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(Goals

- Introduce the notion of Software Design
* Present many different examples of design and design thinking
 Design Guidelines
+ Design Patterns
* The use of themes
- Successful designs

- Examples
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What is Design”

* In software engineering

- design is typically thought of as “the solution” to a problem defined by a
customer or user

- traditionally, it is the work that generates a solution AFTER the problem is
understood (to some extent) but BEFORE implementation begins

 (As we will see, successful solutions are called Design Patterns)

+ “| hacked up a solution” — typically means the developers started coding
before they had a design

* In these situations, people will say “l needed to code it up once before |
understood the problem enough to implement it correctly”

 “| designed a solution” — the developers spent time talking about the
characteristics of a solution—the data structures needed, the algorithms, the
system components, etc.—reached and agreement and THEN started coding
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Dictionary Definitions

- design (noun)

» a plan or drawing produced to show the look and function or workings of a
building, garment, or other object before it is built or made

* the art or action of conceiving of and producing a plan or drawing
 an arrangement of lines or shapes created to form a pattern or decoration

* purpose, planning, or intention that exists or is thought to exist behind an
action, fact, or material object

- design (verb)

» decide upon the look and functioning of a thing, typically by making a
detailed drawing of it

 do or plan something with a specific purpose or intention in mind
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Design Is Ancient

- Humans have been engaged in design in many fields for thousands of years
* The result?
* Look around youl!

 Excluding nature (plants, animals, chemicals, etc.), can you point to one
object that hasn’t been designed?

+ Everything around us was designed by a human at some point
* In our lecture room, EVERYTHING was designed by humans
- That means that everything around us SOLVES A PROBLEM!
- A problem we would have if the object wasn’t there

 This is actually quite stunning if you spend time thinking about it!
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Design is NOT a feature

Downloads Clear
E ~ Swift_by_Tutorials_1_3.zip

220 KB of 150.3 MB (5 KB/sec) — 7 hours, 36 minutes remaining

Q " 10S_8_by_Tutorials_1_2.zip
2P 241 KB of 309.3 MB — stopped

—1 sampling.pdf
'Z—U? 296 KB

It is also NOT a specific implementation; it is a set of ideas/techniques
about HOW to create the implementation of a feature; the approach
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Design in Other Fields

* Product Design - See for instance “The social
life of small urban spaces, a
* How do you create a product film by William H. Whyte”
that “fits” into its intended
niche? - discussed in Palen’s

_ Social Computing Class
 Architecture

_ o - Fashion Design
* How do you design buildings so

they are functional and serve a * How do you pull materials
purpose? together so they serve a
_ o purpose while they also
* How do you design buildings “make a statement”?
and the spaces between so they
work well with each other - Cooking, Music, Film, Art: any

, _ creative endeavor requires
- i.e. urban planning design!
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Design begets Design Thinking

At <https://www.vitsoe.com/gb/ - Good design is aesthetic
about/good-design>, Dieter Rams,
a famous product designer, reflects
on what makes “good design”?

+ Aesthetics are integral to a
product’s usefulness; we use

these items every day

* Good design is innovative - Good design makes a product

- Taking advantage of new understandable
techniques; using existing

. . * “You don’t have to read the
techniques in unexpected ways

manual”
- Good design make a product

- Good design is unobtrusive
useful

 “Products fulfilling a purpose are
like tools.” “It gets out of your
way.”

- Emphasize utility while removing
anything that detracts from that
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https://www.vitsoe.com/gb/about/good-design

Dieter Rams, continued

- Good design is honest - Good design is environmentally-
» The design does not attempt to friendly
fool the user that it can do * “|t conserves resources and
something that it cannot minimizes physical and visual

pollution throughout the life

- Good design is long-lasting
cycle of the product.”

* |t solves the problem so well that

it avoids being “fashionable” - Good design is as little as

possible
- Good design is thorough down to )
the last detail  “Less, but better—because [the

design] concentrates on the
essential aspects [of the
problem], and the product is not
burdened with non-essentials.”

* “Nothing must be arbitrary or left
to chance. Care and accuracy in
the design process show
respect towards the user”
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Thinking About Design Is also Ancient

» “A designer knows he has achieved perfection not when there is nothing left
to add, but when there is nothing left to take away.”

- — Antoine de Saint Exupéry
- More quotes on design in general, located here

- <http://www.designwashere.com/80-inspiring-quotes-about-design/>
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http://www.designwashere.com/80-inspiring-quotes-about-design/

Design Is Hard

- One of my favorite type of reading is
+ “Developers blogging about design problems”

- Examples

« Brent Simmons on synching mobile app data via a web service

« Marco Arment on how to do tilt scrolling on a mobile device

» ridiculous fish on how he tried to beat grep

- The article starts “Old age and treachery will beat youth and skill every time.”

 Brian Lovin on the visual design of Paper by Facebook

- Jesse Squires on adaptive user interfaces in iOS 8

* Please share similar examples that you find on the web or, better yet, that you
write vourself!
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http://www.mohiji.org/2014/03/27/brent-simmons-on-syncing/
http://www.marco.org/2014/07/24/tilt-scrolling-that-doesnt-suck
http://ridiculousfish.com/blog/posts/old-age-and-treachery.html
http://blog.brianlovin.com/design-details-paper-by-facebook/
http://www.jessesquires.com/adaptive-user-interfaces/

Design Is Transformative

- There are a lot of choices one can make in any particular design space

« Once a good set of choices has been made, it influences everything that
comes after
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Transtormation In Detall

Note: images found here: http://random.andrewwarner.com/what-googles-android-looked-like-before-and-after-the-launch-of-iphone/
© Kenneth M. Anderson, 2014
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http://random.andrewwarner.com/what-googles-android-looked-like-before-and-after-the-launch-of-iphone/

Latest Iteration: Takes Initial Trend to Logical End

Note: Image comes from http://www.apple.com/iphone-6/

© Kenneth M. Anderson, 2014

14


http://www.apple.com/iphone-6/

The Structure of Design

- One interesting thing about design is that it often has a structure that is
“tangible” —sometimes physically—but sometimes in just the way it
iInfluences our thinking

- Consider music and the structure of songs
- Thousands of songs exists that have this basic structure
« Verse 1; Refrain; Verse 2; Refrain; ...
* Another common structure
- Intro; Verse 1; Refrain; Verse 2; Bridge; Verse 3; Refrain (repeat til fade)
- Creativity can then come in the form of playing with that structure

» “Unusual and interesting songs” often are ones that have rearranged
the basic structure, thus playing with our expectations
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Structure in Software

Design:

Design

Patterns

- In 1995, a book was published by the “Gang of Four” called Design Patterns

- It applied the concept of patterns to software design and described 23 of

them

« The authors did not invent these patterns

» Instead, they included patterns they found in at least 3 “real”

software systems.

© Kenneth M. Anderson, 2014
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Cultural Anthropology

» Design Patterns have their intellectual roots in the discipline of cultural
anthropology

» Within a culture, individuals will agree on what is considered good design

 “Cultures make judgements on good design that transcend individual
beliefs”

- Patterns (structures and relationships that appear over and over again in
many different well designed objects) provide an objective basis for
judging design

© Kenneth M. Anderson, 2012
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Christopher Alexander (l)

 Design patterns in software design traces its intellectual roots to work
performed in the 1970s by an architect named Christopher Alexander

* His 1979 book called “The Timeless Way of Building” that asks the
question “Is quality objective?”

* in particular, “What makes us know when an architectural design is
good? Is there an objective basis for such a judgement?”

- His answer was “yes” that it was possible to objectively define “high
quality” or “beautiful” buildings

© Kenneth M. Anderson, 2012
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Christopher Alexander (l1)

- He studied the problem of identifying what makes a good architectural design
by observing all sorts of built structures

* buildings, towns, streets, homes, community centers, etc.

- When he found an example of a high quality design, he would compare that
object to other objects of high quality and look for commonalties

- especially if both objects were used to solve the same type of problem

© Kenneth M. Anderson, 2012
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Christopher Alexander (llI)

By studying high quality structures that solve similar problems, he could
discover similarities between the designs and these similarities where what he
called patterns

« “Each pattern describes a problem which occurs over and over again in
our environment and then describes the core of the solution to that
problem, in such a way that you can use this solution a million times over,
without ever doing it the same way twice.”

+ The pattern provides an approach that can be used to achieve a high
quality solution to its problem
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Four Elements of a Pattern

- Alexander identified four elements to describe a pattern
- The name of the pattern
« The purpose of the pattern: what problem it solves
« How to solve the problem
* The constraints we have to consider in our solution

« He also felt that multiple patterns applied together can help to solve complex
architectural problems
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Design Patterns and Software (|)

- Work on design patterns got started when people asked

 Are there problems in software that occur all the time that can be solved in
somewhat the same manner?

« Was it possible to design software in terms of patterns?

- Many people felt the answer to these questions was “yes” and this initial work
influenced the creation of the Design Patterns book by the Gang of Four

» It catalogued 23 patterns: successful solutions to common problems that
occur in software design
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Design Patterns and Software (l1)

- Design patterns, then, assert that the quality of software systems can be
measured objectively

- What is present in a good quality design (X’s) that is not present in a poor
quality design?

- What is present in a poor quality design (Y’s) that is not present in a good
quality design?

» We would then want to maximize the X’s while minimizing the Y’s in our own
designs

© Kenneth M. Anderson, 2012 23



Key Features of a Pattern

- Name - Implementation: Example ways to

Implement the pattern
- Intent: The purpose of the pattern

» Structure: Class Diagram
* Problem: What problem does it

solve?

- Solution: The approach to take to
solve the problem

- Participants: The entities involved
In the pattern

« Consequences: The effect the
pattern has on your system

© Kenneth M. Anderson, 2012
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Design Pattern Example: Strategy

Host strate Algorithm
Client performOperation() gy - ergtion()
setAlgorithm(a : Algorithm) 7§p

When performOperation() is called:

strategy.operation()
When setAlgorithm is called: ConcreteAlgorithm1 ® ® @ | ConcreteAigorithmN

Name: Strategy

Intent: Define a family of algorithms, encapsulate each one, and make therr
interchangeable. Strategy lets the algorithm vary independently from the
clients that use it.
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Why Study/

« Patterns let us

Develop

Design

Patterns?

* reuse solutions that have worked in the past; why waste time reinventing

the wheel?

 have a shared vocabulary around software design

- they allow you to tell a fellow software engineer “l used a Strategy
pattern here to allow the algorithm used to compute this calculation to
be customizable”

* You don’t have to waste time explaining what you mean since you
both know the Strategy pattern

© Kenneth M. Anderson, 2012 26



Why Study Design Patterns” (ll)

 Design patterns provide you not with code reuse but with experience reuse

« Knowing concepts such as abstraction, inheritance and polymorphism will
NOT make you a good designer, unless you use those concepts to create
flexible designs that are maintainable and that can cope with change

« Design patterns can show you how to apply those concepts to achieve those
goals

© Kenneth M. Anderson, 2012
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A Sense of Perspective

* Design Patterns give you a higher-level perspective on
- the problems that come up in OO A&D work
* the process of design itself
- the use of object orientation to solve problems

* You'll be able to think more abstractly and not get bogged down in
Implementation details too early in the process

© Kenneth M. Anderson, 2012
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The Carpenter Analogy (I)

« An excellent example of what we mean by a “higher-level perspective”:
Imagine two carpenters having a conversation

* They can either say

- Should | make the joint by cutting down into the wood and then going
back up 45 degrees and...

° Or

- Should we use a dovetail joint or a miter joint?

© Kenneth M. Anderson, 2012
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The Carpenter Analogy (II)

 The latter is at a high-level and enables a richer conversation about the
problem at hand

» The former gets bogged down in the details of cutting the wood such that
you don’t know what problem is being solved

« The latter relies on the carpenter’s shared knowledge

» They know that dovetall joints are higher quality than miter joints but with
higher costs

- Knowing that, they can debate whether the higher quality is needed in the
situation they are Iin
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The Carpenter Analogy in Software

 “| have this one object with some important information and these other
objects over here need to know when its information changes. These other
objects come and go. I'm thinking | should separate out the notification and
client registration functionality from the functionality of the object and just let
it focus on storing and manipulating its information. Do you agree?”

° VS.

* “I’m thinking of using the Observer pattern. Do you agree?”

© Kenneth M. Anderson, 2012 31



More about Design Patterns

* You can learn more about design patterns from the original book

- <http://www.amazon.com/Design-Patterns-Elements-Reusable-Object-
Oriented/dp/0201633612/>

 You will find the examples referenced in this book to be outdated but the
patterns themselves are pure gold

| also found this book that looks to be a terrific resource and a more modern
presentation of these ideas

 <http://sourcemaking.com/design-patterns-book>
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Design Themes; Where are these used?

- “Everything is a file”

- “Everything is a resource”

- “Everything is an object”

« All data can be stored in tables with rows and columns

« The presentation details of information should be separated from its structure

© Kenneth M. Anderson, 2014
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(One Set of) Anwsers

- “Everything is a file” — Unix

- “Everything is a resource” — Web

« “Everything is an object” — Ruby (and many other programming languages)

« All data can be stored in tables with rows and columns

* Relational Databases

- The presentation details of information should be separated from its structure
« CSS (presentation details) and HTMLS5 (structure)

© Kenneth M. Anderson, 2014
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—verything is an Object

- Examples
« 5.upto(10) { |i| puts i }
-5

— O 00 N O

0
+ "Design is Cool!!”.upcase
« "DESIGN IS COOL!!”

- etc.
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SimpleObjects ) Hl My Mac

58

@ Placeholders

File's Owner
m?] First Responder

A Application
i‘j Objects
> E* Main Menu
.‘- App Delegate
|’- Font Manager

> @= SimpleObjects

= © [l

Q SimpleObjects )

Running SimpleObjects : SimpleObjects

SimpleObjects )

</

MainMenu.xib

© SimpleObjects

MainMenu.xib (English) ) .‘ﬂ App Delegate

File Edit Format

View Window Help

) @ SimpleObjects

(I

A SimpleObjects

Set to 100

@ SimpleObjects

Set to 100

T ——————————————————————
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= o Hl

Il

1

Lot

L1 = L

Outlets
(circular % Circular Slider 9)
(circularSIider )—(8 Circular Slider @
(horizontalSlider % Horizontal Slider (@)
(set100 % Set to 100 O)
(window )—(8 SimpleObjects @
Referencing Outlets
(delegate (% File's Owner ®
New Referencing Outlet O
Received Actions
(_circularValueChanged: )—( % Circular Slider @)
(horizontaIVaIueCha... )—(x Horizontal Slider @
( setTo100: (% Set to 100 ®

Push Button - Intercepts mouse-
down events and sends an action
message to a target object when it’...

Gradient Button - Intercepts
mouse-down events and sends an
action message to a target object w...

—verything is an Object (more advanced
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Unix (1)

-« “Everything is a file”
« One API can be used to read/process
- files, sockets, devices, and memory
« One example of the latter
e tree <large directory>; tree <large directory>
 The first time this command runs, it will take a long time;
« The second time runs almost instantly. Why?

 The file system cache; the files are pulled into memory by the operating
system. The second time around tree is reading from memory

although it thinks it is reading from disk

© Kenneth M. Anderson, 2014
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Unix (Il

-« “Everything is a file”
- Another advantage: program input/output expectations
» Every program can read from standard in
 Every program can write to standard out
- Standard In and Standard Out can point to “anything”
« Memory, Files, Sockets, Devices, etc.
* This lets you do things like
e find . -type f -name \*.rb | grep -i "Tweet" | wc -1

* In English: “How many ruby files in this directory tree have the word “tweet” in
their filename?”
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Unix (11l

- Even cooler, the commands in a pipe structure run in parallel
- find . -type f | grep -i "CSCI" | ruby ~/Desktop/Designintro/uppercase.rb
 This invokes three programs, “find”, “grep” and a ruby program | wrote
* In parallel
- find looks for file names (ignoring directory names)
» grep looks for file names containing “CSCI” in a case insensitive fashion

 The ruby program converts all of its input to uppercase
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Unix (IV)

- Speaking of Ruby

- Command chaining in Unix (actually Unix shells) is so powerful that many
programming languages optimize the creation of programs that can do this

- By default, ruby’s gets and puts are set-up to read/write standard in/out
* My ruby program looks like this
while line = gets
puts line.chomp.upcase
end

- That’s all that’s needed to get started in this type of programming
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Unix (V)

- The ability to combine programs in this way, gives the user a language that
allows them to solve problems

- Last night my daughter had a vocabulary exercise that said:
e Not vibrant but c_Ll___e__
« And she needed to fill in the missing letters
* we both thought about it and came up with nothing
* so | wrote this “program”

+ grep "Ac.l...e..$" /usr/share/dict/words

* In English: “what nine-letter words begin with c and have an | and an e in
them in positions 3 and 7?” => 17 choices: “colorless” jumped right out

© Kenneth M. Anderson, 2014
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Unix (VI)

- Likewise, she had the question
e Not unknown but f_____
e grep “Mf..... $" Jusr/share/dict/words | wc -1
» “How many six letter words start with the letter f?” => 568
egrep "Af..... $" words | subl3 --

« “Show them to me...”

» After scrolling through the words, we found “famous”

© Kenneth M. Anderson, 2014
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Summary

« We introduced the concept of software design and design patterns
« Design is NOT an individual feature or implementation
- it is an APPROACH to solving a problem
- We talked about design in general
 Design is Ancient => Design is EVERYWHERE
» Design gets to the essentials
 Design is transformative
 Design has structure

» Design is HARD

« We talked about design themes and saw examples
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Coming Up Next

« Lecture 20: The Design of Design, Part One

 Lecture 21: User Stories, Chapters 12-16
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