
© Kenneth M. Anderson, 2014

User Stories, Part 4

CSCI 5828: Foundations of Software Engineering

Lecture 10 — 09/25/2014

1



© Kenneth M. Anderson, 2014

Goals

• Continue our introduction to the topic of user stories


• Acceptance Testing User Stories


• Guidelines for Good User Stories

2



© Kenneth M. Anderson, 2014

Acceptance Testing User Stories

• The details on the “front” of a user story are deliberately kept to a minimum


• It should describe functionality valuable to a user or customer


• However, it is meant to serve as a reminder to hold a conversation with the 
user in order to learn details/expectations about that feature


• Once we have a conversation, there are two things we can do


• we can add expectations about the feature on the “back” of the card


• when this story gets added to an iteration, these expectations get 
translated into test cases


• indeed, in agile settings, the developers write these test cases first and 
then develop the software that makes these test cases pass (TDD)

3



4

Test-Driven Development: A detour

• The idea is simple


• No production code is written except to make a failing test pass


• Implication


• You have to write test cases before you write code


!

• Note: use of the word “production”


• which refers to code that is going to be deployed to and used by real users


• It does not say: “No code is written except…”



5

Test-Driven Design in One Slide or Less

• This means that when you first write a test case, you may be testing code 
that does not exist


• And since that means the test case will not compile, obviously the test 
case “fails”


• After you write the skeleton code for the objects referenced in the test 
case, it will now compile, but also may not pass


• So, then you write the simplest code that will make the test case pass



Example (I)

• Consider writing a program to score the game of bowling

• You might start with the following test


public class TestGame extends TestCase {!

public void testOneThrow() {!

Game g = new Game();!

g.addThrow(5);!

assertEquals(5, g.getScore());!

}!
}!

• When you compile this program, the test “fails” because the Game class 
does not yet exist. But:

• You have defined two methods on the class that you want to use

• You are designing this class from a client’s perspective

6



Example (II)

• You would now write the Game class

public class Game {!

public void addThrow(int pins) {!

}!

public int getScore() {!

return 0;!

}!

}!

• The code now compiles but the test will still fail: getScore() returns 0 not 5


• In Test-Driven Design, Beck recommends taking small, simple steps


• So, we get the test case to compile before we get it to pass

7



Example (III)

• Once we confirm that the test still fails, we would then write the simplest code 
to make the test case pass; that would be


public class Game {!

public void addThrow(int pins) {!

}!

public int getScore() {!

return 5;!

}!

}!

• The test case now passes!

8



Example (IV)

• But, this code is not very useful!


• Lets add a new test case to enable progress

public class TestGame extends TestCase {!

public void testOneThrow() {!
Game g = new Game();!
g.addThrow(5);!
assertEquals(5, g.getScore());!

}!
public void testTwoThrows() {!

Game g = new Game()!
g.addThrow(5)!
g.addThrow(4)!
assertEquals(9, g.getScore());!

}!
}!

• The first test passes, but the second case fails (since 9 ≠ 5)

• This code is written using JUnit; it uses reflection to invoke tests automatically

9



Example (V)

• We have duplication of information between the first test and the Game class


• In particular, the number 5 appears in both places


• This duplication occurred because we were writing the simplest code to 
make the test pass


• Now, in the presence of the second test case, this duplication does more 
harm than good


• So, we must now refactor the code to remove this duplication

10



Example (VI)

public class Game {!

private int score = 0;!

public void addThrow(int pins) {!

score += pins;!

}!

public int getScore() {!

return score;!

}!

}

11
Both tests now pass. Progress!



Example (VII)

• But now, to make additional progress, we add another test case to the 
TestGame class

…!

public void testSimpleSpare() {!

Game g = new Game()!

g.addThrow(3); g.addThrow(7); g.addThrow(3);!

assertEquals(13, g.scoreForFrame(1));!

assertEquals(16, g.getScore());!

}!

…!

• We’re back to the code not compiling due to scoreForFrame()

• We’ll need to add a method body for this method and give it the simplest 

implementation that will make all three of our tests cases pass

12



13

TDD Life Cycle

• The life cycle of test-driven development is


• Quickly add a test


• Run all tests and see the new one fail


• Make a simple change


• Run all tests and see them all pass


• Refactor to remove duplication


• This cycle is followed until you have met your goal;


• note that this cycle simply adds testing to the “add functionality; refactor” 
loop covered in the our lecture on refactoring



14

TDD Life Cycle, continued

• Kent Beck likes to perform TDD using 
a testing framework, such as JUnit.


• Within such frameworks


• failing tests are indicated with a 
“red bar”


• passing tests are shown with a 
“green bar”


• As such, the TDD life cycle is 
sometimes described as


• “red bar/green bar/refactor”



JUnit: Red Bar...

• When a test fails:


• You see a red bar


• Failures/Errors are listed


• Clicking on a failure displays more 
detailed information about what 
went wrong

15



© Kenneth M. Anderson, 2014

Test-Driven Development: End of Detour

• Our textbook assumes that something like this is happening in the 
background as we add expectations to our user stories


• When I say “translate the expectations/details” into test cases, I’m talking 
about exactly this


• Pick your testing framework (there are a lot of them out there)


• Use that framework to write code that


• gets your system into a particular state


• and then makes as many asserts() as needed to verify that the 
system performed as expected


• Run your test cases multiple times per day while developing the system.


• Any changes that cause failures in previously working code will be 
detected right away

16



© Kenneth M. Anderson, 2014

Example: User Story with Expectations

• For the user story


• A company can pay for a job posting with a credit card


• The associated expectations might be


• Verify that only Visa, MasterCard, and American Express are accepted


• Test payments with good, bad, and missing card numbers


• Test payments with an expired card


• Test with different purchase amounts (including at least one payment over 
the card’s limit)

17



© Kenneth M. Anderson, 2014

Write Tests Before Coding (I)

• Acceptance tests provide a great deal of information that developers can use 
in advance of coding a user story


• In order for that to occur, the tests have to be added to the card before it 
becomes “active” in one of the project’s iterations


• Tests are therefore typically written at the following times


• whenever a conversation about the story occurs and details need to be 
recorded


• as part of a dedicated effort at the start of an iteration before coding 
begins


• whenever coding of a story reveals new questions that lead to new details 
that need to be translated into tests

18



© Kenneth M. Anderson, 2014

Write Tests Before Coding (II)

• The start of an iteration is also a good time for a customer to review all stories 
that have become active and ask


• what else do the developers need to know about this story?


• what am I assuming about how this story will be implemented?


• what can go wrong during this story?


• are there variations on this story’s behavior?


• The answers to these questions should be jotted down as expectations and 
eventually translated into tests


• Or, in the case of the last question, translated to new user stories that are 
planned for later iterations


• The important point is that test writing is an integral part of our development 
process; something that happens on a regular basis at specified times

19



© Kenneth M. Anderson, 2014

Users Write Tests

• A desired goal of agile software development is that tests come from users


• We don’t expect them to write their tests in JUnit (!) but the expectations 
that get generated come from the user/customer


• The developers can always add on additional tests (as long as their tests 
do not contradict the expectations of the user)


• but we want a strong user-centered perspective about what is being 
tested


• Why?


• Our tests tell us when we are done!


• As such, they need to specify what the user needs from the user story 
being tested

20



© Kenneth M. Anderson, 2014

How do we get users to write tests?

• Given that most users will not be comfortable with low-level test automation 
frameworks, how do we get them to write tests during development


• We can always restrict them to textual annotations on user stories


• but that then requires developers to do a lot of translation work


• The book points at Ward Cunningham’s Framework for Integrated Test


• See <http://fit.c2.com/> for a still-running but “musty” website for FIT


• See <http://fitnesse.org/> for a FIT-based tool under active development


• The idea here is that users can generate tables of data that can be 
automatically read by a testing framework and used to test an application


• Feedback is provided by turning cells in the table green/red after the tests 
have been executed

21

http://fit.c2.com/
http://fitnesse.org/


© Kenneth M. Anderson, 2014

How many user tests should be written?

• The user should continue to write tests as long as they add value an 
clarification to the story


• The goal is not to generate a comprehensive set of tests


• rather it is to provide sufficient detail for the story to get implemented


• The user is not responsible for low-level unit tests


• Developers can write these using test-driven development


• The customer instead focuses on writing tests that


• clarify the intent of the story


• documents the behaviors that need to be handled to be considered 
“done”

22



© Kenneth M. Anderson, 2014

Other types of tests

• Unit tests and acceptance tests focus primarily on functional testing


• Does the system do what it needs to do to solve the user’s problem


• There are many other types of tests that can be performed


• UI testing: requires specialized testing frameworks


• Usability testing: requires specialized HCC training


• Performance testing and Stress testing


• See CSCI 4753/5753 Computer Performance Modeling for details


• It will be up to the people responsible for software quality assurance (SQA) on 
your development team to perform these other test as appropriate

23



© Kenneth M. Anderson, 2014

Guidelines for Good User Stories

• The book provides additional 
insight into the generation of useful 
stories with 13 user story guidelines


• Start with Goal Stories


• Slice the Cake


• Write Closed Stories


• Put Constraints on Cards


• Size the Story to the Horizon


• Keep the UI Out as Long as 
Possible


• Some Things Are Not Stories


• Include User Roles in Stories


• Write for One User


• Write in Active Voice


• Customer Writes


• Don’t Number Story Cards


• Don’t Forget the Purpose

24



© Kenneth M. Anderson, 2014

Start with Goal Stories

• A great way to kick start the process of generating user stories is to


• Identify as many user roles for the system as possible


• Identify the goals that user role has for interacting with the system


• Each goal can be considered a user story (at least at the start)


• These user stories will then serve as inspiration for generating additional 
stories that are more detailed and more oriented to system functionality


• Thus


• “A Job Seeker wants to search for jobs continuously until they have 
found a job”


• might lead to user stories related to the creation of persistent queries that 
are run on a regular basis (daily, weekly, etc.)

25



© Kenneth M. Anderson, 2014

Slice the Cake

• User stories should touch all levels of a program’s functionality


• Think of user stories as defining a “vertical slice” of functionality, similar to 
slicing the cake (and revealing all the layers)


• If you are building a web app, then for each story, you would develop


• a little bit of the UI (i.e. a web page)


• a controller that will respond to events from that page


• either user clicks, form submits, or AJAX calls


• the “database” that stores the data associated with that page


• By exercising every layer in the system, you reduce the risks of finding last 
minute problems; you also tackle hard issues up front

26



© Kenneth M. Anderson, 2014

Write Closed Stories

• A “closed” story is one that finishes with the successful completion of a user/
customer goal or objective


• Thus, while it might be easy to write a requirement like this


• A recruiter can manage the ads she has placed


• it doesn’t really help us create functionality that helps recruiters achieve 
their goals. Instead it can be used to identify “closed stories” that do


• A recruiter can review resumes from applications in response to an ad


• A recruiter can change the expiration date of an ad


• A recruiter can delete an application that is not a good match for a job


• Each of these stories accomplishes a clear task/goal, thereby providing 
value to that user

27



© Kenneth M. Anderson, 2014

Put Constraints on Cards

• Every now and then the customer mandates an approach or implementation 
detail that must be obeyed rather than analyzed and designed


• The new system must use our existing order database


• The system must run on Windows 8 and Mac OS X 10.9.


• The system must support peak usage of up to 50 concurrent users


• Our book recommends creating stories for these requirements and tagging 
them with the keyword “Constraint”


• These stories do not get estimated/prioritized/scheduled


• Instead they are “always on” and should be displayed such that team 
members are reminded of them


• Best of all, tests should be written to monitor them (when that makes 
sense)

28



© Kenneth M. Anderson, 2014

Size the Story to the Horizon

• Let iterations and releases guide you with respect to the level of detail 
associated with a story. You might start out with several “epic” stories


• Job seekers can post resumes


• Job seekers can search job openings


• Recruiters can post job openings


• Recruiters can search resumes


• And then be told that that posting resumes is the highest priority item


• You would then start breaking that epic up into smaller, more detailed, 
more manageable stories and leave the others alone


• Basically, this guideline says to focus your efforts on stories that are active 
now; don’t spend too much effort adding details to stories that won’t be 
active for four or five iterations in the future

29



© Kenneth M. Anderson, 2014

Keep the UI Out as Long as Possible

• You want to avoid specifying UI details in user stories


• Think back to the use case that I presented at the start of Lecture 6


• The “bad” version had direct references to the user interface


• and that made the use case brittle (easy to break when things change)


• The “better” version presented the desired functionality without reference 
to a particular UI or UI paradigm


• This is way more flexible allowing us to design/implement the UI in a 
number of ways


• For a particular story, its UI may change (or multiple UI’s may be 
supported), but the functionality should be the same


• “Edit User” means the same thing regardless of how the edit is 
actually accomplished

30



© Kenneth M. Anderson, 2014

Some Things Aren’t Stories

• “If all you have is a hammer, everything looks like a nail.”


• You’re learning about user stories and how they can be used to structure and 
drive agile software development life cycles


• Now that you’ve learned a useful tool, it might be tempting to use it for 
everything!


• Functionality ⇒ User Stories

• Constraints ⇒ User Stories

• UI Guidelines ⇒ User Stories

• Personas ⇒ User Stories


• You get the picture… don’t use user stories to document information that 
would be better served in some other format

31



© Kenneth M. Anderson, 2014

Include User Roles in the Stories

• If you go to the trouble of identifying user roles at the start of development


• and you should (!)


• Then, use those roles in your user stories


• Do not do this


• A user can access the last five days of server logs


• Do this


• An administrator can access the last five days of server logs


• The author suggests a template for user stories that can encourage this


• I as a (role) want (function) so that (business value)


• I as an administrator want to access five days of server logs so I can 
monitor performance and identify problems

32



© Kenneth M. Anderson, 2014

Write for One User

• This guideline recommends writing user stories from the stand point of a 
single user


• This makes sense; even though a system can support multiple users at the 
same time, each user is interacting with the system individually


• This can also identify ambiguity


• “A job seeker can remove resumes” might imply that a job seeker can 
remove the resumes of other job seekers


• It would then become “A job seeker can remove her own resumes.”

33



© Kenneth M. Anderson, 2014

Write in Active Voice

• Active voice lends energy to a statement


• Compare


• “A job seeker can post a resume” or “A job seeker posts resumes”


• Vs.


• A resume can be posted by a job seeker


!

• This is generically a good recommendation for writing style; passive voice can 
drag a document down, even when your “document” is one or two sentences 
long! 

34



© Kenneth M. Anderson, 2014

Customer Writes

• This guideline has been presented multiple times in the book


• because it is such an important concept


• Your stories should be user-centered and speak with the user’s voice


• It should be written from the user’s perspective and make use of 
terminology that makes sense to them


• terminology that has to be learned by the developers


• It is REALLY EASY to let this drop and adopt a developer perspective on what 
the system needs to do


• Agile guards against this by mandating frequent interaction with your 
users/customers and writing stories from their point of view

35



© Kenneth M. Anderson, 2014

Don’t Number Story Cards

• Avoid the temptation to add numbers to user stories


• It’s more important to talk about the “A list owner can create new topics” 
story than it is to talk about “Story 23” or “Story 42”


• This temptation will creep in when you want to associate stories with each 
other


• Story 3 is too big?


• Replace it with stories 3.1, 3.2, 3.3


• Doing this just adds “busy work” to the process, attempting to keep the 
numbers consistent rather than working on the stories themselves

36



© Kenneth M. Anderson, 2014

Don’t Forget the Purpose

• Don’t forget user stories are meant to serve as “placeholders for 
conversations”


• They don’t try to document everything


• Instead our numerous conversations build up a shared understanding 
about the feature that is distributed across the team


• and documented by executable test cases


• Let them serve their purpose as a scheduling and planning tool, allowing you 
to focus on getting details into code and test cases


• We are likely more willing to keep code/test cases up-to-date than we are 
non-executable text on index cards anyway!

37



© Kenneth M. Anderson, 2014

Summary

38

• Acceptance Testing User Stories


• It is important that writing acceptance tests is integrated into the daily 
work practice of your software development project


• The customer/user should write these tests (which are different from unit 
tests) and developers should then assist with translating them into 
executable tests


• The goal is to clarify the intent of the story and identify when we are done


• Guidelines for Good User Stories


• There are many things we can do to write useful user stories; the 
guidelines presented today can help


• We’re now ready to look at iteration/release planning in detail



© Kenneth M. Anderson, 2014

Coming Up Next

• Lecture 11: Concurrency in Clojure, Part One


• Lecture 12: Concurrency in Clojure, Part Two

39


