
© Kenneth M. Anderson, 2014

Concurrency and Functional Programming

CSCI 5828: Foundations of Software Engineering

Lecture 11 — 09/30/2014

1

© Kenneth M. Anderson, 2014

Goals

• Cover the material presented in Chapter 3 of our concurrency textbook

• Intro to Clojure

• Books examples from Day 1 and the start of Day 2

2

© Kenneth M. Anderson, 2014

Installation

• In order to follow along, you need to install Clojure

• The best way to do that is with Leiningen

• On Mac OS X with HomeBrew installed, this is easy

• brew install leiningen

• Otherwise, follow the simple instructions on the Leiningen home page

• http://leiningen.org

• The first time you invoke the “lein” script, it will auto-install everything it needs

• System of Systems: It makes use of Maven in the background to
download the packages that it needs!

3

http://leiningen.org

© Kenneth M. Anderson, 2014

Use (I)

• For basic use, all you need is the REPL environment

• lein repl

• This loads up a version of Clojure and sets the default name space to “user”

• To write larger systems of functions, you need to adopt the following generic
folder structure

• project_folder/

• project.clj

• src/

• <project_specific_package_name>/

• <project_specific_file_name>.clj

4

© Kenneth M. Anderson, 2014

Example project.clj

(defproject test-prime "1.0"

 :dependencies [[org.clojure/clojure "1.6.0"]]

 :jvm-opts ["-Xmx4096m"]

 :main test.prime)

• This particular project.clj file declares

• our project is called “test-prime”

• it has the ambitious version number of “1.0”

• it wants the Java virtual machine to have up to 4GB of memory and,

• the main file to load at runtime is “prime.clj” located in src/test/

5

© Kenneth M. Anderson, 2014

Use (II)

• With that configuration, you simply enter the directory that contains the
project.clj file and type “lein repl”

• You start in the “test.prime” name space and all of your functions are
directly available at the REPL prompt

• If you ever change your source code and you want to reload all of your
functions into an existing REPL session, use the require command

• (require :reload 'test.prime)

• That’s all we need to understand with respect to setting Clojure up for initial
use; note: there is a LOT more to learn. For instance, if you want to see the
source code of a function, you can ask the REPL with this command

• (source <function_name>)

• Example: (source time) or (source map) or (source pmap)

6

© Kenneth M. Anderson, 2014

Clojure

• Clojure is a dialect of Lisp created in 2007 by Rich Hickey

• It is built on top of the Java Virtual Machine

• While it is a Lisp, it can make calls into the Java standard libraries

• Sometimes the answer to “how do you do X in Clojure” is answered
with “Just call java.util…”, i.e., just use the implementation provided by
Java

• Clojure’s design adopts a focus on programming with immutable values and
the creation of concurrent programs that are easier to reason about

• In particular, you can easily find videos of Rich Hickey casting aspersions
on concurrent programs with shared mutable state

7

© Kenneth M. Anderson, 2014

Clojure and our Textbook

• In Chapter 3, our textbook focuses more on functional programming style and
the way that concurrency can be incorporated into functional programming

• It holds off to talk about Clojure’s more explicit concurrency constructs

• atoms

• persistent data structures

• agents

• software transactional memory

• until Chapter 4

8

© Kenneth M. Anderson, 2014

Clojure Reference Materials

• The Pragmatic Programmers offer a range of books on Clojure

• Programming Clojure: <https://pragprog.com/book/shcloj2/programming-clojure>

• Functional Programming Patterns in Scala and Clojure: Write Lean Programs for the
JVM: <https://pragprog.com/book/mbfpp/functional-programming-patterns-in-
scala-and-clojure>

• Mastering Clojure Macros: Write Cleaner, Faster, Smarter Code: <https://
pragprog.com/book/cjclojure/mastering-clojure-macros>

• In addition, you can check out the official Clojure website

• <http://clojure.org>

• I also found this (it’s out-of-date in places but still good!)

• <http://moxleystratton.com/clojure/clojure-tutorial-for-the-non-lisp-programmer>

9

https://pragprog.com/book/shcloj2/programming-clojure
https://pragprog.com/book/mbfpp/functional-programming-patterns-in-scala-and-clojure
https://pragprog.com/book/cjclojure/mastering-clojure-macros
http://clojure.org
http://moxleystratton.com/clojure/clojure-tutorial-for-the-non-lisp-programmer

© Kenneth M. Anderson, 2014

Clojure Basics (I)

• Clojure has a fairly basic set of data
types (a.k.a forms)

• Booleans — true, false

• Characters — \a, \A

• Strings —“ken anderson”

• No value — nil

• Numbers — 1, 2, 3.14159,
0.000001M, 100000000000N

• Keywords — :first, :last

• Symbols — x, i,
java.lang.String, user/foo

• Lists — (1 2 3 4 5)

• Vectors — [1 2 3 4 5]

• Sets — #{1 2 3}

• Maps — {:first
“Ken” :last “Anderson}

!

• Note: Commas (,) are
whitespace in Clojure. Use them
if you want, they will be ignored!

10

© Kenneth M. Anderson, 2014

Functions

• If the first element of a list is a symbol that references a function, then the list
becomes a function call and will be replaced with its value

• (+ 1 2) => 3

• (sort [9 3 5]) => (3 5 9)

• Functions can be defined using another function called defn

• (defn name [args*] forms+)

• The value of the last form in forms+ is the return value of the function

• Anonymous functions can be created as well either with fn or shorthand syntax

• (fn [x] (+ x 10))

• #(+ x %)

11

© Kenneth M. Anderson, 2014

Symbols

• You can create your own symbols with the function def

• (def pi 3.14159)

• (def x 10)

• These statements would add the symbols pi and x to the current namespace

• The values of these symbols are immutable

• (+ x 10) => 20

• This just references the value of x, it doesn’t change x

• You can run the def command again

• (def x 5)

• x now has the value 5, but all this command did was rebind the symbol

12

© Kenneth M. Anderson, 2014

Control Flow

• Control flow structures are just functions

• (if (< x 0) "negative" "non-negative")

• (cond

• (< x 10) “small”

• (= x 10) “medium”

• (> x 10) “large”

• :else “uh oh”)

• Loops are a special case

• there is an explicit loop function, but you’ll typically avoid it and use map
and reduce instead

13

© Kenneth M. Anderson, 2014

Loop (I)

• The generic form of a loop is

• (loop [bindings *] exprs*)

• The call to loop creates a “jump point” that allows control to return to the top
of the loop by calling the function recur

• (recur exprs*)

• The expressions associated with recur are allowed to establish new
bindings of the symbols created by loop

!

• Let’s see an example

14

© Kenneth M. Anderson, 2014

Loop (II)

• (loop [result [] x 5]

• (if (zero? x)

• result

• (recur (conj result x) (dec x))))

• This expression returns [5, 4, 3, 2, 1]

• The bindings at the top initialize result to an empty vector and x to 5

• The code then checks to see if x is equal to 0

• Since it isn’t, recur rebinds result to be a vector that has the value of x
appended to it and rebinds x to 4

• The code then jumps back to loop and executes again (the initial bindings
are then ignored)

15

© Kenneth M. Anderson, 2014

Loop (III)

• You can also recur to the start of any function and similarly rebind its
parameters

• (defn countdown [result x]

• (if (zero? x)

• result

• (recur (conj result x) (dec x))))

• This function will take an input vector and a (hopefully positive) number and
appends that number and all of the numbers between it and zero to the
vector

• (countdown [] 5) => [5 4 3 2 1]

• The use of recur also allows Clojure to use tail recursion, allowing this
function to be implemented as a loop and not via recursion

16

© Kenneth M. Anderson, 2014

Loop (IV)

• But, this style is rarely needed in functional programming

• Instead, you will use more declarative constructs where the iteration is hidden

• (into [] (take 5 (iterate dec 5)))

• (into [] (drop-last (reverse (range 6))))

• (vec (reverse (rest (range 6))))

• All of these produce the same [5, 4, 3, 2, 1] result

• Similarly, you’ll use map to operate on all members of a list and reduce to
use all of the members in a list to calculate some value

• (map inc (range 10)) => (1 2 3 4 5 6 7 8 9 10)

• (reduce + (map inc (range 10))) => 55

17

© Kenneth M. Anderson, 2014

map and reduce

• map’s primary structure is

• (map function collection)

• It returns a new collection in which function was applied to each member
of the input collection

• Likewise reduce’s primary structure is

• (reduce function collection)

• It returns a single value that is the result of repeatedly combining elements of
the collection (in order) using the function (the function must support at
least two arguments)

• In the example on the previous slide, reduce first applied + to 1 and 2, it
then applied + to 3 and 3, then + to 6 and 4, etc.

18

© Kenneth M. Anderson, 2014

The Book’s First Example: Imperative/Mutable

• The book starts with this program for inspiration

• public int sum(int[] numbers) {
• int accumulator = 0;
• for (int n: numbers) {

• accumulator += n;
• }
• return accumulator;

• }

• This is an imperative program to sum up an array of integers. accumulator
is a mutable variable. We use an imperative for loop to tell the computer
what to do

19

© Kenneth M. Anderson, 2014

The Book’s First Example: Functional/Recursive

• (defn recursive-sum [numbers]
• (if (empty? numbers)

• 0
• (+ (first numbers) (recursive-sum (rest numbers)))))

• This function is recursive in that it calls itself

• It is functional in that there is no mutable state

• At each point in the call stack, numbers is bound to different values

• When numbers is empty, the recursion bottoms out and starts to
unwrap, calculating as it goes

• This example introduces three new functions: empty?, first, and rest

• first and rest are used to manipulate sequences (lists and vectors both
can act as sequences)

20

© Kenneth M. Anderson, 2014

The Book’s First Example: reduce

• As previously mentioned, functional programming will avoid recursion if it can;
as such, the next version of this example is

• (defn reduce-sum [numbers]
• (reduce (fn [acc x] (+ acc x)) 0 numbers))

• This uses a version of reduce in which the initial value is also specified

• However, we don’t need to define a function to add two numbers together, we
already have one: +

• The final version of this function is thus

• (defn sum [numbers] (reduce + numbers))

• Note: + automatically knows how to handle empty collections and collections
consisting of just a single number (it uses its “identity” value of zero)

21

© Kenneth M. Anderson, 2014

The reward?

• How do we make our sum function concurrent?

• (ns sum.core (:require [clojure.core.reducers :as r]))
• (defn parallel-sum [numbers]

• (r/fold + numbers))

• This code pulls in a Clojure package called reducers. It aliases that package
to the symbol r (so we don’t have to type reducers all the time).

• The fold function is an implementation of reduce that (by default) breaks its
input collection into groups of 512 elements each and performs the reduce
calculation (in this case +) in parallel across all of the host machine’s cores

• (time (sum numbers)) ; “Elapsed time: 91.193 msecs”

• (time (parallel-sum numbers)); “Elapsed time: 46.388 msecs”

• One call to a drop-in replacement of reduce and you’re done!

22

© Kenneth M. Anderson, 2014

The Book’s Second Example: Word Counts (I)

• The book’s second example returns to the Word Counts example

• i.e. count all of the words in the first 39,000 pages of Wikipedia articles

• Quick Intro to Maps (hash tables) in Clojure

(def counts {"apple" 2 "orange" 1})
(get counts "apple" 0) => 2
(get counts "banana" 0) => 0
(assoc counts "banana" 1) => {"apple" 2 "orange" 1 “banana" 1}
(assoc counts "apple" 3) => {"apple" 3 "orange" 1}

• Note that assoc returns a NEW map, the original map is immutable

• If you really wanted to save the new map, you would need to bind it to a
new symbol or rebind counts to the new value

• (def counts (assoc counts "banana" 1))

23

© Kenneth M. Anderson, 2014

The Book’s Second Example: Word Counts (II)

• We now know enough about maps to write a function that can count how
many times we see a particular word in a sequence

(defn word-frequencies [words]
(reduce
(fn [counts word] (assoc counts word (inc (get counts word 0))))
{} words))

• Take this daunting expression a bit at a time!

• Define a function word-frequences that takes a sequence called words

• Call reduce on words passing in an empty map {} as the initial value

• We reduce with an anonymous function with two parameters; It gets the
current count associated with the current word, adds one to it, and sets
that as the new count for that word

• Turns out that Clojure already has a function that does this: frequencies

24

© Kenneth M. Anderson, 2014

The Book’s Second Example: Word Counts (III)

• Clojure has a concept known as a partially applied function

• Our book is about to use it to perform word counting in parallel, so we
need to understand it

• The basic concept is the following

• A function takes n parameters

• You are in a situation where you have k parameters for the function now
(with k < n) and you’ll have the other (n-k) parameters later

• You ask Clojure to create a new function that has your k parameters “wired
in” as constants and takes as arguments the other (n-k) parameters later

• You move forward with this new function and call it with the other
parameters when the time comes

25

© Kenneth M. Anderson, 2014

The Book’s Second Example: Word Counts (IV)

• Partially applied functions are perhaps easier to understand by examples

• Let’s pretend we want to be able to add 5 to any set of integers

• (def add-five (partial + 5))

• The form (partial + 5) says, “create a new function in which 5 has been
hardwired in as +’s first argument”

• The new function add-five now acts just like + but it always has 5 as one of
its inputs

• (add-five) => 5
• (add-five 10) => 15
• (add-five 10 10 10 10) => 45

26

© Kenneth M. Anderson, 2014

The Book’s Second Example: Word Counts (V)

• partial can be applied to any function

• (def add-five-to-everything (partial map add-five))

• Here we bind the add-five function to map’s first parameter

• With the resulting function, we just need to pass in the collection that map
needs to operate on

• (add-five-to-everything [10 20 30 40 50 60 70 80 90])
• returns (15 25 35 45 55 65 75 85 95)

27

© Kenneth M. Anderson, 2014

The Book’s Second Example: Word Counts (VI)

• We need to understand four more Clojure functions/concepts

• re-seq: applies a regular expression to a string and produces a lazy
sequence of all matches

• mapcat: takes a sequence of sequences and produces a single sequence
of all the subsequences concatenated

• merge-with: a function to combine multiple maps into a single map with
a rule as to how to combine duplicate map entires

• lazy sequences: Clojure can work with large sequences abstractly, only
creating those portions of the sequence that it needs

28

© Kenneth M. Anderson, 2014

re-seq

• re-seq is simple to understand

• You give it a sequence and a pattern. It looks for matches of the pattern
and produces a new sequence that contains each match

• (defn get-numbers [text] (re-seq #"\d+" text))

• Here we pass in a string and get back a sequence of all numbers found in
that string

• (get-numbers "123 Boulder Ave 256 Dash Drive 5678 Pyramid Lane”)

• returns ("123" "256" “5678")

29

© Kenneth M. Anderson, 2014

mapcat

• You sometimes perform map operations that produce a sequence of
sequences

• (map get-numbers ["123B456", "789T101112", “131415G161718"])

• returns (("123" "456") ("789" "101112") ("131415" “161718"))

• Note that each element of the sequence is itself a sequence

• And sometimes you want that sequence of sequences to be “flattened” into a
single sequence consisting of all the members of the subsequences

• (flatten (map get-numbers ["123B456", "789T101112", “131415G161718”]))

• returns ("123" "456" "789" "101112" "131415" "161718")

• You can do this all in once step with mapcat

• (mapcat get-numbers ["123B456", "789T101112", “131415G161718"])

• returns ("123" "456" "789" "101112" "131415" "161718")

30

© Kenneth M. Anderson, 2014

merge-with

• merge-with allows you to combine multiple maps into a single map

• It lets you specify what function is to be used to merge duplicate entries

• Given two maps

• (def counts1 {:ken 10 :max 20 :miles 10})

• (def counts2 {:ken 40 :max 30 :lilja 50 :miles 40})

• You can merge them and add their scores together with

• (merge-with + counts1 counts2)

• returns {:lilja 50, :miles 50, :max 50, :ken 50}

31

© Kenneth M. Anderson, 2014

Lazy Sequences (I)

• Clojure does what it can to avoid bringing an entire sequence into memory

• It can instead pass around the “promise” of a sequence and then provide
its elements when they are needed

• If you type(range 0 10000000) into the REPL and hit return

• you may eventually see: OutOfMemoryError Java heap space

• Typing return means “display the result of evaluating this form”

• it wants to display the sequence for you, which means it has to create it
and then display it

• But, if you type (def lots-of-numbers (range 0 10000000)) it returns instantly

• That’s because the call to range is not evaluated until the elements of the
sequence are needed

32

© Kenneth M. Anderson, 2014

Lazy Sequences (II)

• Lazy sequences work across any level of function calling

• (def lots-of-numbers-times-two (map (partial * 2) (range 0 10000000)))

• Here it looks like we are saying

• create a sequence with 10M members

• Use the map function to multiply each of those numbers by 2

• But, the calculation is not performed until we actually ask for the result

• (take 10 lots-of-numbers) => (0 1 2 3 4 5 6 7 8 9)

• (take 10 lots-of-numbers-times-two) => (0 2 4 6 8 10 12 14 16 18)

• In both cases, only the first ten members of the sequence are generated and
then operated on

• This is efficient and fast!

33

© Kenneth M. Anderson, 2014

Lazy Sequences (III)

• You can even get to the end of the list without too much memory strain

• (take 10 (drop 9000000 lots-of-numbers-times-two))

• This says skip past the first 9M numbers of the sequence, then show me the
next ten; it tries to be efficient while doing this, garbage collecting those items
of the sequence that are no longer needed (it still requires SOME memory)

• If your JVM has a nice amount of memory, this operation is fast too

• Returns (18000000 18000002 18000004 18000006 18000008
18000010 18000012 18000014 18000016 18000018)

• You just have to avoid asking for the ENTIRE sequence to be processed

• If you do, then Clojure can’t help it; it will bring the entire sequence into
memory and then operate on it. You’ll need to configure the JVM to have
enough memory to handle the large sequence

34

© Kenneth M. Anderson, 2014

The new Word Count program

• The new Word Count program consists of three source files

• pages.clj, words.clj, and core.clj

• In pages.clj is some functional XML parsing code that will make you lie in bed
awake, unable to sleep at night

• You can ignore it, it simply parses the XML file and gives us back the text
of each Wikipedia article as a string via a function called get-pages

• words.clj defines the following function

• (defn get-words [text] (re-seq #"\w+" text))

• As we just learned, re-seq will apply the regular expression to the string that
represents the Wikipeida article and return each word in a sequence

• That leaves the code in core.clj to handle the rest of the counting logic

35

© Kenneth M. Anderson, 2014

Sequential Version

• To count all the words in a set of pages in a single thread, we use

• (defn count-words-sequential [pages]

• (frequencies (mapcat get-words pages)))

• This function

• calls get-words on the passed in set of pages to generate a sequence of
sequences containing the words for each page

• and uses mapcat to ensure that we get a single (lazy) sequence of all such
words

• It then calls frequencies to produce a map that for each word tracks how
many times it appears

36

© Kenneth M. Anderson, 2014

Sequential Version Performance

• To use it we call the following form

•(time (count (count-words-sequential (take 30000
(get-pages “enwiki.xml”))))))

• I include a call to “count” to make Clojure actually perform the calculation

• since otherwise with lazy sequences, it can decide not to do anything

• plus the call to count allows me to see the output of the “time” function
which otherwise gets lost when a map with 1.74M entries prints out!

• Note: I switched to 30K pages because 39K pages was causing “out of
memory” errors that I could not debug! :-(

• The sequential version of the program on 30K pages averages 71 seconds

37

© Kenneth M. Anderson, 2014

Making it parallel: first attempt

• (defn count-words-parallel [pages]
• (reduce

• (partial merge-with +)
• (pmap #(frequencies (get-words %)) pages)))

• Wow! Let’s take that step by step

• For each page, get its words, and calculate the frequencies

• Supposedly do all of that in parallel with pmap

• Then, reduce all of the maps into a single map using merge-with

• Supposedly do that sequentially at the end

• The average running time is 46 seconds, only 35% faster

• One reason: not all that concurrent, CPU usage was ~225%

38

© Kenneth M. Anderson, 2014

Why is it slow (i.e. not as fast as we would like)?

• I said “supposedly” on the previous page

• because lazy sequences actually alter the specified behavior

• Rather than performing all of that code in parallel

• it was realizing the sequence, page by page, rather than all at once

• Furthermore, it was creating one page, then merging it with the final map

• and then creating the next page and merging it again

• This was similar to what we saw in Chapter 2 when our multiple consumer
threads were all sharing a single counts map

• and the program was slowed by contention around access to that map

39

© Kenneth M. Anderson, 2014

Making it parallel: second attempt

• (defn count-words [pages]
• (reduce

• (partial merge-with +)
• (pmap count-words-seq (partition-all 100 pages))))

• To fix this problem, we have to use the same approach we took in Chapter 2

• We need to allow multiple counts to occur in parallel and merge into the
final counts data structure only occasionally

• This version of count-words, uses partition-all to divide the 30K pages into
100 page chunks. count-words-sequential is used to count each of
those 100 pages in parallel using pmap, THEN we merge into the final counts

• With 100 page partitions, average run time 30.6 seconds with 400% CPU

• With 500 page partitions, average run time 26.6 seconds with 500% CPU

40

© Kenneth M. Anderson, 2014

Summary

41

• Today, we learned a lot about Clojure

• its syntax, data structures, and functions

• We then examined how “simple” it is to transform single threaded programs
to concurrent programs in the functional paradigm

• Typically, we swap a single threaded version of a function with a
concurrent version of that same function

• reduce with fold; map with pmap

• Concurrency never comes for free however

• The semantics of lazy sequences make taking advantage of full
parallelization difficult to achieve

• although without them, our program would have tried to load 30K
wikipedia articles into memory!

© Kenneth M. Anderson, 2014

Coming Up Next

• Lecture 12: Clojure Concurrency Constructs

• Lecture 13: User Stories, Part 5

42

