teration and Release Planning

CSCI 5828: Foundations of Software Engineering
Lecture 14 — 10/09/2014

© Kenneth M. Anderson, 2014



(Goals

- Cover the material presented in Chapters 8-11 of our user stories textbook
- Estimating User Stories
* Planning a Release
* Planning an lteration

» Measuring and Monitoring Velocity

© Kenneth M. Anderson, 2014



—stimating User Stories

* Developers need to assign “points” to a story to indicate how long it will take
to implement

- Our user/customer assigns priorities to stories, not estimates
- Our book highlights a number of desirable properties for this approach

- it allows us to change our minds about an estimate when new info arrives

works for both epic stories as well as smaller stories

doesn’t take a lot of time; we want to spend our time developing

provides useful information about our progress and work remaining

is tolerant of imprecision in estimates

can be used to plan releases

© Kenneth M. Anderson, 2014



Story Points

« A point is a unit that can be defined by the development team

* It might represent “eight hours of uninterrupted work” for one team

* It might represent “forty hours of uninterrupted work” for another

« Some use points to represent complexity (lots of points == complex)
- The book recommends thinking of one point as “one ideal work day”

- where ideal means: a day with no interruptions and the developer can be
maximally productive on the task

+ Two benefits with this approach
» it avoids getting too specific: “this story will take 39.5 hours”

- it gives people confidence: “Yeah, that story is about two days of work”

© Kenneth M. Anderson, 2014



—stimates belong to the Team

- It is important to have the team create the estimates for each story
« The success of the project is attributed to the team not to individuals
* to establish this perspective: make estimates together
* if you get it wrong, it’s the team that failed, not one individual

- In addition, when creating/estimating stories, it may not be clear who will be
assigned to this particular story

 therefore, the team works to create the estimate and then individuals
assigned to the story later know

 they had a voice in creating the estimate they are working against

 the team is responsible if the estimate is wrong

© Kenneth M. Anderson, 2014



The Process of Estimation

- The book recommends an estimation process developed by Barry Boehm
 the Wideband Delphi approach
- Gather the development team and the customer/user(s)
 Bring the stories that need estimates and blank index cards
» Distribute the cards to the development team
* Loop until all stories have estimates
* Read a story out-loud
* Loop until estimates have converged
- Engage in Q&A with customer/users about that story
- Each developer writes an estimate; when ready, show all estimates
- Developers discuss differences in estimates; raising questions/issues

* New stories may be created due to this discussion

© Kenneth M. Anderson, 2014



Triangulate

- After a set of stories have received estimates, developers need to review
them and see if they are being consistent

« Group the stories by number of points and discuss

* For example, are these two point stories really twice as small as the
four points stories?

- If yes, continue estimating
* If not, change the estimates
 This helps the team achieve consistency across the entire set of user stories

- Later in a development project, the need for triangulation may go down as
the team becomes more confident and knowledgable of their abilities

© Kenneth M. Anderson, 2014



Velocity

- The term velocity is defined as “number of story points completed per
iteration”

 Agile software life cycles recommend that

 before the first iteration begins, the team makes a guess at what their
velocity will be

» if a point means “ideal work day”, you can start with this formula
« number of team members x number of days in iteration

* then, your velocity for iteration N is the actual number of points
completed for iteration N-1

» if you completed 32 points in the previous iteration, your velocity for
planning the next iteration is 32.

© Kenneth M. Anderson, 2014



_Release Planning

- A release is a version of the system under development that is going to be
deployed and put into production use

* Release planning in software development involves having a release
roadmap in which the next several releases have been identified

 and the functionality for each release has been specified at a high level
» Kent Beck recommends thinking of this as “themes” for each release
- With a release roadmap, you need to engage in release planning
- users/customers need to assign priorities to estimated user stories
- all stakeholders need to work together to identify the length of an iteration

* Issues include dealing with risk and determining velocity

© Kenneth M. Anderson, 2014



Assigning Priorities
« Our book points to a prioritization scheme that may be better than the typical
“low/medium/high” approach
* Must have
- Should have

« Could have

- Won'’t have (for this release)

 This approach divides stories into clear buckets that can then be used to
assign stories to iterations within the release

- If a customer can’t assign a priority to a user story, this (typically) indicates
that the story needs to be split until clear priorities can be assigned

© Kenneth M. Anderson, 2014

10



Risky Stories

* The issue here is what approach should agile projects take
- tackle risky stories first
* or go after “low hanging fruit”
* The book asserts that agile life cycles like to go after low-hanging fruit
* high-value functionality that is straightforward to implement
 This allows time for more information to be gathered about high-risk stories
- and this additional information may reduce the risk associated with them

» | think you need to balance this with the common issue of “problem
avoidance”; make sure you’re clear on what the risks are => such information
may produce action items that can reduce the risk and make it feasible

© Kenneth M. Anderson, 2014

11



'teration Length and Expected Duration

- lteration length is typically from one week to four weeks

 Agile life cycles recommend selecting shorter lengths to increase the
feedback loop with the customer

- The important thing is once the length is selected: DON’T CHANGE IT!
« Your team needs to settle into a comfortable development pace
* Arbitrary changes to the iteration length will hinder that goal

- Once you have an iteration length, an initial velocity, and a set of prioritized,
estimated user stories, you can make initial “ballpark” predictions about how
long it will take to create a release

 round_up(number of points / velocity) == number of iterations

- number_of_iterations * iteration_length == number of days until release

© Kenneth M. Anderson, 2014 12



Velocity, revisited

 Previously we suggested
- number of team members x number of days in iteration
* is a good formula for picking an initial velocity

- However, you need to take into account that “number of days” means
“number of IDEAL days”

* You need to include a conversion factor between an IDEAL day and an
ACTUAL day

* An actual day won’t be eight hours of uninterrupted work due to
meetings, interruptions, iliness, turnover, etc.

- |deal velocity for six people with two week iteration (10 business days): 60

» Converting to an ACTUAL day: 6 x 10 x .5=30; 6 x 10 x .25 = 15!

© Kenneth M. Anderson, 2014

13



teration Planning (I)

* The points-based approach to release planning works well
* It provides enough planning to make progress on the project
- It lacks enough detail to avoid giving a false sense of accuracy

« People will be aware that there can be errors made in the estimates and
can react once new information is available to make the errors clear

* In iteration planning, you need to engage in more detall to help create
accurate work plans over the days allocated to an iteration

 An iteration planning meeting occurs “between iterations”

» If it occurs “during” an iteration, then you need to include the time
spent on it in your other estimates (perhaps by adjusting your velocity
down by a point or two to account for it)

© Kenneth M. Anderson, 2014

14



teration Planning (ll)

- All developers and the customer/user must be present for an iteration
planning meeting

« The developers are required to help identify tasks and make estimates
- The customer/user is required to answer questions about the stories
* The process involves
* For each story in the iteration
- engage in Q&A with customer/user about the story
 convert story into tasks that need to be completed to finish the story
» assign each task to a single developer
- Each developer then estimates each assigned task; performs sanity check

- if a developer is overloaded, rebalancing or more planning is needed

© Kenneth M. Anderson, 2014 15



Tasks

- Task identification takes a story that is written in a customer perspective and

transforms it into a set of steps that are written from a developer’s
perspective (finally!)

* “A job seeker can search for jobs” might be transformed into

« Code basic search interface

« Write controller to handle submissions from search interface and perform
the search

« Ensure that controller can access the database correctly

« Write a view that will display the results

» Working on this step will require “design thinking” either to come up with an
initial design for a system or to integrate this feature into the existing design

© Kenneth M. Anderson, 2014 16



Task Estimation

In release planning, we worked with “ideal days”

» With task planning, we work with “ideal hours”

Once a developer has their assigned tasks, they estimate the number of
hours it will take to complete each one

+ They then add those hours up to perform a sanity check

* They can also include a factor to transform ideal hours into actual hours

Sanity Check

- Compare number of hours with the length of the iteration

- If the number of hours to complete the tasks is greater than the number of
available hours, then rebalancing is needed

« A team perspective is needed to make this successful

© Kenneth M. Anderson, 2014

17



Measuring and Monitoring Velocity

« Once points/priorities have been assigned and releases and iterations have
been planned, the most important metric for an agile life cycle is velocity

» velocity tracks how much work is completed in an iteration
 before the iteration it is a “guess”
 a guess that we have increased confidence in over time
- after an iteration it is an actual metric that can be used in assessment
- How do we measure velocity?
- The number of points associated with completed stories
« Incomplete stories are not included (velocity is an integer not a float)

- With velocity measured, we can chart our progress in a variety of ways

© Kenneth M. Anderson, 2014 18



Planned vs. Actual Velocity

407

307

Planned

N
o
=
u

-
-
-
- - - -_——-—
- -
- e mm ==
- - -
- -

Story Points

Actual

1071

lterations
© Kenneth M. Anderson, 2014

19



Planned vs. Actual Cumulative

4071
30
(7))
[=
S
207
-
he;
(D P
Planned .-~~~
10. -----------------------------------
Actual

lterations

© Kenneth M. Anderson, 2014

20



Story Points

lteration

1407
1307
1207
110
1007
907
807
707
607
507
407
3071
2071
10¢

SBurndown Charts

1 2 3
Iterations

© Kenneth M. Anderson, 2014

21



Hours

Daily
4007
3507
3007
2507
2007
1507
1007

507

SBurndown Charts

2 3 4 ) 6 7 8
Days
© Kenneth M. Anderson, 2014

10

11

12

13

14

22



Summary

* In executing an agile life cycle, you must
 estimate your stories
* plan your releases
* plan your iterations
* measure your progress
- We have looked at various recommendations for performing these tasks

- using “ideal days” (stories) and “idea hours” (tasks) for estimates and then
using a conversion factor to get to “actual days” and “actual hours”

« saw example charts to measure actual progress
 Agile life cycles are brutal; if you fall behind, you’ll know it fast

 the good news is that you’ll deal with schedule delays quickly and
hopefully before they become a problem

© Kenneth M. Anderson, 2014 23



Coming Up Next

* Lecture 15: MIDTERM

 Lecture 16: Midterm Review (if | can swing it)

© Kenneth M. Anderson, 2014

24



