he Actor Model, Part Two

CSCI 5828: Foundations of Software Engineering
Lecture 18 — 10/23/2014

© Kenneth M. Anderson, 2014

(Goals

- Cover the material presented in Chapter 5, of our concurrency textbook

- In particular, the material presented in Days 2 and 3

© Kenneth M. Anderson, 2014

Fibonacci Calculator (l)

- Let’s jump back into Elixir and the Actor model

« This example is taken from the excellent Programming Elixir book from
Pragmatic Programmers

- We’ll take a look at using Actors to calculate Fibonacci numbers
- 0,1,1,2,3,5, 8, 13, ...

- Our example will calculate a set of Fibonacci numbers using a different

number of actors; starting with one actor and proceeding up to ten actors
running at once

© Kenneth M. Anderson, 2014

=lixir Function Composition

* In order to understand the source code of the example, we must review
Elixir's function composition operator, also known as the “pipe operator”

* If you had a series of statement like this

- a=1f(x); b=g(a); c =h(b)
* You could also write it like this

* ¢ = h(g(f(x)))
- In Elixir, you would write it like

c=Xx|>f|>g|>h

X IS piped into f, the result is piped into g, the result is piped into h

« The functions on the right hand side can have parameters

X |> f(y, z) is equivalent to calling f(x, y, z) —the thing being piped becomes
the first argument of the function on the right hand side

© Kenneth M. Anderson, 2014

Fibonacci Calculator (lI)

- To start our Fibonacci example, we first design two actors

* A solver: is able to calculate the nth Fibonacci number

A scheduler: distributes calculation requests to a set of 1 or more solvers
* A solver will sit in loop and do the following

- It sends {:ready, pid} to the scheduler

- It will then receive a :fib message asking it to calculate a number

- When it is done, it will send an :answer message to the scheduler
» The solver will perform these actions until it receives a :shutdown message

« The scheduler will receive an array of integers that represent the Fibonacci
numbers to calculate

- it will send out :fib messages to :ready solvers until all requests are done

© Kenneth M. Anderson, 2014

Fibonacci Calculator (ll1)

 The solver

defmodule FibSolver do

1
2
3 def fib(scheduler) do

4 send(scheduler, {:ready, self})

5 receive do

6 {:£fib, n, client} ->

7 send(client, {:answer, n, fib calc(n), self})
8

fib(scheduler)
9 {:shutdown} -> exit(:normal)
10 end
11 end
12

13 defp fib calc(0) do 0 end

14 defp fib calc(l) do 1 end

15 defp fib calc(n) do fib calc(n-1) + fib calc(n-2) end
16 end

© Kenneth M. Anderson, 2014

Fibonacci Calculator (IV): The Scheduler

1l defmodule Scheduler do

2

3 def run(num processes, module, func, to calculate) do

4 (1..num processes)

5 |> Enum.map(fn(_) -> spawn(module, func, [self]) end)

6 |> schedule processes(to calculate, [])

7 end

8

9 defp schedule processes(processes, queue, results) do

10 receive do

11 {:ready, pid} when length(queue) > 0 ->

12 [next | tail] = queue

13 send(pid, {:fib, next, self})

14 schedule processes(processes, tail, results)

15

16 {:ready, pid} ->

17 send(pid, {:shutdown})

18 if length(processes) > 1 do

19 schedule processes(List.delete(processes, pid), queue, results)
20 else

21 Enum.sort(results, fn ({nl, _}, {n2, }) -> nl <= n2 end)
22 end

23

24 {:answer, number, result, pid} ->

25 schedule processes(processes, queue, [{number, result} | results])
26 end

27 end

28 end

Fibonacci Calculator (V): Main Program

47 to process = [37, 37, 37, 37, 37, 37]
48

49 Enum.each(1l..10, fn (num processes) ->
50 {time, result} =

51 :timer.tc(Scheduler, :run,

52 [nhum processes, FibSolver, :fib, to process])
53

54 if num processes == 1 do

55 I0O.puts inspect result

56 IO0.puts "\n # time (s)"

57 end

58 :io.format "~-2B ~.2f~-n", [num processes, time/1000000.0]
59 end)

© Kenneth M. Anderson, 2014

Fibonacci Calculator (VI): Results

« On my 8-core machine, the results are:

time (s)

e 1 6.22

¢ 2 3.07

e 3 2.10

e 4 2.14

e 5 2.43

e 0 1.65 <== almost 4 times as fast
¢ 7/ 1.72

e 8 1.77

e 9 1.78

e 10 1.89 <== roughly 3.3 times as fast on average

© Kenneth M. Anderson, 2014

DISCUSSION

- Striking how simple the implementation of the FibSolver Actor is
- small piece of code with a defined “message API”
* program can then spin up as many of these actors as they want
« The scheduler is more complex BUT
* it implemented scheduling in a very generic way
» the function being calculated was completely abstracted away
* the logic simply took care of doling out work to all ready actors
» shutting down actors when there was no more work to be done

- With 11 active actors (10 solvers + 1 scheduler): Elixir has flexibility as to how
those actors are distributed across the cores of the machine

© Kenneth M. Anderson, 2014 10

—rror Handling and Resilience

 Actors provide the ability to write fault-tolerant code

- We can assign a supervisor to a set of actors that detects when an actor
has crashed and can do something about it

« such as restart the actor

- They way they do this is by linking the actors together (as we saw in
Lecture 16)

- First: Process.flag(:trap_exit, true)
- Second: pid = spawn_link(...)
 Third: receive do {:EXIT, pid, reason}

- We’re going to build up an example that demonstrates these concepts

© Kenneth M. Anderson, 2014

An Actor to Test Links: LinkTest

1 defmodule LinkTest do
2 def loop do
3 receive do
4 {:exit because, reason} -> exit(reason)
5 {:1ink to, pid} -> Process.link(pid)
6 {:EXIT, pid, reason} -> IO.puts("#{inspect(pid)} exited because #{reason}")
7 end
8 loop
9 end
10
11 def loop system do
12 Process.flag(:trap exit, true)
13 loop
14 end
15 end

An actor that can link to other actors via :link_to; otherwise it can be
told to die by sending it a :exit_because message

If we want to receive :EXIT messages, we need to invoke this actor with
the loop_system call. Otherwise, we can just call loop to see what
happens when an actor exits for a non :normal reason

© Kenneth M. Anderson, 2014 12

—xample: Linked Actors; Non-Normal Exit

- Create two instances of the actor
e pidl = spawn (&LinkTest.loop/0)
e pid2 = spawn (&LinkTest.loop/0)
- Link them (links are bidirectional)
* send (pidl, {:1ink to, pid2})
- Tell one to quit for a non-normal reason (it doesn’t matter which actor)
* send (pid2, {:exit because, :bad thing})
* The result?

- BOTH actors die; no :EXIT message received

© Kenneth M. Anderson, 2014 13

—xample: Linked Actors; Normal Exit

- Create two instances of the actor
e pidl = spawn (&LinkTest.loop/0)
e pid2 = spawn (&LinkTest.loop/0)
- Link them (links are bidirectional)
* send (pidl, {:1ink to, pid2})
- Tell one to quit for a normal reason (it doesn’t matter which actor)
* send (pi1d2, {:exit because, :normal})
* The result?

« Actor 2 dies; Actor 1 lives; still no :EXIT message received

© Kenneth M. Anderson, 2014

14

—xample: Linked System Actors; Non-Normal

- Create two instances of the actor
* pidl = spawn(&LinkTest.loop system/0)
e pid2 = spawn (&LinkTest.loop/0)
- Link them (links are bidirectional)
* send (pidl, {:1ink to, pid2})
- Tell one to quit for a normal reason (it doesn’t matter which actor)
* send (pid2, {:exit because, :bad thing})
* The result?

+ Actor 2 dies; Actor 1 lives; :EXIT message received and logged

© Kenneth M. Anderson, 2014

—XI1

15

Creating a Supervisor

* We now have enough knowledge to create an actor and its supervisor

» The textbook implements a simple “cache” actor and a supervisor that can
detect when the cache goes down

» The cache actor can
* receive a request to store something in the cache
* receive a request to retrieve something in the cache
* receive a request to return the size of the cache (in bytes)
« The supervisor will create a cache actor and monitor its status

* If it goes down, it will restart the cache

© Kenneth M. Anderson, 2014

16

Cache

1 defmodule Cache do

2 def loop(pages, size) do

3 receive do

4 {:put, url, page} ->

5 new pages = Dict.put(pages, url, page)
6 new size = size + byte size(page)

7 loop (new pages, new size)

8 {:get, sender, ref, url} ->

9 send(sender, {:0k, ref, pages[url]})
10 loop (pages, size)
11 {:size, sender, ref} ->
12 send(sender, {:0k, ref, size})
13 loop(pages, size)
14 {:terminate} -> # Terminate request - don't recurse
15 end
16 end

17 end

We can cause this actor to
crash by sending nil for page

in a :put message

© Kenneth M. Anderson, 2014

17

Cache Helper Routines

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

def start link do

pid = spawn link(MODULE , :loop, [HashDict.new, 01])

Process.register(pid, :cache)
pid
end

def put(url, page) do
send(:cache, {:put, url, page})
end

def get(url) do
ref = make ref()
send(:cache, {:get, self(), ref, url})
receive do
{:0k, "ref, page} -> page
end
end

def size do
ref = make ref()
send(:cache, {:size, self(), ref})
receive do
{:0k, "ref, s} -> s
end
end

def terminate do
send(:cache, {:terminate})
end

These functions provide an
“API” to the Cache. We can
call them and not worry
about starting actors and
sending messages.

18

Cache Supervisor

DEMO

1 defmodule CacheSupervisor do

2

3 def start do

4 spawn(MODULE , :loop system, [])

5 end

6

7 def loop do

8 pid = Cache.start link

9 receive do Start up a Cache. If it crashes,
10 {:EXIT, “pid, :normal} -> : : :

11 I0.puts("Cache exited normally") restart |t; Oth@l’WlS@ O|U|t

12 :0k

13 {:EXIT, “pid, reason} ->

14 TIO0.puts("Cache failed with reason #{inspect reason} - restarting it")
15 loop

16 end

17 end

18

19 def loop system do
20 Process.flag(:trap exit, true) .
21 loop Make sure we call :trap_exit to
22 end - N -
23 end receive :EXIT messages

© Kenneth M. Anderson, 2014 19

Discussion (l)

« This example illustrates a generic approach to concurrent actor systems
- Keep the supervisors as small and as simple as possible
« So simple that they are easy to debug and get correct
* Have the actors that they supervise crash when things go wrong
* Let the supervisors detect those crashes and decide what to do
 This approach maximizes simplicity
» rather than adding lots of error checking code in the workers

- implement the success case and let all error cases cause a crash that
gets handled by the supervisor => a nice separation of concerns

© Kenneth M. Anderson, 2014

20

Discussion (l1)

» This example is so generic that most of the work that we did manually has
been implemented in a library called OTP

- Let’s take a look at an OTP version of the Cache and CacheSupervisor
- A worker will make use of a library known as GenServer
* It can handle “calls” and “casts”
- the former return a result; the latter do not
- A supervisor will make use of a library known as Supervisor
A supervisor has an init method that specifies
- a list of workers and a restart strategy

» We use the :one_for_one strategy to specify that crashed workers
should simply be restarted

© Kenneth M. Anderson, 2014

21

New Supervisor

1 defmodule CacheSupervisor do

2 use Supervisor

3

4 def start link do

5 :supervisor.start link(MODULE , [])
6 end

7

8 def init(args) do

9 workers = [worker(Cache, [])]
10 supervise(workers, strategy: :one for one)
11 end

12 end

© Kenneth M. Anderson, 2014

New Cache

defmodule Cache do
use GenServer

1

2

3

4 def handle cast({:put, url, page}, {pages, size}) do
5 new pages = Dict.put(pages, url, page)

6 new size = size + byte size(page)

7 {:noreply, {new pages, new size}}

8

end
9
10 def handle call({:get, url}, from, {pages, size}) do
11 {:reply, pages[url], {pages, size}}
12 end
13
14 def handle call({:size}, from, {pages, size}) do
15 {:reply, size, {pages, size}}
16 end
17
18 end

© Kenneth M. Anderson, 2014

Helper Functions for Cache

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

def start link do

:gen_server.start link({:local, :cache}, = MODULE |,

end

def put(url, page) do
:gen server.cast(:cache,
end

def get(url) do
:gen server.call(:cache,
end

def size do
:gen_server.call(:cache,
end

{:put, url, page})

{:get, url})

{:size})

© Kenneth M. Anderson, 2014

{HashDict.new,

0},

[1)

24

Using the new version

- Start by creating the supervisor (which creates the Cache, its worker)

« CacheSupervisor.start link

- Then just use the Cache

e Cache.size => 0
e Cache.put “foo”, %“bar” => :0k

e Cache.size => 3
e Cache.put “ohnoes”, nil => error message; auto restart

e Cache.size => 0

- Just like that, we’ve reimplemented the previous example

© Kenneth M. Anderson, 2014 25

Nodes and Distribution

» The Erlang virtual machine is used to execute Elixir programs

- In an analogous way that Coljure programs compile down to Java
bytecodes and are executed by the Java Virtual Machine

* One cool feature of Erlang virtual machines is that they have the capability to
act as nodes that can form clusters

* Elixir actors running on one node can easily route messages to actors
running on other (possibly) distributed nodes

» To set this up in Elixir, you can launch iex and give it a node name

* For security reasons, you also give it a “cookie”; only nodes with the same
“cookie” can talk to one another

* iex —-name node2@128.138.72.226 --cookie jiriki <— can be any string

© Kenneth M. Anderson, 2014 26

Connecting Nodes

Once you have launched a node, you need to tell it about the other nodes

e iex —-name nodeZ2@128.138.72.226 --cookie jiriki
e 1lex ——name nodel@128.138.72.226 —-—-cookie jiriki

Checking status
e nodel> Node.self => :"nodel@l128.138.72.238"
e node2> Node.self => :"node2@128.138.72.226"

Connecting
e nodel> Node.connect (:"node2@128.138.72.226") => true

Both nodes are now connected to each other
e nodel> Node.list => [:"node2@128.138.72.226"]
e node2> Node.list => [:"nodel@128.138.72.238"]

© Kenneth M. Anderson, 2014 27

mailto:node1@128.138.72.238

Sending Code Between Nodes

« Let’s define a function
e nodel> whoami = fn () -> IO.puts (Node.self) end

 And send it to another node to be executed
e nodel> Node.spawn (:"node2@128.138.72.226", whoami)

« node1l REPL prints: node2@128.138.72.226
» Pause to think about what we just did and how easy it was
* We just
- defined a function

sent it over to another machine as data

that machine converted the data back to a function

executed it

sent back the result

and our original machine then displayed the result

© Kenneth M. Anderson, 2014

28

Sending Messages Between Nodes: Set-Up

Let’s launch our Counter actor on node?2

e node2> pid = spawn (Counter, :loop, [42])
Now, let’s register that process id and associate it with a global name

* nodeZ> :global.register name (:counter, pid) => :yes
In this context, “global” means across all connected nodes

So, now on node1, we can look that name up

* nodel> pid = :global.whereis name (:counter) => #PID<9027.73.0>
Then we can send messages to it

* (next slide)

© Kenneth M. Anderson, 2014

29

Sending Messages Between Nodes

 This version of counter expects a message of the form
* {:next, <caller pid>, <unique ref>}
- It then sends back a message of the form
« {0k, <unique ref>, count}
« So, to call this Actor from node1, we do
* nodel> ref = make ref
e nodel> send(pid, {:next, self, ref})

VAN

e nodel> receive do {:0k,

« Sure enough, we get back the result 42

© Kenneth M. Anderson, 2014

ref, count} -> count end

30

Just scratched the surtace

 With these building blocks, you can move on to create full-fledged
distributed, concurrent programs

- Start a bunch of actors on one or more “worker” machines and register
their pids via the :global registry

« Start a supervisor on another machine and have it dole out work to the
actors using a message pattern similar to the Fibonacci example

- If any of the workers die, have the supervisor restart them automatically

* | highly recommend the Programming Elixir book if you’re curious to see more
complicated examples

* It shows an example that starts a server, has it handle requests, then
modifies the code of the server, and HOT SWAPS that code into the
running server => modifying servers without having to restart them!

© Kenneth M. Anderson, 2014 31

Summary

« The Actor model is a powerful model for creating distributed, concurrent
systems

* Any individual actor is a single-threaded program with state that changes
in well defined ways

- Software design becomes “message design” and system design becomes
balancing where actors live and how “message load” is distributed across
them

- The one danger in Actor systems is deadlock; “receive” is a blocking call

* to avoid that, you can have receive timeout and have the Actor do
something to recover

- The OTP library can be used to create Client-Server and Cluster-based
applications with a minimal amount of code

© Kenneth M. Anderson, 2014

32

Coming Up Next

- Lecture 19: Introduction to Software Design

* Lecture 20: The Design of Design, Part One

© Kenneth M. Anderson, 2014

33

