Concurrency and Functional Programming

CSCI 5828: Foundations of Software Engineering
Lecture 11 — 09/30/2014

© Kenneth M. Anderson, 2014



(Goals

- Cover the material presented in Chapter 3 of our concurrency textbook
* Intro to Clojure

» Books examples from Day 1 and the start of Day 2

© Kenneth M. Anderson, 2014



Installation

In order to follow along, you need to install Clojure

* The best way to do that is with Leiningen

On Mac OS X with HomeBrew installed, this is easy

* brew install leiningen

Otherwise, follow the simple instructions on the Leiningen home page

- http://leiningen.org

The first time you invoke the “lein” script, it will auto-install everything it needs

« System of Systems: It makes use of Maven in the background to
download the packages that it needs!

© Kenneth M. Anderson, 2014


http://leiningen.org

Use (l)

 For basic use, all you need is the REPL environment
* lein repl
- This loads up a version of Clojure and sets the default name space to “user”

 To write larger systems of functions, you need to adopt the following generic
folder structure

- project_folder/
* project.cl|
* src/
« <project_specific_package_name>/
+ <project_specific_file_name>.cl|

© Kenneth M. Anderson, 2014



—Xample project.cl|

(defproject test-prime "1.0"
:dependencies [[org.clojure/clojure "1.6.0"]]
:Jvm—-opts ["-Xmx4096m" ]
:maln test.prime)
 This particular project.clj file declares
 our project is called “test-prime”
- it has the ambitious version number of “1.0”
- it wants the Java virtual machine to have up to 4GB of memory and,

- the main file to load at runtime is “prime.clj” located in src/test/

© Kenneth M. Anderson, 2014



Use (ll)

- With that configuration, you simply enter the directory that contains the
project.clj file and type “lein repl”

 You start in the “test.prime” name space and all of your functions are
directly available at the REPL prompt

- If you ever change your source code and you want to reload all of your
functions into an existing REPL session, use the require command

* (requlre :reload 'test.prime)

- That’s all we need to understand with respect to setting Clojure up for initial
use; note: there is a LOT more to learn. For instance, if you want to see the
source code of a function, you can ask the REPL with this command

* (source <function name>)

« Example: (source time) Or (source map) OF (source pmap)

© Kenneth M. Anderson, 2014



Clojure

 Clojure is a dialect of Lisp created in 2007 by Rich Hickey
- It is built on top of the Java Virtual Machine
« While it is a Lisp, it can make calls into the Java standard libraries

« Sometimes the answer to “how do you do X in Clojure” is answered
with “Just call java.util...”, i.e., just use the implementation provided by
Java

- Clojure’s design adopts a focus on programming with immutable values and
the creation of concurrent programs that are easier to reason about

* In particular, you can easily find videos of Rich Hickey casting aspersions
on concurrent programs with shared mutable state

© Kenneth M. Anderson, 2014



Clojure and our Textbook

- In Chapter 3, our textbook focuses more on functional programming style and
the way that concurrency can be incorporated into functional programming

- It holds off to talk about Clojure’s more explicit concurrency constructs
« atoms
* persistent data structures
* agents
» software transactional memory

- until Chapter 4

© Kenneth M. Anderson, 2014



Clojure Reference Materials

- The Pragmatic Programmers offer a range of books on Clojure

- Programming Clojure: <https://pragprog.com/book/shcloj2/programming-clojure>

« Functional Programming Patterns in Scala and Clojure: Write Lean Programs for the
JVM: <https://pragprog.com/book/mbfpp/functional-programming-patterns-in-
scala-and-clojure>

- Mastering Clojure Macros: Write Cleaner, Faster, Smarter Code: <https://
pragprog.com/book/cjclojure/mastering-clojure-macros>

- In addition, you can check out the official Clojure website

 <http://clojure.org>

- | also found this (it’s out-of-date in places but still good!)

- <http://moxleystratton.com/clojure/clojure-tutorial-for-the-non-lisp-programmer>

© Kenneth M. Anderson, 2014


https://pragprog.com/book/shcloj2/programming-clojure
https://pragprog.com/book/mbfpp/functional-programming-patterns-in-scala-and-clojure
https://pragprog.com/book/cjclojure/mastering-clojure-macros
http://clojure.org
http://moxleystratton.com/clojure/clojure-tutorial-for-the-non-lisp-programmer

Clojure Basics (l)

- Clojure has a fairly basic set of data « Symbols — x, 1,
types (a.k.a forms) java.lang.String, user/foo
- Booleans — true, false - Lists — (1 2 3 4 5)
- Characters — \a, \A - Vectors — [1 2 3 4 5]
- Strings —“ken anderson” - Sets — #{1 2 3}
« Novalue — nil « Maps — {:first

“Ken” :last “Anderson}

Numbers — 1, 2, 3.14159,
0.000001M, 100000000000ON

Keywords — : first, :last * Note: Commas (,) are
whitespace in Clojure. Use them

if you want, they will be ignored!

© Kenneth M. Anderson, 2014 10



Functions

If the first element of a list is a symbol that references a function, then the list
becomes a function call and will be replaced with its value

e (+ 1 2) => 3
e (sort [9 3 5]) => (3 5 9)
Functions can be defined using another function called defn
* (defn name [args*] forms+)
The value of the last form in forms+ is the return value of the function
Anonymous functions can be created as well either with £n or shorthand syntax
e (fn [x] (+ x 10))
e #(+ x %)

© Kenneth M. Anderson, 2014

11



Symbols

« You can create your own symbols with the function def
e (def pi 3.14159)
e (def x 10)

« These statements would add the symbols pi and x to the current namespace

« The values of these symbols are immutable

e (+ x 10) => 20
 This just references the value of x, it doesn’t change x

* You can run the def command again

* (deft x 5)

« x how has the value 5, but all this command did was rebind the symbol

© Kenneth M. Anderson, 2014

12



Control Flow

 Control flow structures are just functions
e (1f (< x 0) "negative" "non-negative")
e (cond
e (< x 10) “small”
e (= x 10) “medium”
e (> x 10) “large”
e :else “uh oh”)

* Loops are a special case

- there is an explicit 1oop function, but you’ll typically avoid it and use map
and reduce instead

© Kenneth M. Anderson, 2014



Loop (l)

* The generic form of a loop is

e (loop [bindings *] exprs*)

« The call to 1oop creates a “jump point” that allows control to return to the top
of the loop by calling the function recur

* (recur exprs*)

« The expressions associated with recur are allowed to establish new
bindings of the symbols created by loop

+ Let’s see an example

© Kenneth M. Anderson, 2014 14



Loop (II)

e (loop [result [] x 5]
e (1f (zero? x)
e result

e (recur (conj result x) (dec x))))
« This expression returns [5, 4, 3, 2, 1]
- The bindings at the top initialize result to an empty vector and x to 5
- The code then checks to see if x is equal to O

« Since it isn’t, recur rebinds result to be a vector that has the value of x
appended to it and rebinds x to 4

- The code then jumps back to 1oop and executes again (the initial bindings
are then ignored)

© Kenneth M. Anderson, 2014

15



Loop ()

* You can also recur to the start of any function and similarly rebind its
parameters

e (defn countdown [result x]
e (1f (zero? x)
e result

e (recur (conj result x) (dec x))))

- This function will take an input vector and a (hopefully positive) number and
appends that number and all of the numbers between it and zero to the
vector

e (countdown [] b)) => [5 4 3 2 1]

« The use of recur also allows Clojure to use tail recursion, allowing this
function to be implemented as a loop and not via recursion

© Kenneth M. Anderson, 2014 16



Loop (IV)

But, this style is rarely needed in functional programming

Instead, you will use more declarative constructs where the iteration is hidden

e (into [] (take 5 (iterate dec 5)))

e (1nto [] (drop-last (reverse (range 0))))
e (vec (reverse (rest (range 6))))

All of these produce the same [5, 4, 3, 2, 1] result

Similarly, you’ll use map to operate on all members of a list and reduce to
use all of the members in a list to calculate some value

e (map inc (range 10)) => (1 2 3 4 5 6 7 8 9 10)
e (reduce + (map 1nc (range 10))) => 55

© Kenneth M. Anderson, 2014

17



map and reduce

map’ s primary structure is

e (map function collection)

It returns a new collection in which function was applied to each member
of the input collection

Likewise reduce’ s primary structure is

e (reduce function collection)

It returns a single value that is the result of repeatedly combining elements of
the collection (in order) using the function (the function must support at
least two arguments)

« In the example on the previous slide, reduce first applied + to 1 and 2, it
then applied + to 3 and 3, then + to 6 and 4, etc.

© Kenneth M. Anderson, 2014 18



The Book’s First Example: Imperative/Mutable

- The book starts with this program for inspiration

e public int sum(int[] numbers) {
e int accumulator = 0;
e for (int n: numbers) {
e accumulator += n;
*}
* return accumulator;

*}

- This is an imperative program to sum up an array of integers. accumulator
IS a mutable variable. We use an imperative for loop to tell the computer
what to do

© Kenneth M. Anderson, 2014



The Book’s First Example: Functional/Recursive

e (defn recursive-sum [numbers]
e (1f (empty? numbers)
e (
e (+ (first numbers) (recursive-sum (rest numbers)))))

« This function is recursive in that it calls itself
It is functional in that there is no mutable state

« At each point in the call stack, numbers is bound to different values

« When numbers is empty, the recursion bottoms out and starts to
unwrap, calculating as it goes

« This example introduces three new functions: empty?, first, and rest

- first and rest are used to manipulate sequences (lists and vectors both
can act as sequences)

© Kenneth M. Anderson, 2014 20



The Book’s First Example: reduce

 As previously mentioned, functional programming will avoid recursion if it can;
as such, the next version of this example is

e (defn reduce-sum [numbers]
e (reduce (fn [acc x] (+ acc x)) 0 numbers))

 This uses a version of reduce in which the initial value is also specified

- However, we don’t need to define a function to add two numbers together, we
already have one: +

* The final version of this function is thus

e (defn sum [numbers] (reduce + numbers))

- Note: + automatically knows how to handle empty collections and collections
consisting of just a single number (it uses its “identity” value of zero)

© Kenneth M. Anderson, 2014 21



The reward?

« How do we make our sum function concurrent?

* (ns sum.core (:requlre [clojure.core.reducers :as r]))
e (defn parallel-sum [numbers]
e (r/fold + numbers))

 This code pulls in a Clojure package called reducers. It aliases that package
to the symbol r (so we don’t have to type reducers all the time).

- The fold function is an implementation of reduce that (by default) breaks its
iInput collection into groups of 512 elements each and performs the reduce
calculation (in this case +) in parallel across all of the host machine’s cores

e (time (sum numbers)) ; “Elapsed time: 91.193 msecs”

e (time (parallel-sum numbers)); “Elapsed time: 46.388 msecs”

« One call to a drop-in replacement of reduce and you’re donel!

© Kenneth M. Anderson, 2014



The Book’s Second Example: Word Counts (l)

« The book’s second example returns to the Word Counts example
- i.e. count all of the words in the first 39,000 pages of Wikipedia articles

 Quick Intro to Maps (hash tables) in Clojure

(def counts {"apple" 2 "orange" 1})
(get counts "apple" 0) => 2

(get counts "banana" 0) => 0

(

(

assoc counts "banana" 1) => {"apple" 2 "orange" 1 “banana" 1}
assoc counts "apple" 3) => {"apple" 3 "orange" 1}

« Note that assoc returns a NEW map, the original map is immutable

- If you really wanted to save the new map, you would need to bind it to a
new symbol or rebind counts to the new value

e (def counts (assoc counts "banana" 1))

© Kenneth M. Anderson, 2014 23



The Book’s Second Example: Word Counts (ll)

- We now know enough about maps to write a function that can count how
many times we see a particular word in a sequence

(defn word-frequencies [words]
(reduce

(fn [counts word] (assoc counts word (inc (get counts word 0))))
{} words))

 Take this daunting expression a bit at a time!
« Define a function word-frequences that takes a sequence called words
- Call reduce on words passing in an empty map {} as the initial value

- We reduce with an anonymous function with two parameters; It gets the
current count associated with the current word, adds one to it, and sets
that as the new count for that word

 Turns out that Clojure already has a function that does this: frequencies

© Kenneth M. Anderson, 2014 24



The Book’s Second Example: Word Counts (Ill)

- Clojure has a concept known as a partially applied function

« Our book is about to use it to perform word counting in parallel, so we
need to understand it

» The basic concept is the following

A function takes n parameters

 You are in a situation where you have k parameters for the function now
(with k < n) and you’ll have the other (n-k) parameters later

 You ask Clojure to create a new function that has your k parameters “wired
iIN” as constants and takes as arguments the other (n-k) parameters later

* You move forward with this new function and call it with the other
parameters when the time comes

© Kenneth M. Anderson, 2014 25



The Book’s Second Example: Word Counts (V)

- Partially applied functions are perhaps easier to understand by examples

- Let’s pretend we want to be able to add 5 to any set of integers

e (def add-five (partial + D))

« The form (partial + 5) says, “create a new function in which 5 has been
hardwired in as +’s first argument”

« The new function add-five now acts just like + but it always has 5 as one of
its inputs

e (add-five) => 5
e (add-five 10) => 15
e (add-five 10 10 10 10) => 45

© Kenneth M. Anderson, 2014 26



The

Book’s Second

—xample: Word Counts (V)

« partial can be applied to any function

e (def add-five-to-everything (partial map add-five))

« Here we bind the add-five function to map’ s first parameter

« With the resulting function, we just need to pass in the collection that map
needs to operate on

e (add-five-to-everything [10 20 30 40 50 60 70 80 90])

e returns

(15 25 35 45 55 65 75 85 9)5)

© Kenneth M. Anderson, 2014 27



The

Book’s Second

—xample: Word Counts (VI)

- We need to understand four more Clojure functions/concepts

« re—seq: applies a regular expression to a string and produces a lazy
seqguence of all matches

- mapcat: takes a sequence of sequences and produces a single sequence
of all the subsequences concatenated

 merge-with: a function to combine multiple maps into a single map with
a rule as to how to combine duplicate map entires

« lazy sequences: Clojure can work with large sequences abstractly, only
creating those portions of the sequence that it needs

© Kenneth M. Anderson, 2014 28



re-seq

* re-seq is simple to understand

* You give it a sequence and a pattern. It looks for matches of the pattern
and produces a new sequence that contains each match

e (defn get—-numbers [text] (re-seqg #"\d+" text))

« Here we pass in a string and get back a sequence of all numbers found in
that string

e (get—-numbers "123 Boulder Ave 256 Dash Drive 5678 Pyramid Lane”)

e« returns ("123" "256" “5678")

© Kenneth M. Anderson, 2014

29



Mapcat

* You sometimes perform map operations that produce a sequence of
seguences

* (map get—-numbers ["123B456", "789T101112", ™131415G161718"])
e returns (("123"™ "456"™) ("789"™ "101112") ("131415"™ “161718M))

- Note that each element of the sequence is itself a sequence

« And sometimes you want that sequence of sequences to be “flattened” into a
single sequence consisting of all the members of the subsequences

e (flatten (map get—-numbers ["123B456", "789T101112", “131415G1l61718"]))
° returns ("123" "456™ "789" "101112" "131415" "161718")

« You can do this all in once step with mapcat
e (mapcat get—-numbers ["123B456", "789T101112", “131415G161718"])

* returns ("123" "456" "789" "101112" "131415" "161718")

© Kenneth M. Anderson, 2014

30



merge-with

 merge-with allows you to combine multiple maps into a single map

- It lets you specify what function is to be used to merge duplicate entries

- Given two maps
e (def countsl {:ken 10 ::max 20 :miles 10})

e (def counts2 {:ken 40 :max 30 :111jJa 50 :miles 40})

* You can merge them and add their scores together with

e (merge-with + countsl counts?2?)

e returns {:1ilja 50, :miles 50, :max 50, :ken 50}

© Kenneth M. Anderson, 2014 31



Lazy Sequences (|)

- Clojure does what it can to avoid bringing an entire sequence into memory

« It can instead pass around the “promise” of a sequence and then provide
its elements when they are needed

« If you type (range 0 10000000) into the REPL and hit return
« you may eventually see: OutOfMemoryError Java heap space

* Typing return means “display the result of evaluating this form”

- it wants to display the sequence for you, which means it has to create it
and then display it

- But, if you type (def lots-of-numbers (range 0 10000000)) it returns instantly

- That’s because the call to range is not evaluated until the elements of the
sequence are needed

© Kenneth M. Anderson, 2014 32



Lazy Sequences (lI)

» Lazy sequences work across any level of function calling

e (def lots-of-numbers-times-two (map (partial * 2) (range 0 10000000)))
* Here it looks like we are saying

- create a sequence with 10M members

« Use the map function to multiply each of those numbers by 2
 But, the calculation is not performed until we actually ask for the result

- (take 10 lots-of-numbers) =>(01234567 8 9)

- (take 10 lots-of-numbers-times-two) => (0246 8 10 12 14 16 18)

* In both cases, only the first ten members of the sequence are generated and
then operated on

« This is efficient and fast!

© Kenneth M. Anderson, 2014 33



Lazy Sequences (lI)

* You can even get to the end of the list without too much memory strain

e (take 10 (drop 9000000 lots-of-numbers-times-two))

 This says skip past the first 9M numbers of the sequence, then show me the
next ten; it tries to be efficient while doing this, garbage collecting those items
of the sequence that are no longer needed (it still requires SOME memory)

- If your JVM has a nice amount of memory, this operation is fast too

« Returns (18000000 18000002 18000004 18000006 18000008
18000010 18000012 18000014 1800001c 18000018)

* You just have to avoid asking for the ENTIRE sequence to be processed

- If you do, then Clojure can’t help it; it will bring the entire sequence into
memory and then operate on it. You’ll need to configure the JVM to have
enough memory to handle the large sequence

© Kenneth M. Anderson, 2014 34



The new Word Count program

- The new Word Count program consists of three source files

 pages.clj, words.clj, and core.clj

* In pages.clj is some functional XML parsing code that will make you lie in bed
awake, unable to sleep at night

* You can ignore it, it simply parses the XML file and gives us back the text
of each Wikipedia article as a string via a function called get-pages

» words.clj defines the following function

e (defn get-words [text] (re-seqg #"\w+" text))

* As we just learned, re-seq will apply the regular expression to the string that
represents the Wikipeida article and return each word in a sequence

- That leaves the code in core.clj to handle the rest of the counting logic

© Kenneth M. Anderson, 2014 35



Sequential Version

 To count all the words in a set of pages in a single thread, we use

e (defn count-words-sequential [pages]
e (frequencies (mapcat get-words pages)))

« This function

« calls get-words on the passed in set of pages to generate a sequence of
sequences containing the words for each page

- and uses mapcat to ensure that we get a single (lazy) sequence of all such
words

- It then calls frequencies to produce a map that for each word tracks how
many times it appears

© Kenneth M. Anderson, 2014 36



Sequential Version Performance

 To use it we call the following form

e (t1me (count (count-words-sequential (take 30000
(get-pages “enwiki.xml”))))))

- | include a call to “count” to make Clojure actually perform the calculation
* since otherwise with lazy sequences, it can decide not to do anything

» plus the call to count allows me to see the output of the “time” function
which otherwise gets lost when a map with 1.74M entries prints out!

* Note: | switched to 30K pages because 39K pages was causing “out of
memory” errors that | could not debug! :-(

- The sequential version of the program on 30K pages averages 71 seconds

© Kenneth M. Anderson, 2014 37



Making it parallel: first attempt

e (defn count—-words-parallel [pages]
e (reduce
e (partial merge-with +)
e (pmap # (frequencies (get-words %)) pages)))
« Wow! Let’s take that step by step
« For each page, get its words, and calculate the frequencies
« Supposedly do all of that in parallel with pmap
 Then, reduce all of the maps into a single map using merge-with

- Supposedly do that sequentially at the end

* The average running time is 46 seconds, only 35% faster

- One reason: not all that concurrent, CPU usage was ~225%

© Kenneth M. Anderson, 2014

38



Why is it slow (i.e. not as fast as we would like)?

- | said “supposedly” on the previous page
« because lazy sequences actually alter the specified behavior
» Rather than performing all of that code in parallel
* it was realizing the sequence, page by page, rather than all at once
- Furthermore, it was creating one page, then merging it with the final map
- and then creating the next page and merging it again

 This was similar to what we saw in Chapter 2 when our multiple consumer
threads were all sharing a single counts map

- and the program was slowed by contention around access to that map

© Kenneth M. Anderson, 2014 39



Making it parallel: second attempt

e (defn count-words [pages]
e (reduce
e (partial merge-with +)
e (pmap count-words-seq (partition-all 100 pages))))

- To fix this problem, we have to use the same approach we took in Chapter 2

« We need to allow multiple counts to occur in parallel and merge into the
final counts data structure only occasionally

 This version of count-words, uses partition-all to divide the 30K pages into
100 page chunks. count-words-sequential is used to count each of

those 100 pages in parallel using pmap, THEN we merge into the final counts
- With 100 page partitions, average run time 30.6 seconds with 400% CPU

« With 500 page partitions, average run time 26.6 seconds with 500% CPU

© Kenneth M. Anderson, 2014 40



Summary

- Today, we learned a lot about Clojure
* its syntax, data structures, and functions

- We then examined how “simple” it is to transform single threaded programs
to concurrent programs in the functional paradigm

- Typically, we swap a single threaded version of a function with a
concurrent version of that same function

» reduce with fold; map with pmap
- Concurrency never comes for free however

» The semantics of lazy sequences make taking advantage of full
parallelization difficult to achieve

- although without them, our program would have tried to load 30K
wikipedia articles into memory!

© Kenneth M. Anderson, 2014 41



Coming Up Next

* Lecture 12: Clojure Concurrency Constructs

« Lecture 13: User Stories, Part 5

© Kenneth M. Anderson, 2014

42



