• use that value to generate a random amount of energy to consume


• and then consume that amount of energy


• The problem?


• they do not do this read/update in a transaction


• as a result, they can all read the same amount at the same time and then all 
move on to consume different amounts, some of which will be invalid


• All of the work we’ve done in EnergySource does not solve this problem


• We’ll solve it via a shared lock; if we had more than one type of thread, we’d 
have to place this lock in EnergySource; for now, we will create it in Consumer
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Step 7: Fix the problem with replenish

• We do have a problem


• even with the transaction, it’s possible that the replenish task slips in 
between a Consumer’s read and write, incrementing the value, and 
causing the Consumer’s write to fail


• This would manifest in the step06 program like this


• Consumer 7 tries to consume 2:  FAIL!


• It’s very hard to make this happen, but it’s possible


• So, we need to share the lock between the consumers and the replenish task


• We add a public lock to EnergySource and update Consumers to use that 
lock instead (deleting the lock inside of Consumer) and updating 
replenish() to use that lock as well
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Step 8: Update semantics of replenish

• The way the program is written currently, we consume the energy of the 
EnergySource very quickly


• Let’s allow replenish to do more than increment the level


• It can do this safely since all consumers will be blocked during its 
update


• Let’s change the consumers to be more modest in their consumption


• We should now have a program in which the EnergySource stays at a 
reasonable level, rather than stuck down at one or two units constantly
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Step 9: Ensure Atomicity

• The last change that the book makes is to add another mutable variable to 
EnergySource


• This variable will track the number of times that the EnergySource is used


• The purpose of this change is to show that AtomicLong is insufficient to keep 
changes to two separate variables coordinated


• Instead, we need a lock to ensure that both variables are updated in 
tandem


• We’ll change our Lock to a ReadWriteLock, get rid of the AtomicLong, and 
update Consumer, Monitor, and the replenish task to make use of the new 
ReadWriteLock


• Everything works fine and we get the maximum amount of concurrency 
that can occur, given our need to protect the two variables
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Summary

• Learned useful lessons about taming shared mutability


• Do not create threads in constructors; create in static factory methods


• Do not create arbitrary threads (replenish thread); use thread pools


• Ensure access to mutable variables cross memory barrier


• Evaluate the granularity of locks to promote concurrency


• avoid synchronized if at all possible


• Ensure atomicity of multiple mutable variables via locks


• Note: the final program is thread safe and as performant as we can make it


• unfortunately, the code is quite complex; an unavoidable aspect of the 
shared mutability approach to the design of concurrent software systems
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Coming Up Next

• Lecture 26: The Design of Design


• Lecture 27: Return to our Concurrency Textbook
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