
© Kenneth M. Anderson, 2014

Iteration and Release Planning

CSCI 5828: Foundations of Software Engineering

Lecture 14 — 10/09/2014

1



© Kenneth M. Anderson, 2014

Goals

• Cover the material presented in Chapters 8-11 of our user stories textbook


• Estimating User Stories


• Planning a Release


• Planning an Iteration


• Measuring and Monitoring Velocity

2



© Kenneth M. Anderson, 2014

Estimating User Stories

• Developers need to assign “points” to a story to indicate how long it will take 
to implement


• Our user/customer assigns priorities to stories, not estimates


• Our book highlights a number of desirable properties for this approach


• it allows us to change our minds about an estimate when new info arrives


• works for both epic stories as well as smaller stories


• doesn’t take a lot of time; we want to spend our time developing


• provides useful information about our progress and work remaining


• is tolerant of imprecision in estimates


• can be used to plan releases

3



© Kenneth M. Anderson, 2014

Story Points

• A point is a unit that can be defined by the development team


• It might represent “eight hours of uninterrupted work” for one team


• It might represent “forty hours of uninterrupted work” for another


• Some use points to represent complexity (lots of points == complex)


• The book recommends thinking of one point as “one ideal work day”


• where ideal means: a day with no interruptions and the developer can be 
maximally productive on the task


• Two benefits with this approach


• it avoids getting too specific: “this story will take 39.5 hours”


• it gives people confidence: “Yeah, that story is about two days of work”

4



© Kenneth M. Anderson, 2014

Estimates belong to the Team

• It is important to have the team create the estimates for each story


• The success of the project is attributed to the team not to individuals


• to establish this perspective: make estimates together


• if you get it wrong, it’s the team that failed, not one individual


• In addition, when creating/estimating stories, it may not be clear who will be 
assigned to this particular story


• therefore, the team works to create the estimate and then individuals 
assigned to the story later know


• they had a voice in creating the estimate they are working against


• the team is responsible if the estimate is wrong

5



© Kenneth M. Anderson, 2014

The Process of Estimation

• The book recommends an estimation process developed by Barry Boehm

• the Wideband Delphi approach


• Gather the development team and the customer/user(s)

• Bring the stories that need estimates and blank index cards

• Distribute the cards to the development team


• Loop until all stories have estimates

• Read a story out-loud

• Loop until estimates have converged


• Engage in Q&A with customer/users about that story

• Each developer writes an estimate; when ready, show all estimates

• Developers discuss differences in estimates; raising questions/issues


• New stories may be created due to this discussion

6



© Kenneth M. Anderson, 2014

Triangulate

• After a set of stories have received estimates, developers need to review 
them and see if they are being consistent


• Group the stories by number of points and discuss


• For example, are these two point stories really twice as small as the 
four points stories?


• If yes, continue estimating


• If not, change the estimates


• This helps the team achieve consistency across the entire set of user stories


• Later in a development project, the need for triangulation may go down as 
the team becomes more confident and knowledgable of their abilities

7



© Kenneth M. Anderson, 2014

Velocity

• The term velocity is defined as “number of story points completed per 
iteration”


• Agile software life cycles recommend that


• before the first iteration begins, the team makes a guess at what their 
velocity will be


• if a point means “ideal work day”, you can start with this formula


• number of team members x number of days in iteration


• then, your velocity for iteration N is the actual number of points 
completed for iteration N-1


• if you completed 32 points in the previous iteration, your velocity for 
planning the next iteration is 32.

8



© Kenneth M. Anderson, 2014

Release Planning

• A release is a version of the system under development that is going to be 
deployed and put into production use


• Release planning in software development involves having a release 
roadmap in which the next several releases have been identified


• and the functionality for each release has been specified at a high level


• Kent Beck recommends thinking of this as “themes” for each release


• With a release roadmap, you need to engage in release planning


• users/customers need to assign priorities to estimated user stories


• all stakeholders need to work together to identify the length of an iteration


• Issues include dealing with risk and determining velocity

9



© Kenneth M. Anderson, 2014

Assigning Priorities

• Our book points to a prioritization scheme that may be better than the typical  
“low/medium/high” approach


• Must have


• Should have


• Could have


• Won’t have (for this release)


• This approach divides stories into clear buckets that can then be used to 
assign stories to iterations within the release


• If a customer can’t assign a priority to a user story, this (typically) indicates  
that the story needs to be split until clear priorities can be assigned

10



© Kenneth M. Anderson, 2014

Risky Stories

• The issue here is what approach should agile projects take


• tackle risky stories first


• or go after “low hanging fruit”


• The book asserts that agile life cycles like to go after low-hanging fruit


• high-value functionality that is straightforward to implement


• This allows time for more information to be gathered about high-risk stories


• and this additional information may reduce the risk associated with them


• I think you need to balance this with the common issue of “problem 
avoidance”; make sure you’re clear on what the risks are => such information 
may produce action items that can reduce the risk and make it feasible

11



© Kenneth M. Anderson, 2014

Iteration Length and Expected Duration

• Iteration length is typically from one week to four weeks


• Agile life cycles recommend selecting shorter lengths to increase the 
feedback loop with the customer


• The important thing is once the length is selected: DON’T CHANGE IT!


• Your team needs to settle into a comfortable development pace


• Arbitrary changes to the iteration length will hinder that goal


• Once you have an iteration length, an initial velocity, and a set of prioritized, 
estimated user stories, you can make initial “ballpark” predictions about how 
long it will take to create a release


• round_up(number of points / velocity) == number of iterations


• number_of_iterations * iteration_length == number of days until release

12



© Kenneth M. Anderson, 2014

Velocity, revisited

• Previously we suggested


• number of team members x number of days in iteration


• is a good formula for picking an initial velocity


• However, you need to take into account that “number of days” means 
“number of IDEAL days”


• You need to include a conversion factor between an IDEAL day and an 
ACTUAL day


• An actual day won’t be eight hours of uninterrupted work due to 
meetings, interruptions, illness, turnover, etc.


• Ideal velocity for six people with two week iteration (10 business days): 60


• Converting to an ACTUAL day: 6 x 10 x .5 = 30; 6 x 10 x .25 = 15!

13



© Kenneth M. Anderson, 2014

Iteration Planning (I)

• The points-based approach to release planning works well


• It provides enough planning to make progress on the project


• It lacks enough detail to avoid giving a false sense of accuracy


• People will be aware that there can be errors made in the estimates and 
can react once new information is available to make the errors clear


• In iteration planning, you need to engage in more detail to help create 
accurate work plans over the days allocated to an iteration


• An iteration planning meeting occurs “between iterations”


• If it occurs “during” an iteration, then you need to include the time 
spent on it in your other estimates (perhaps by adjusting your velocity 
down by a point or two to account for it)

14



© Kenneth M. Anderson, 2014

Iteration Planning (II)

• All developers and the customer/user must be present for an iteration 
planning meeting


• The developers are required to help identify tasks and make estimates


• The customer/user is required to answer questions about the stories


• The process involves


• For each story in the iteration


• engage in Q&A with customer/user about the story


• convert story into tasks that need to be completed to finish the story


• assign each task to a single developer


• Each developer then estimates each assigned task; performs sanity check


• if a developer is overloaded, rebalancing or more planning is needed

15



© Kenneth M. Anderson, 2014

Tasks

• Task identification takes a story that is written in a customer perspective and 
transforms it into a set of steps that are written from a developer’s 
perspective (finally!)


• “A job seeker can search for jobs” might be transformed into


• Code basic search interface


• Write controller to handle submissions from search interface and perform 
the search


• Ensure that controller can access the database correctly


• Write a view that will display the results


• Working on this step will require “design thinking” either to come up with an 
initial design for a system or to integrate this feature into the existing design

16



© Kenneth M. Anderson, 2014

Task Estimation

• In release planning, we worked with “ideal days”


• With task planning, we work with “ideal hours”


• Once a developer has their assigned tasks, they estimate the number of 
hours it will take to complete each one


• They then add those hours up to perform a sanity check


• They can also include a factor to transform ideal hours into actual hours


• Sanity Check


• Compare number of hours with the length of the iteration


• If the number of hours to complete the tasks is greater than the number of 
available hours, then rebalancing is needed


• A team perspective is needed to make this successful

17



© Kenneth M. Anderson, 2014

Measuring and Monitoring Velocity

• Once points/priorities have been assigned and releases and iterations have 
been planned, the most important metric for an agile life cycle is velocity


• velocity tracks how much work is completed in an iteration


• before the iteration it is a “guess”


• a guess that we have increased confidence in over time


• after an iteration it is an actual metric that can be used in assessment


• How do we measure velocity?


• The number of points associated with completed stories


• Incomplete stories are not included (velocity is an integer not a float)


• With velocity measured, we can chart our progress in a variety of ways

18



© Kenneth M. Anderson, 2014

Planned vs. Actual Velocity

19

5   1 2 3 4

40

0

10

20

30

Iterations

St
or

y 
Po

in
ts Planned

Actual



© Kenneth M. Anderson, 2014

Planned vs. Actual Cumulative

20

3   1 2

40

0

10

20

30

Iterations

St
or

y 
Po

in
ts

Planned

Actual



© Kenneth M. Anderson, 2014

Iteration Burndown Charts

21

6   1 2 3 4 5

140

0

10

20

30

40

50

60

70

80

90

100

110

120

130

Iterations

St
or

y 
Po

in
ts

120

100

70

90

60



© Kenneth M. Anderson, 2014

Daily Burndown Charts

22

14   1 2 3 4 5 6 7 8 9 10 11 12 13

400

0

50

100

150

200

250

300

350

Days

H
ou

rs



© Kenneth M. Anderson, 2014

Summary

23

• In executing an agile life cycle, you must

• estimate your stories

• plan your releases

• plan your iterations

• measure your progress


• We have looked at various recommendations for performing these tasks

• using “ideal days” (stories) and “idea hours” (tasks) for estimates and then 

using a conversion factor to get to “actual days” and “actual hours”

• saw example charts to measure actual progress


• Agile life cycles are brutal; if you fall behind, you’ll know it fast

• the good news is that you’ll deal with schedule delays quickly and 

hopefully before they become a problem



© Kenneth M. Anderson, 2014

Coming Up Next

• Lecture 15: MIDTERM


• Lecture 16: Midterm Review (if I can swing it)

24


