Introduction to Software Design

CSCI 5828: Foundations of Software Engineering
Lecture 19 — 10/28/2014

© Kenneth M. Anderson, 2014

(Goals

- Introduce the notion of Software Design
* Present many different examples of design and design thinking
 Design Guidelines
+ Design Patterns
* The use of themes
- Successful designs

- Examples

© Kenneth M. Anderson, 2014

What is Design”

* In software engineering

- design is typically thought of as “the solution” to a problem defined by a
customer or user

- traditionally, it is the work that generates a solution AFTER the problem is
understood (to some extent) but BEFORE implementation begins

 (As we will see, successful solutions are called Design Patterns)

+ “| hacked up a solution” — typically means the developers started coding
before they had a design

* In these situations, people will say “l needed to code it up once before |
understood the problem enough to implement it correctly”

 “| designed a solution” — the developers spent time talking about the
characteristics of a solution—the data structures needed, the algorithms, the
system components, etc.—reached and agreement and THEN started coding

© Kenneth M. Anderson, 2014

Dictionary Definitions

- design (noun)

» a plan or drawing produced to show the look and function or workings of a
building, garment, or other object before it is built or made

* the art or action of conceiving of and producing a plan or drawing
 an arrangement of lines or shapes created to form a pattern or decoration

* purpose, planning, or intention that exists or is thought to exist behind an
action, fact, or material object

- design (verb)

» decide upon the look and functioning of a thing, typically by making a
detailed drawing of it

 do or plan something with a specific purpose or intention in mind

© Kenneth M. Anderson, 2014

Design Is Ancient

- Humans have been engaged in design in many fields for thousands of years
* The result?
* Look around youl!

 Excluding nature (plants, animals, chemicals, etc.), can you point to one
object that hasn’t been designed?

+ Everything around us was designed by a human at some point
* In our lecture room, EVERYTHING was designed by humans
- That means that everything around us SOLVES A PROBLEM!
- A problem we would have if the object wasn’t there

 This is actually quite stunning if you spend time thinking about it!

© Kenneth M. Anderson, 2014

Design is NOT a feature

Downloads Clear
E ~ Swift_by_Tutorials_1_3.zip

220 KB of 150.3 MB (5 KB/sec) — 7 hours, 36 minutes remaining

Q " 10S_8_by_Tutorials_1_2.zip
2P 241 KB of 309.3 MB — stopped

—1 sampling.pdf
'Z—U? 296 KB

It is also NOT a specific implementation; it is a set of ideas/techniques
about HOW to create the implementation of a feature; the approach

© Kenneth M. Anderson, 2014

Design in Other Fields

* Product Design - See for instance “The social
life of small urban spaces, a
* How do you create a product film by William H. Whyte”
that “fits” into its intended
niche? - discussed in Palen’s

_ Social Computing Class
 Architecture

_ o - Fashion Design
* How do you design buildings so

they are functional and serve a * How do you pull materials
purpose? together so they serve a
_ o purpose while they also
* How do you design buildings “make a statement”?
and the spaces between so they
work well with each other - Cooking, Music, Film, Art: any

, _ creative endeavor requires
- i.e. urban planning design!

© Kenneth M. Anderson, 2014

Design begets Design Thinking

At <https://www.vitsoe.com/gb/ - Good design is aesthetic
about/good-design>, Dieter Rams,
a famous product designer, reflects
on what makes “good design”?

+ Aesthetics are integral to a
product’s usefulness; we use

these items every day

* Good design is innovative - Good design makes a product

- Taking advantage of new understandable
techniques; using existing

. . * “You don’t have to read the
techniques in unexpected ways

manual”
- Good design make a product

- Good design is unobtrusive
useful

 “Products fulfilling a purpose are
like tools.” “It gets out of your
way.”

- Emphasize utility while removing
anything that detracts from that

© Kenneth M. Anderson, 2014

https://www.vitsoe.com/gb/about/good-design

Dieter Rams, continued

- Good design is honest - Good design is environmentally-
» The design does not attempt to friendly
fool the user that it can do * “|t conserves resources and
something that it cannot minimizes physical and visual

pollution throughout the life

- Good design is long-lasting
cycle of the product.”

* |t solves the problem so well that

it avoids being “fashionable” - Good design is as little as

possible
- Good design is thorough down to)
the last detail “Less, but better—because [the

design] concentrates on the
essential aspects [of the
problem], and the product is not
burdened with non-essentials.”

* “Nothing must be arbitrary or left
to chance. Care and accuracy in
the design process show
respect towards the user”

© Kenneth M. Anderson, 2014

Thinking About Design Is also Ancient

» “A designer knows he has achieved perfection not when there is nothing left
to add, but when there is nothing left to take away.”

- — Antoine de Saint Exupéry
- More quotes on design in general, located here

- <http://www.designwashere.com/80-inspiring-quotes-about-design/>

© Kenneth M. Anderson, 2014 10

http://www.designwashere.com/80-inspiring-quotes-about-design/

Design Is Hard

- One of my favorite type of reading is
+ “Developers blogging about design problems”

- Examples

« Brent Simmons on synching mobile app data via a web service

« Marco Arment on how to do tilt scrolling on a mobile device

» ridiculous fish on how he tried to beat grep

- The article starts “Old age and treachery will beat youth and skill every time.”

 Brian Lovin on the visual design of Paper by Facebook

- Jesse Squires on adaptive user interfaces in iOS 8

* Please share similar examples that you find on the web or, better yet, that you
write vourself!

© Kenneth M. Anderson, 2014 11

http://www.mohiji.org/2014/03/27/brent-simmons-on-syncing/
http://www.marco.org/2014/07/24/tilt-scrolling-that-doesnt-suck
http://ridiculousfish.com/blog/posts/old-age-and-treachery.html
http://blog.brianlovin.com/design-details-paper-by-facebook/
http://www.jessesquires.com/adaptive-user-interfaces/

Design Is Transformative

- There are a lot of choices one can make in any particular design space

« Once a good set of choices has been made, it influences everything that
comes after

© Kenneth M. Anderson, 2014

12

Transtormation In Detall

Note: images found here: http://random.andrewwarner.com/what-googles-android-looked-like-before-and-after-the-launch-of-iphone/
© Kenneth M. Anderson, 2014

13

http://random.andrewwarner.com/what-googles-android-looked-like-before-and-after-the-launch-of-iphone/

Latest Iteration: Takes Initial Trend to Logical End

Note: Image comes from http://www.apple.com/iphone-6/

© Kenneth M. Anderson, 2014

14

http://www.apple.com/iphone-6/

The Structure of Design

- One interesting thing about design is that it often has a structure that is
“tangible” —sometimes physically—but sometimes in just the way it
iInfluences our thinking

- Consider music and the structure of songs
- Thousands of songs exists that have this basic structure
« Verse 1; Refrain; Verse 2; Refrain; ...
* Another common structure
- Intro; Verse 1; Refrain; Verse 2; Bridge; Verse 3; Refrain (repeat til fade)
- Creativity can then come in the form of playing with that structure

» “Unusual and interesting songs” often are ones that have rearranged
the basic structure, thus playing with our expectations

© Kenneth M. Anderson, 2014 15

Structure in Software

Design:

Design

Patterns

- In 1995, a book was published by the “Gang of Four” called Design Patterns

- It applied the concept of patterns to software design and described 23 of

them

« The authors did not invent these patterns

» Instead, they included patterns they found in at least 3 “real”

software systems.

© Kenneth M. Anderson, 2014

16

Cultural Anthropology

» Design Patterns have their intellectual roots in the discipline of cultural
anthropology

» Within a culture, individuals will agree on what is considered good design

 “Cultures make judgements on good design that transcend individual
beliefs”

- Patterns (structures and relationships that appear over and over again in
many different well designed objects) provide an objective basis for
judging design

© Kenneth M. Anderson, 2012

17

Christopher Alexander (l)

 Design patterns in software design traces its intellectual roots to work
performed in the 1970s by an architect named Christopher Alexander

* His 1979 book called “The Timeless Way of Building” that asks the
question “Is quality objective?”

* in particular, “What makes us know when an architectural design is
good? Is there an objective basis for such a judgement?”

- His answer was “yes” that it was possible to objectively define “high
quality” or “beautiful” buildings

© Kenneth M. Anderson, 2012

18

Christopher Alexander (l1)

- He studied the problem of identifying what makes a good architectural design
by observing all sorts of built structures

* buildings, towns, streets, homes, community centers, etc.

- When he found an example of a high quality design, he would compare that
object to other objects of high quality and look for commonalties

- especially if both objects were used to solve the same type of problem

© Kenneth M. Anderson, 2012

19

Christopher Alexander (llI)

By studying high quality structures that solve similar problems, he could
discover similarities between the designs and these similarities where what he
called patterns

« “Each pattern describes a problem which occurs over and over again in
our environment and then describes the core of the solution to that
problem, in such a way that you can use this solution a million times over,
without ever doing it the same way twice.”

+ The pattern provides an approach that can be used to achieve a high
quality solution to its problem

© Kenneth M. Anderson, 2012 20

Four Elements of a Pattern

- Alexander identified four elements to describe a pattern
- The name of the pattern
« The purpose of the pattern: what problem it solves
« How to solve the problem
* The constraints we have to consider in our solution

« He also felt that multiple patterns applied together can help to solve complex
architectural problems

© Kenneth M. Anderson, 2012

Design Patterns and Software (|)

- Work on design patterns got started when people asked

 Are there problems in software that occur all the time that can be solved in
somewhat the same manner?

« Was it possible to design software in terms of patterns?

- Many people felt the answer to these questions was “yes” and this initial work
influenced the creation of the Design Patterns book by the Gang of Four

» It catalogued 23 patterns: successful solutions to common problems that
occur in software design

© Kenneth M. Anderson, 2012 22

Design Patterns and Software (l1)

- Design patterns, then, assert that the quality of software systems can be
measured objectively

- What is present in a good quality design (X’s) that is not present in a poor
quality design?

- What is present in a poor quality design (Y’s) that is not present in a good
quality design?

» We would then want to maximize the X’s while minimizing the Y’s in our own
designs

© Kenneth M. Anderson, 2012 23

Key Features of a Pattern

- Name - Implementation: Example ways to

Implement the pattern
- Intent: The purpose of the pattern

» Structure: Class Diagram
* Problem: What problem does it

solve?

- Solution: The approach to take to
solve the problem

- Participants: The entities involved
In the pattern

« Consequences: The effect the
pattern has on your system

© Kenneth M. Anderson, 2012

24

Design Pattern Example: Strategy

Host strate Algorithm
Client performOperation() gy - ergtion()
setAlgorithm(a : Algorithm) 7§p

When performOperation() is called:

strategy.operation()
When setAlgorithm is called: ConcreteAlgorithm1 ® ® @ | ConcreteAigorithmN

Name: Strategy

Intent: Define a family of algorithms, encapsulate each one, and make therr
interchangeable. Strategy lets the algorithm vary independently from the
clients that use it.

© Kenneth M. Anderson, 2012 25

Why Study/

« Patterns let us

Develop

Design

Patterns?

* reuse solutions that have worked in the past; why waste time reinventing

the wheel?

 have a shared vocabulary around software design

- they allow you to tell a fellow software engineer “l used a Strategy
pattern here to allow the algorithm used to compute this calculation to
be customizable”

* You don’t have to waste time explaining what you mean since you
both know the Strategy pattern

© Kenneth M. Anderson, 2012 26

Why Study Design Patterns” (ll)

 Design patterns provide you not with code reuse but with experience reuse

« Knowing concepts such as abstraction, inheritance and polymorphism will
NOT make you a good designer, unless you use those concepts to create
flexible designs that are maintainable and that can cope with change

« Design patterns can show you how to apply those concepts to achieve those
goals

© Kenneth M. Anderson, 2012

27

A Sense of Perspective

* Design Patterns give you a higher-level perspective on
- the problems that come up in OO A&D work
* the process of design itself
- the use of object orientation to solve problems

* You'll be able to think more abstractly and not get bogged down in
Implementation details too early in the process

© Kenneth M. Anderson, 2012

28

The Carpenter Analogy (I)

« An excellent example of what we mean by a “higher-level perspective”:
Imagine two carpenters having a conversation

* They can either say

- Should | make the joint by cutting down into the wood and then going
back up 45 degrees and...

° Or

- Should we use a dovetail joint or a miter joint?

© Kenneth M. Anderson, 2012

29

The Carpenter Analogy (II)

 The latter is at a high-level and enables a richer conversation about the
problem at hand

» The former gets bogged down in the details of cutting the wood such that
you don’t know what problem is being solved

« The latter relies on the carpenter’s shared knowledge

» They know that dovetall joints are higher quality than miter joints but with
higher costs

- Knowing that, they can debate whether the higher quality is needed in the
situation they are Iin

© Kenneth M. Anderson, 2012 30

The Carpenter Analogy in Software

 “| have this one object with some important information and these other
objects over here need to know when its information changes. These other
objects come and go. I'm thinking | should separate out the notification and
client registration functionality from the functionality of the object and just let
it focus on storing and manipulating its information. Do you agree?”

° VS.

* “I’m thinking of using the Observer pattern. Do you agree?”

© Kenneth M. Anderson, 2012 31

More about Design Patterns

* You can learn more about design patterns from the original book

- <http://www.amazon.com/Design-Patterns-Elements-Reusable-Object-
Oriented/dp/0201633612/>

 You will find the examples referenced in this book to be outdated but the
patterns themselves are pure gold

| also found this book that looks to be a terrific resource and a more modern
presentation of these ideas

 <http://sourcemaking.com/design-patterns-book>

© Kenneth M. Anderson, 2014 32

http://www.amazon.com/Design-Patterns-Elements-Reusable-Object-Oriented/dp/0201633612/
http://sourcemaking.com/design-patterns-book

Design Themes; Where are these used?

- “Everything is a file”

- “Everything is a resource”

- “Everything is an object”

« All data can be stored in tables with rows and columns

« The presentation details of information should be separated from its structure

© Kenneth M. Anderson, 2014

33

(One Set of) Anwsers

- “Everything is a file” — Unix

- “Everything is a resource” — Web

« “Everything is an object” — Ruby (and many other programming languages)

« All data can be stored in tables with rows and columns

* Relational Databases

- The presentation details of information should be separated from its structure
« CSS (presentation details) and HTMLS5 (structure)

© Kenneth M. Anderson, 2014

34

—verything is an Object

- Examples
« 5.upto(10) { |i| puts i }
-5

— O 00 N O

0
+ "Design is Cool!!”.upcase
« "DESIGN IS COOL!!”

- etc.

© Kenneth M. Anderson, 2014

SimpleObjects) Hl My Mac

58

@ Placeholders

File's Owner
m?] First Responder

A Application
i‘j Objects
> E* Main Menu
.‘- App Delegate
|’- Font Manager

> @= SimpleObjects

= © [l

Q SimpleObjects)

Running SimpleObjects : SimpleObjects

SimpleObjects)

</

MainMenu.xib

© SimpleObjects

MainMenu.xib (English)) .‘ﬂ App Delegate

File Edit Format

View Window Help

) @ SimpleObjects

(I

A SimpleObjects

Set to 100

@ SimpleObjects

Set to 100

T ——————————————————————

© Kenneth M. Anderson, 2012

= o Hl

Il

1

Lot

L1 = L

Outlets
(circular % Circular Slider 9)
(circularSIider)—(8 Circular Slider @
(horizontalSlider % Horizontal Slider (@)
(set100 % Set to 100 O)
(window)—(8 SimpleObjects @
Referencing Outlets
(delegate (% File's Owner ®
New Referencing Outlet O
Received Actions
(_circularValueChanged:)—(% Circular Slider @)
(horizontaIVaIueCha...)—(x Horizontal Slider @
(setTo100: (% Set to 100 ®

Push Button - Intercepts mouse-
down events and sends an action
message to a target object when it’...

Gradient Button - Intercepts
mouse-down events and sends an
action message to a target object w...

—verything is an Object (more advanced

36

Unix (1)

-« “Everything is a file”
« One API can be used to read/process
- files, sockets, devices, and memory
« One example of the latter
e tree <large directory>; tree <large directory>
 The first time this command runs, it will take a long time;
« The second time runs almost instantly. Why?

 The file system cache; the files are pulled into memory by the operating
system. The second time around tree is reading from memory

although it thinks it is reading from disk

© Kenneth M. Anderson, 2014

37

Unix (Il

-« “Everything is a file”
- Another advantage: program input/output expectations
» Every program can read from standard in
 Every program can write to standard out
- Standard In and Standard Out can point to “anything”
« Memory, Files, Sockets, Devices, etc.
* This lets you do things like
e find . -type f -name *.rb | grep -i "Tweet" | wc -1

* In English: “How many ruby files in this directory tree have the word “tweet” in
their filename?”

© Kenneth M. Anderson, 2014 38

Unix (11l

- Even cooler, the commands in a pipe structure run in parallel
- find . -type f | grep -i "CSCI" | ruby ~/Desktop/Designintro/uppercase.rb
 This invokes three programs, “find”, “grep” and a ruby program | wrote
* In parallel
- find looks for file names (ignoring directory names)
» grep looks for file names containing “CSCI” in a case insensitive fashion

 The ruby program converts all of its input to uppercase

© Kenneth M. Anderson, 2014 39

Unix (IV)

- Speaking of Ruby

- Command chaining in Unix (actually Unix shells) is so powerful that many
programming languages optimize the creation of programs that can do this

- By default, ruby’s gets and puts are set-up to read/write standard in/out
* My ruby program looks like this
while line = gets
puts line.chomp.upcase
end

- That’s all that’s needed to get started in this type of programming

© Kenneth M. Anderson, 2014 40

Unix (V)

- The ability to combine programs in this way, gives the user a language that
allows them to solve problems

- Last night my daughter had a vocabulary exercise that said:
e Not vibrant but c_Ll___e__
« And she needed to fill in the missing letters
* we both thought about it and came up with nothing
* so | wrote this “program”

+ grep "Ac.l...e..$" /usr/share/dict/words

* In English: “what nine-letter words begin with c and have an | and an e in
them in positions 3 and 7?” => 17 choices: “colorless” jumped right out

© Kenneth M. Anderson, 2014

41

Unix (VI)

- Likewise, she had the question
e Not unknown but f_____
e grep “Mf..... $" Jusr/share/dict/words | wc -1
» “How many six letter words start with the letter f?” => 568
egrep "Af..... $" words | subl3 --

« “Show them to me...”

» After scrolling through the words, we found “famous”

© Kenneth M. Anderson, 2014

42

Summary

« We introduced the concept of software design and design patterns
« Design is NOT an individual feature or implementation
- it is an APPROACH to solving a problem
- We talked about design in general
 Design is Ancient => Design is EVERYWHERE
» Design gets to the essentials
 Design is transformative
 Design has structure

» Design is HARD

« We talked about design themes and saw examples

© Kenneth M. Anderson, 2014

Coming Up Next

« Lecture 20: The Design of Design, Part One

 Lecture 21: User Stories, Chapters 12-16

© Kenneth M. Anderson, 2014

44

