
© Kenneth M. Anderson, 2014

The Actor Model, Part Two

CSCI 5828: Foundations of Software Engineering

Lecture 18 — 10/23/2014

1

© Kenneth M. Anderson, 2014

Goals

• Cover the material presented in Chapter 5, of our concurrency textbook

• In particular, the material presented in Days 2 and 3

2

© Kenneth M. Anderson, 2014

Fibonacci Calculator (I)

• Let’s jump back into Elixir and the Actor model

• This example is taken from the excellent Programming Elixir book from
Pragmatic Programmers

• We’ll take a look at using Actors to calculate Fibonacci numbers

• 0, 1, 1, 2, 3, 5, 8, 13, …

• Our example will calculate a set of Fibonacci numbers using a different
number of actors; starting with one actor and proceeding up to ten actors
running at once

3

© Kenneth M. Anderson, 2014

Elixir Function Composition

• In order to understand the source code of the example, we must review
Elixir’s function composition operator, also known as the “pipe operator”

• If you had a series of statement like this

• a = f(x); b = g(a); c = h(b)

• You could also write it like this

• c = h(g(f(x)))

• In Elixir, you would write it like

• c = x |> f |> g |> h

• x is piped into f, the result is piped into g, the result is piped into h

• The functions on the right hand side can have parameters

• x |> f(y, z) is equivalent to calling f(x, y, z) —the thing being piped becomes
the first argument of the function on the right hand side

4

© Kenneth M. Anderson, 2014

Fibonacci Calculator (II)

• To start our Fibonacci example, we first design two actors

• A solver: is able to calculate the nth Fibonacci number

• A scheduler: distributes calculation requests to a set of 1 or more solvers

• A solver will sit in loop and do the following

• It sends {:ready, pid} to the scheduler

• It will then receive a :fib message asking it to calculate a number

• When it is done, it will send an :answer message to the scheduler

• The solver will perform these actions until it receives a :shutdown message

• The scheduler will receive an array of integers that represent the Fibonacci

numbers to calculate

• it will send out :fib messages to :ready solvers until all requests are done

5

© Kenneth M. Anderson, 2014

Fibonacci Calculator (III)

• The solver

6

 1 defmodule FibSolver do
 2
 3 def fib(scheduler) do
 4 send(scheduler, {:ready, self})
 5 receive do
 6 {:fib, n, client} ->
 7 send(client, {:answer, n, fib_calc(n), self})
 8 fib(scheduler)
 9 {:shutdown} -> exit(:normal)
10 end
11 end
12
13 defp fib_calc(0) do 0 end
14 defp fib_calc(1) do 1 end
15 defp fib_calc(n) do fib_calc(n-1) + fib_calc(n-2) end
16 end

© Kenneth M. Anderson, 2014

Fibonacci Calculator (IV): The Scheduler

7

 1 defmodule Scheduler do
 2
 3 def run(num_processes, module, func, to_calculate) do
 4 (1..num_processes)
 5 |> Enum.map(fn(_) -> spawn(module, func, [self]) end)
 6 |> schedule_processes(to_calculate, [])
 7 end
 8
 9 defp schedule_processes(processes, queue, results) do
10 receive do
11 {:ready, pid} when length(queue) > 0 ->
12 [next | tail] = queue
13 send(pid, {:fib, next, self})
14 schedule_processes(processes, tail, results)
15
16 {:ready, pid} ->
17 send(pid, {:shutdown})
18 if length(processes) > 1 do
19 schedule_processes(List.delete(processes, pid), queue, results)
20 else
21 Enum.sort(results, fn ({n1, _}, {n2, _}) -> n1 <= n2 end)
22 end
23
24 {:answer, number, result, _pid} ->
25 schedule_processes(processes, queue, [{number, result} | results])
26 end
27 end
28 end

© Kenneth M. Anderson, 2014

Fibonacci Calculator (V): Main Program

8

 1 defmodule FibSolver do
 2
 3 def fib(scheduler) do
 4 send(scheduler, {:ready, self})
 5 receive do
 6 {:fib, n, client} ->
 7 send(client, {:answer, n, fib_calc(n), self})
 8 fib(scheduler)
 9 {:shutdown} -> exit(:normal)
10 end
11 end
12
13 defp fib_calc(0) do 0 end
14 defp fib_calc(1) do 1 end
15 defp fib_calc(n) do fib_calc(n-1) + fib_calc(n-2) end
16 end
17
18 defmodule Scheduler do
19
20 def run(num_processes, module, func, to_calculate) do
21 (1..num_processes)
22 |> Enum.map(fn(_) -> spawn(module, func, [self]) end)
23 |> schedule_processes(to_calculate, [])
24 end
25
26 defp schedule_processes(processes, queue, results) do
27 receive do
28 {:ready, pid} when length(queue) > 0 ->
29 [next | tail] = queue
30 send(pid, {:fib, next, self})
31 schedule_processes(processes, tail, results)
32
33 {:ready, pid} ->
34 send(pid, {:shutdown})
35 if length(processes) > 1 do
36 schedule_processes(List.delete(processes, pid), queue, results)
37 else
38 Enum.sort(results, fn ({n1, _}, {n2, _}) -> n1 <= n2 end)
39 end
40
41 {:answer, number, result, _pid} ->
42 schedule_processes(processes, queue, [{number, result} | results])
43 end
44 end
45 end
46
47 to_process = [37, 37, 37, 37, 37, 37]
48
49 Enum.each(1..10, fn (num_processes) ->
50 {time, result} =
51 :timer.tc(Scheduler, :run,
52 [num_processes, FibSolver, :fib, to_process])
53
54 if num_processes == 1 do
55 IO.puts inspect result
56 IO.puts "\n # time (s)"
57 end
58 :io.format "~2B ~.2f~n", [num_processes, time/1000000.0]
59 end)

© Kenneth M. Anderson, 2014

Fibonacci Calculator (VI): Results

• On my 8-core machine, the results are:

• # time (s)
• 1 6.22
• 2 3.07
• 3 2.10
• 4 2.14
• 5 2.43
• 6 1.65 <== almost 4 times as fast
• 7 1.72
• 8 1.77
• 9 1.78
• 10 1.89 <== roughly 3.3 times as fast on average

9

© Kenneth M. Anderson, 2014

Discussion

• Striking how simple the implementation of the FibSolver Actor is

• small piece of code with a defined “message API”

• program can then spin up as many of these actors as they want

• The scheduler is more complex BUT

• it implemented scheduling in a very generic way

• the function being calculated was completely abstracted away

• the logic simply took care of doling out work to all ready actors

• shutting down actors when there was no more work to be done

• With 11 active actors (10 solvers + 1 scheduler): Elixir has flexibility as to how
those actors are distributed across the cores of the machine

10

© Kenneth M. Anderson, 2014

Error Handling and Resilience

• Actors provide the ability to write fault-tolerant code

• We can assign a supervisor to a set of actors that detects when an actor
has crashed and can do something about it

• such as restart the actor

• They way they do this is by linking the actors together (as we saw in
Lecture 16)

• First: Process.flag(:trap_exit, true)

• Second: pid = spawn_link(…)

• Third: receive do {:EXIT, pid, reason}

• We’re going to build up an example that demonstrates these concepts

11

© Kenneth M. Anderson, 2014

An Actor to Test Links: LinkTest

12

 1 defmodule LinkTest do
 2 def loop do
 3 receive do
 4 {:exit_because, reason} -> exit(reason)
 5 {:link_to, pid} -> Process.link(pid)
 6 {:EXIT, pid, reason} -> IO.puts("#{inspect(pid)} exited because #{reason}")
 7 end
 8 loop
 9 end
10
11 def loop_system do
12 Process.flag(:trap_exit, true)
13 loop
14 end
15 end

If we want to receive :EXIT messages, we need to invoke this actor with
the loop_system call. Otherwise, we can just call loop to see what
happens when an actor exits for a non :normal reason

An actor that can link to other actors via :link_to; otherwise it can be
told to die by sending it a :exit_because message

© Kenneth M. Anderson, 2014

Example: Linked Actors; Non-Normal Exit

• Create two instances of the actor

• pid1 = spawn(&LinkTest.loop/0)

• pid2 = spawn(&LinkTest.loop/0)

• Link them (links are bidirectional)

• send(pid1, {:link_to, pid2})

• Tell one to quit for a non-normal reason (it doesn’t matter which actor)

• send(pid2, {:exit_because, :bad_thing})

• The result?

• BOTH actors die; no :EXIT message received

13

© Kenneth M. Anderson, 2014

Example: Linked Actors; Normal Exit

• Create two instances of the actor

• pid1 = spawn(&LinkTest.loop/0)

• pid2 = spawn(&LinkTest.loop/0)

• Link them (links are bidirectional)

• send(pid1, {:link_to, pid2})

• Tell one to quit for a normal reason (it doesn’t matter which actor)

• send(pid2, {:exit_because, :normal})

• The result?

• Actor 2 dies; Actor 1 lives; still no :EXIT message received

14

© Kenneth M. Anderson, 2014

Example: Linked System Actors; Non-Normal Exit

• Create two instances of the actor

• pid1 = spawn(&LinkTest.loop_system/0)

• pid2 = spawn(&LinkTest.loop/0)

• Link them (links are bidirectional)

• send(pid1, {:link_to, pid2})

• Tell one to quit for a normal reason (it doesn’t matter which actor)

• send(pid2, {:exit_because, :bad_thing})

• The result?

• Actor 2 dies; Actor 1 lives; :EXIT message received and logged

15

© Kenneth M. Anderson, 2014

Creating a Supervisor

• We now have enough knowledge to create an actor and its supervisor

• The textbook implements a simple “cache” actor and a supervisor that can
detect when the cache goes down

• The cache actor can

• receive a request to store something in the cache

• receive a request to retrieve something in the cache

• receive a request to return the size of the cache (in bytes)

• The supervisor will create a cache actor and monitor its status

• If it goes down, it will restart the cache

16

© Kenneth M. Anderson, 2014

Cache

17

 1 defmodule Cache do
 2 def loop(pages, size) do
 3 receive do
 4 {:put, url, page} ->
 5 new_pages = Dict.put(pages, url, page)
 6 new_size = size + byte_size(page)
 7 loop(new_pages, new_size)
 8 {:get, sender, ref, url} ->
 9 send(sender, {:ok, ref, pages[url]})
10 loop(pages, size)
11 {:size, sender, ref} ->
12 send(sender, {:ok, ref, size})
13 loop(pages, size)
14 {:terminate} -> # Terminate request - don't recurse
15 end
16 end
17 end

We can cause this actor to
crash by sending nil for page
in a :put message

© Kenneth M. Anderson, 2014

Cache Helper Routines

18

 1 defmodule Cache do
 2 def loop(pages, size) do
 3 receive do
 4 {:put, url, page} ->
 5 new_pages = Dict.put(pages, url, page)
 6 new_size = size + byte_size(page)
 7 loop(new_pages, new_size)
 8 {:get, sender, ref, url} ->
 9 send(sender, {:ok, ref, pages[url]})
10 loop(pages, size)
11 {:size, sender, ref} ->
12 send(sender, {:ok, ref, size})
13 loop(pages, size)
14 {:terminate} -> # Terminate request - don't recurse
15 end
16 end
17
18 def start_link do
19 pid = spawn_link(__MODULE__, :loop, [HashDict.new, 0])
20 Process.register(pid, :cache)
21 pid
22 end
23
24 def put(url, page) do
25 send(:cache, {:put, url, page})
26 end
27
28 def get(url) do
29 ref = make_ref()
30 send(:cache, {:get, self(), ref, url})
31 receive do
32 {:ok, ^ref, page} -> page
33 end
34 end
35
36 def size do
37 ref = make_ref()
38 send(:cache, {:size, self(), ref})
39 receive do
40 {:ok, ^ref, s} -> s
41 end
42 end
43
44 def terminate do
45 send(:cache, {:terminate})
46 end
47
48 end

These functions provide an
“API” to the Cache. We can
call them and not worry
about starting actors and
sending messages.

© Kenneth M. Anderson, 2014

Cache Supervisor

19

 1 defmodule CacheSupervisor do
 2
 3 def start do
 4 spawn(__MODULE__, :loop_system, [])
 5 end
 6
 7 def loop do
 8 pid = Cache.start_link
 9 receive do
10 {:EXIT, ^pid, :normal} ->
11 IO.puts("Cache exited normally")
12 :ok
13 {:EXIT, ^pid, reason} ->
14 IO.puts("Cache failed with reason #{inspect reason} - restarting it")
15 loop
16 end
17 end
18
19 def loop_system do
20 Process.flag(:trap_exit, true)
21 loop
22 end
23 end

Start up a Cache. If it crashes,
restart it; otherwise quit

Make sure we call :trap_exit to
receive :EXIT messages

DEMO

© Kenneth M. Anderson, 2014

Discussion (I)

• This example illustrates a generic approach to concurrent actor systems

• Keep the supervisors as small and as simple as possible

• So simple that they are easy to debug and get correct

• Have the actors that they supervise crash when things go wrong

• Let the supervisors detect those crashes and decide what to do

• This approach maximizes simplicity

• rather than adding lots of error checking code in the workers

• implement the success case and let all error cases cause a crash that
gets handled by the supervisor => a nice separation of concerns

20

© Kenneth M. Anderson, 2014

Discussion (II)

• This example is so generic that most of the work that we did manually has
been implemented in a library called OTP

• Let’s take a look at an OTP version of the Cache and CacheSupervisor

• A worker will make use of a library known as GenServer

• It can handle “calls” and “casts”

• the former return a result; the latter do not

• A supervisor will make use of a library known as Supervisor

• A supervisor has an init method that specifies

• a list of workers and a restart strategy

• We use the :one_for_one strategy to specify that crashed workers
should simply be restarted

21

© Kenneth M. Anderson, 2014

New Supervisor

22

 1 defmodule CacheSupervisor do
 2 use Supervisor
 3
 4 def start_link do
 5 :supervisor.start_link(__MODULE__, [])
 6 end
 7
 8 def init(_args) do
 9 workers = [worker(Cache, [])]
10 supervise(workers, strategy: :one_for_one)
11 end
12 end

© Kenneth M. Anderson, 2014

New Cache

23

 1 defmodule Cache do
 2 use GenServer
 3
 4 def handle_cast({:put, url, page}, {pages, size}) do
 5 new_pages = Dict.put(pages, url, page)
 6 new_size = size + byte_size(page)
 7 {:noreply, {new_pages, new_size}}
 8 end
 9
10 def handle_call({:get, url}, _from, {pages, size}) do
11 {:reply, pages[url], {pages, size}}
12 end
13
14 def handle_call({:size}, _from, {pages, size}) do
15 {:reply, size, {pages, size}}
16 end
17
18 end

© Kenneth M. Anderson, 2014

Helper Functions for Cache

24

 1 defmodule Cache do
 2 use GenServer
 3
 4 def handle_cast({:put, url, page}, {pages, size}) do
 5 new_pages = Dict.put(pages, url, page)
 6 new_size = size + byte_size(page)
 7 {:noreply, {new_pages, new_size}}
 8 end
 9
10 def handle_call({:get, url}, _from, {pages, size}) do
11 {:reply, pages[url], {pages, size}}
12 end
13
14 def handle_call({:size}, _from, {pages, size}) do
15 {:reply, size, {pages, size}}
16 end
17
18 def start_link do
19 :gen_server.start_link({:local, :cache}, __MODULE__, {HashDict.new, 0}, [])
20 end
21
22 def put(url, page) do
23 :gen_server.cast(:cache, {:put, url, page})
24 end
25
26 def get(url) do
27 :gen_server.call(:cache, {:get, url})
28 end
29
30 def size do
31 :gen_server.call(:cache, {:size})
32 end
33
34 end

© Kenneth M. Anderson, 2014

Using the new version

• Start by creating the supervisor (which creates the Cache, its worker)

• CacheSupervisor.start_link

• Then just use the Cache

• Cache.size => 0
• Cache.put “foo”, “bar” => :ok
• Cache.size => 3
• Cache.put “ohnoes”, nil => error message; auto restart
• Cache.size => 0

• Just like that, we’ve reimplemented the previous example

25

© Kenneth M. Anderson, 2014

Nodes and Distribution

• The Erlang virtual machine is used to execute Elixir programs

• In an analogous way that Coljure programs compile down to Java
bytecodes and are executed by the Java Virtual Machine

• One cool feature of Erlang virtual machines is that they have the capability to
act as nodes that can form clusters

• Elixir actors running on one node can easily route messages to actors
running on other (possibly) distributed nodes

• To set this up in Elixir, you can launch iex and give it a node name

• For security reasons, you also give it a “cookie”; only nodes with the same
“cookie” can talk to one another

• iex --name node2@128.138.72.226 --cookie jiriki <— can be any string

26

© Kenneth M. Anderson, 2014

Connecting Nodes

• Once you have launched a node, you need to tell it about the other nodes

• iex --name node2@128.138.72.226 --cookie jiriki

• iex --name node1@128.138.72.226 --cookie jiriki

• Checking status

• node1> Node.self => :"node1@128.138.72.238"

• node2> Node.self => :"node2@128.138.72.226"

• Connecting

• node1> Node.connect(:"node2@128.138.72.226") => true

• Both nodes are now connected to each other

• node1> Node.list => [:"node2@128.138.72.226"]

• node2> Node.list => [:"node1@128.138.72.238"]

27

mailto:node1@128.138.72.238

© Kenneth M. Anderson, 2014

Sending Code Between Nodes

• Let’s define a function

• node1> whoami = fn () -> IO.puts(Node.self) end

• And send it to another node to be executed

• node1> Node.spawn(:"node2@128.138.72.226", whoami)

• node1 REPL prints: node2@128.138.72.226

• Pause to think about what we just did and how easy it was

• We just

• defined a function

• sent it over to another machine as data

• that machine converted the data back to a function

• executed it

• sent back the result

• and our original machine then displayed the result

28

© Kenneth M. Anderson, 2014

Sending Messages Between Nodes: Set-Up

• Let’s launch our Counter actor on node2

• node2> pid = spawn(Counter, :loop, [42])

• Now, let’s register that process id and associate it with a global name

• node2> :global.register_name(:counter, pid) => :yes

• In this context, “global” means across all connected nodes

• So, now on node1, we can look that name up

• node1> pid = :global.whereis_name(:counter) => #PID<9027.73.0>

• Then we can send messages to it

• (next slide)

29

© Kenneth M. Anderson, 2014

Sending Messages Between Nodes

• This version of counter expects a message of the form

• {:next, <caller_pid>, <unique_ref>}

• It then sends back a message of the form

• {:ok, <unique_ref>, count}

• So, to call this Actor from node1, we do

• node1> ref = make_ref

• node1> send(pid, {:next, self, ref})

• node1> receive do {:ok, ^ref, count} -> count end

• Sure enough, we get back the result 42

30

© Kenneth M. Anderson, 2014

Just scratched the surface

• With these building blocks, you can move on to create full-fledged
distributed, concurrent programs

• Start a bunch of actors on one or more “worker” machines and register
their pids via the :global registry

• Start a supervisor on another machine and have it dole out work to the
actors using a message pattern similar to the Fibonacci example

• If any of the workers die, have the supervisor restart them automatically

• I highly recommend the Programming Elixir book if you’re curious to see more
complicated examples

• It shows an example that starts a server, has it handle requests, then
modifies the code of the server, and HOT SWAPS that code into the
running server => modifying servers without having to restart them!

31

© Kenneth M. Anderson, 2014

Summary

32

• The Actor model is a powerful model for creating distributed, concurrent
systems

• Any individual actor is a single-threaded program with state that changes
in well defined ways

• Software design becomes “message design” and system design becomes
balancing where actors live and how “message load” is distributed across
them

• The one danger in Actor systems is deadlock; “receive” is a blocking call

• to avoid that, you can have receive timeout and have the Actor do
something to recover

• The OTP library can be used to create Client-Server and Cluster-based
applications with a minimal amount of code

© Kenneth M. Anderson, 2014

Coming Up Next

• Lecture 19: Introduction to Software Design

• Lecture 20: The Design of Design, Part One

33

