
© Kenneth M. Anderson, 2014

Introduction to Software Design

CSCI 5828: Foundations of Software Engineering

Lecture 19 — 10/28/2014

1

© Kenneth M. Anderson, 2014

Goals

• Introduce the notion of Software Design

• Present many different examples of design and design thinking

• Design Guidelines

• Design Patterns

• The use of themes

• Successful designs

• Examples

2

© Kenneth M. Anderson, 2014

What is Design?

• In software engineering

• design is typically thought of as “the solution” to a problem defined by a

customer or user

• traditionally, it is the work that generates a solution AFTER the problem is

understood (to some extent) but BEFORE implementation begins

• (As we will see, successful solutions are called Design Patterns)

• “I hacked up a solution” — typically means the developers started coding
before they had a design

• In these situations, people will say “I needed to code it up once before I

understood the problem enough to implement it correctly”

• “I designed a solution” — the developers spent time talking about the

characteristics of a solution—the data structures needed, the algorithms, the
system components, etc.—reached and agreement and THEN started coding

3

© Kenneth M. Anderson, 2014

Dictionary Definitions

• design (noun)

• a plan or drawing produced to show the look and function or workings of a
building, garment, or other object before it is built or made

• the art or action of conceiving of and producing a plan or drawing

• an arrangement of lines or shapes created to form a pattern or decoration

• purpose, planning, or intention that exists or is thought to exist behind an
action, fact, or material object

• design (verb)

• decide upon the look and functioning of a thing, typically by making a
detailed drawing of it

• do or plan something with a specific purpose or intention in mind

4

© Kenneth M. Anderson, 2014

Design is Ancient

• Humans have been engaged in design in many fields for thousands of years

• The result?

• Look around you!

• Excluding nature (plants, animals, chemicals, etc.), can you point to one
object that hasn’t been designed?

• Everything around us was designed by a human at some point

• In our lecture room, EVERYTHING was designed by humans

• That means that everything around us SOLVES A PROBLEM!

• A problem we would have if the object wasn’t there

• This is actually quite stunning if you spend time thinking about it!

5

© Kenneth M. Anderson, 2014

Design is NOT a feature

6

It is also NOT a specific implementation; it is a set of ideas/techniques
about HOW to create the implementation of a feature; the approach

© Kenneth M. Anderson, 2014

Design in Other Fields

• Product Design

• How do you create a product
that “fits” into its intended
niche?

• Architecture

• How do you design buildings so
they are functional and serve a
purpose?

• How do you design buildings
and the spaces between so they
work well with each other

• i.e. urban planning

• See for instance “The social
life of small urban spaces, a
film by William H. Whyte”

• discussed in Palen’s
Social Computing Class

• Fashion Design

• How do you pull materials
together so they serve a
purpose while they also
“make a statement”?

• Cooking, Music, Film, Art: any
creative endeavor requires
design!

7

© Kenneth M. Anderson, 2014

Design begets Design Thinking

• At <https://www.vitsoe.com/gb/
about/good-design>, Dieter Rams,
a famous product designer, reflects
on what makes “good design”?

• Good design is innovative
• Taking advantage of new

techniques; using existing
techniques in unexpected ways

• Good design make a product
useful
• Emphasize utility while removing

anything that detracts from that

• Good design is aesthetic
• Aesthetics are integral to a

product’s usefulness; we use
these items every day

• Good design makes a product
understandable
• “You don’t have to read the

manual”

• Good design is unobtrusive

• “Products fulfilling a purpose are
like tools.” “It gets out of your
way.”

8

https://www.vitsoe.com/gb/about/good-design

© Kenneth M. Anderson, 2014

Dieter Rams, continued

• Good design is honest
• The design does not attempt to

fool the user that it can do
something that it cannot

• Good design is long-lasting
• It solves the problem so well that

it avoids being “fashionable”

• Good design is thorough down to

the last detail
• “Nothing must be arbitrary or left

to chance. Care and accuracy in
the design process show
respect towards the user”

• Good design is environmentally-
friendly
• “It conserves resources and

minimizes physical and visual
pollution throughout the life
cycle of the product.”

• Good design is as little as
possible
• “Less, but better—because [the

design] concentrates on the
essential aspects [of the
problem], and the product is not
burdened with non-essentials.”

9

© Kenneth M. Anderson, 2014

Thinking About Design is also Ancient

• “A designer knows he has achieved perfection not when there is nothing left
to add, but when there is nothing left to take away.”

• — Antoine de Saint Exupéry

• More quotes on design in general, located here

• <http://www.designwashere.com/80-inspiring-quotes-about-design/>

10

http://www.designwashere.com/80-inspiring-quotes-about-design/

© Kenneth M. Anderson, 2014

Design is Hard

• One of my favorite type of reading is

• “Developers blogging about design problems”

• Examples

• Brent Simmons on synching mobile app data via a web service

• Marco Arment on how to do tilt scrolling on a mobile device

• ridiculous fish on how he tried to beat grep

• The article starts “Old age and treachery will beat youth and skill every time.”

• Brian Lovin on the visual design of Paper by Facebook

• Jesse Squires on adaptive user interfaces in iOS 8

• Please share similar examples that you find on the web or, better yet, that you
write yourself!

11

http://www.mohiji.org/2014/03/27/brent-simmons-on-syncing/
http://www.marco.org/2014/07/24/tilt-scrolling-that-doesnt-suck
http://ridiculousfish.com/blog/posts/old-age-and-treachery.html
http://blog.brianlovin.com/design-details-paper-by-facebook/
http://www.jessesquires.com/adaptive-user-interfaces/

© Kenneth M. Anderson, 2014

Design is Transformative

• There are a lot of choices one can make in any particular design space

• Once a good set of choices has been made, it influences everything that
comes after

12

© Kenneth M. Anderson, 2014

Transformation In Detail

13
Note: images found here: http://random.andrewwarner.com/what-googles-android-looked-like-before-and-after-the-launch-of-iphone/

http://random.andrewwarner.com/what-googles-android-looked-like-before-and-after-the-launch-of-iphone/

© Kenneth M. Anderson, 2014

Latest Iteration: Takes Initial Trend to Logical End

14
Note: Image comes from http://www.apple.com/iphone-6/

http://www.apple.com/iphone-6/

© Kenneth M. Anderson, 2014

The Structure of Design

• One interesting thing about design is that it often has a structure that is
“tangible”—sometimes physically—but sometimes in just the way it
influences our thinking

• Consider music and the structure of songs

• Thousands of songs exists that have this basic structure

• Verse 1; Refrain; Verse 2; Refrain; …

• Another common structure

• Intro; Verse 1; Refrain; Verse 2; Bridge; Verse 3; Refrain (repeat til fade)

• Creativity can then come in the form of playing with that structure

• “Unusual and interesting songs” often are ones that have rearranged
the basic structure, thus playing with our expectations

15

© Kenneth M. Anderson, 2014

Structure in Software Design: Design Patterns

• In 1995, a book was published by the “Gang of Four” called Design Patterns

• It applied the concept of patterns to software design and described 23 of
them

• The authors did not invent these patterns

• Instead, they included patterns they found in at least 3 “real”
software systems.

16

© Kenneth M. Anderson, 2012

Cultural Anthropology

• Design Patterns have their intellectual roots in the discipline of cultural
anthropology

• Within a culture, individuals will agree on what is considered good design

• “Cultures make judgements on good design that transcend individual
beliefs”

• Patterns (structures and relationships that appear over and over again in
many different well designed objects) provide an objective basis for
judging design

17

© Kenneth M. Anderson, 2012

Christopher Alexander (I)

• Design patterns in software design traces its intellectual roots to work
performed in the 1970s by an architect named Christopher Alexander

• His 1979 book called “The Timeless Way of Building” that asks the
question “Is quality objective?”

• in particular, “What makes us know when an architectural design is
good? Is there an objective basis for such a judgement?”

• His answer was “yes” that it was possible to objectively define “high
quality” or “beautiful” buildings

18

© Kenneth M. Anderson, 2012

Christopher Alexander (II)

• He studied the problem of identifying what makes a good architectural design
by observing all sorts of built structures

• buildings, towns, streets, homes, community centers, etc.

• When he found an example of a high quality design, he would compare that
object to other objects of high quality and look for commonalties

• especially if both objects were used to solve the same type of problem

19

© Kenneth M. Anderson, 2012

Christopher Alexander (III)

• By studying high quality structures that solve similar problems, he could
discover similarities between the designs and these similarities where what he
called patterns

• “Each pattern describes a problem which occurs over and over again in
our environment and then describes the core of the solution to that
problem, in such a way that you can use this solution a million times over,
without ever doing it the same way twice.”

• The pattern provides an approach that can be used to achieve a high
quality solution to its problem

20

© Kenneth M. Anderson, 2012

Four Elements of a Pattern

• Alexander identified four elements to describe a pattern

• The name of the pattern

• The purpose of the pattern: what problem it solves

• How to solve the problem

• The constraints we have to consider in our solution

• He also felt that multiple patterns applied together can help to solve complex
architectural problems

21

© Kenneth M. Anderson, 2012

Design Patterns and Software (I)

• Work on design patterns got started when people asked

• Are there problems in software that occur all the time that can be solved in
somewhat the same manner?

• Was it possible to design software in terms of patterns?

• Many people felt the answer to these questions was “yes” and this initial work
influenced the creation of the Design Patterns book by the Gang of Four

• It catalogued 23 patterns: successful solutions to common problems that
occur in software design

22

© Kenneth M. Anderson, 2012

Design Patterns and Software (II)

• Design patterns, then, assert that the quality of software systems can be
measured objectively

• What is present in a good quality design (X’s) that is not present in a poor
quality design?

• What is present in a poor quality design (Y’s) that is not present in a good
quality design?

• We would then want to maximize the X’s while minimizing the Y’s in our own
designs

23

© Kenneth M. Anderson, 2012

Key Features of a Pattern

• Name

• Intent: The purpose of the pattern

• Problem: What problem does it
solve?

• Solution: The approach to take to
solve the problem

• Participants: The entities involved
in the pattern

• Consequences: The effect the
pattern has on your system

• Implementation: Example ways to
implement the pattern

• Structure: Class Diagram

24

© Kenneth M. Anderson, 2012

Design Pattern Example: Strategy

25

Client performOperation()
setAlgorithm(a : Algorithm)

Host
operation()
Algorithm

ConcreteAlgorithm1 ConcreteAlgorithmN

strategy

When performOperation() is called:
strategy.operation()

When setAlgorithm is called:
strategy = a

Name: Strategy

Intent: 	Define a family of algorithms, encapsulate each one, and make them
interchangeable. Strategy lets the algorithm vary independently from the
clients that use it.

© Kenneth M. Anderson, 2012

Why Study/Develop Design Patterns?

• Patterns let us

• reuse solutions that have worked in the past; why waste time reinventing
the wheel?

• have a shared vocabulary around software design

• they allow you to tell a fellow software engineer “I used a Strategy
pattern here to allow the algorithm used to compute this calculation to
be customizable”

• You don’t have to waste time explaining what you mean since you
both know the Strategy pattern

26

© Kenneth M. Anderson, 2012

Why Study Design Patterns? (II)

• Design patterns provide you not with code reuse but with experience reuse

• Knowing concepts such as abstraction, inheritance and polymorphism will
NOT make you a good designer, unless you use those concepts to create
flexible designs that are maintainable and that can cope with change

• Design patterns can show you how to apply those concepts to achieve those
goals

27

© Kenneth M. Anderson, 2012

A Sense of Perspective

• Design Patterns give you a higher-level perspective on

• the problems that come up in OO A&D work

• the process of design itself

• the use of object orientation to solve problems

• You’ll be able to think more abstractly and not get bogged down in
implementation details too early in the process

28

© Kenneth M. Anderson, 2012

The Carpenter Analogy (I)

• An excellent example of what we mean by a “higher-level perspective”:
Imagine two carpenters having a conversation

• They can either say

• Should I make the joint by cutting down into the wood and then going
back up 45 degrees and…

• or

• Should we use a dovetail joint or a miter joint?

29

© Kenneth M. Anderson, 2012

The Carpenter Analogy (II)

• The latter is at a high-level and enables a richer conversation about the
problem at hand

• The former gets bogged down in the details of cutting the wood such that
you don’t know what problem is being solved

• The latter relies on the carpenter’s shared knowledge

• They know that dovetail joints are higher quality than miter joints but with
higher costs

• Knowing that, they can debate whether the higher quality is needed in the
situation they are in

30

© Kenneth M. Anderson, 2012

The Carpenter Analogy in Software

• “I have this one object with some important information and these other
objects over here need to know when its information changes. These other
objects come and go. I’m thinking I should separate out the notification and
client registration functionality from the functionality of the object and just let
it focus on storing and manipulating its information. Do you agree?”

• vs.

• “I’m thinking of using the Observer pattern. Do you agree?”

31

© Kenneth M. Anderson, 2014

More about Design Patterns

• You can learn more about design patterns from the original book

• <http://www.amazon.com/Design-Patterns-Elements-Reusable-Object-
Oriented/dp/0201633612/>

• You will find the examples referenced in this book to be outdated but the
patterns themselves are pure gold

• I also found this book that looks to be a terrific resource and a more modern
presentation of these ideas

• <http://sourcemaking.com/design-patterns-book>

32

http://www.amazon.com/Design-Patterns-Elements-Reusable-Object-Oriented/dp/0201633612/
http://sourcemaking.com/design-patterns-book

© Kenneth M. Anderson, 2014

Design Themes; Where are these used?

• “Everything is a file”

• “Everything is a resource”

• “Everything is an object”

• All data can be stored in tables with rows and columns

• The presentation details of information should be separated from its structure

33

© Kenneth M. Anderson, 2014

(One Set of) Anwsers

• “Everything is a file” — Unix

• “Everything is a resource” — Web

• “Everything is an object” — Ruby (and many other programming languages)

• All data can be stored in tables with rows and columns

• Relational Databases

• The presentation details of information should be separated from its structure

• CSS (presentation details) and HTML5 (structure)

34

© Kenneth M. Anderson, 2014

Everything is an Object

• Examples

• 5.upto(10) { |i| puts i }

• 5

• 6

• 7

• 8

• 9

• 10

• "Design is Cool!!”.upcase

• "DESIGN IS COOL!!”

• etc.

35

© Kenneth M. Anderson, 2012 36

Everything is an Object (more advanced)

© Kenneth M. Anderson, 2014

Unix (I)

• “Everything is a file”

• One API can be used to read/process

• files, sockets, devices, and memory

• One example of the latter

• tree <large directory>; tree <large directory>

• The first time this command runs, it will take a long time;

• The second time runs almost instantly. Why?

• The file system cache; the files are pulled into memory by the operating
system. The second time around tree is reading from memory
although it thinks it is reading from disk

37

© Kenneth M. Anderson, 2014

Unix (II)

• “Everything is a file”

• Another advantage: program input/output expectations

• Every program can read from standard in

• Every program can write to standard out

• Standard In and Standard Out can point to “anything”

• Memory, Files, Sockets, Devices, etc.

• This lets you do things like

• find . -type f -name *.rb | grep -i "Tweet" | wc -l

• In English: “How many ruby files in this directory tree have the word “tweet” in
their filename?”

38

© Kenneth M. Anderson, 2014

Unix (III)

• Even cooler, the commands in a pipe structure run in parallel

• find . -type f | grep -i "CSCI" | ruby ~/Desktop/DesignIntro/uppercase.rb

• This invokes three programs, “find”, “grep” and a ruby program I wrote

• In parallel

• find looks for file names (ignoring directory names)

• grep looks for file names containing “CSCI” in a case insensitive fashion

• The ruby program converts all of its input to uppercase

39

© Kenneth M. Anderson, 2014

Unix (IV)

• Speaking of Ruby

• Command chaining in Unix (actually Unix shells) is so powerful that many
programming languages optimize the creation of programs that can do this

• By default, ruby’s gets and puts are set-up to read/write standard in/out

• My ruby program looks like this

while line = gets

puts line.chomp.upcase

end

• That’s all that’s needed to get started in this type of programming

40

© Kenneth M. Anderson, 2014

Unix (V)

• The ability to combine programs in this way, gives the user a language that
allows them to solve problems

• Last night my daughter had a vocabulary exercise that said:

• Not vibrant but c_l___e__

• And she needed to fill in the missing letters

• we both thought about it and came up with nothing

• so I wrote this “program”

• grep "^c.l...e..$" /usr/share/dict/words

• In English: “what nine-letter words begin with c and have an l and an e in
them in positions 3 and 7?” => 17 choices: “colorless” jumped right out

41

© Kenneth M. Anderson, 2014

Unix (VI)

• Likewise, she had the question

• Not unknown but f_____

• grep “^f.....$" /usr/share/dict/words | wc -l

• “How many six letter words start with the letter f?” => 568

• grep "^f.....$" words | subl3 --

• “Show them to me…”

• After scrolling through the words, we found “famous”

42

© Kenneth M. Anderson, 2014

Summary

43

• We introduced the concept of software design and design patterns

• Design is NOT an individual feature or implementation

• it is an APPROACH to solving a problem

• We talked about design in general

• Design is Ancient => Design is EVERYWHERE

• Design gets to the essentials

• Design is transformative

• Design has structure

• Design is HARD

• We talked about design themes and saw examples

© Kenneth M. Anderson, 2014

Coming Up Next

• Lecture 20: The Design of Design, Part One

• Lecture 21: User Stories, Chapters 12-16

44

