User Stories, Part 4

CSCI 5828: Foundations of Software Engineering
Lecture 10 — 09/25/2014

© Kenneth M. Anderson, 2014

(Goals

« Continue our introduction to the topic of user stories
- Acceptance Testing User Stories

« Guidelines for Good User Stories

© Kenneth M. Anderson, 2014

Acceptance Testing User Stories

* The details on the “front” of a user story are deliberately kept to a minimum
- It should describe functionality valuable to a user or customer

 However, it iIs meant to serve as a reminder to hold a conversation with the
user in order to learn details/expectations about that feature

- Once we have a conversation, there are two things we can do
- we can add expectations about the feature on the “back” of the card

« when this story gets added to an iteration, these expectations get
translated into test cases

* indeed, in agile settings, the developers write these test cases first and
then develop the software that makes these test cases pass (TDD)

© Kenneth M. Anderson, 2014

Test-Driven Development: A detour

* The idea is simple
« No production code is written except to make a failing test pass
 Implication

* You have to write test cases before you write code

- Note: use of the word “production”
 which refers to code that is going to be deployed to and used by real users

* It does not say: “No code is written except...”

Test-Driven Design in One Slide or Less

- This means that when you first write a test case, you may be testing code
that does not exist

* And since that means the test case will not compile, obviously the test
case “fails”

- After you write the skeleton code for the objects referenced in the test
case, it will now compile, but also may not pass

« S0, then you write the simplest code that will make the test case pass

—xample (l)

 Consider writing a program to score the game of bowling
* You might start with the following test

public class TestGame extends TestCase {
public void testOneThrow() {
Game g = new Game();
g.addThrow(5) ;
assertEquals (5, g.getScore());

}

- When you compile this program, the test “fails” because the Game class
does not yet exist. But:

* You have defined two methods on the class that you want to use
* You are designing this class from a client’s perspective

=xample (1)

* You would now write the Game class
public class Game {

public void addThrow(int pins) {

}
public int getScore() {

return 0;

}

- The code now compiles but the test will still fail: getScore() returns 0 not 5
* In Test-Driven Design, Beck recommends taking small, simple steps

« S0, we get the test case to compile before we get it to pass

—xample (ll)

- Once we confirm that the test still fails, we would then write the simplest code
to make the test case pass; that would be

public class Game {

public void addThrow(int pins) {

}

public int getScore() {

return 5;

}

* The test case now passes!

=xample (V)

 But, this code is not very useful!

+ Lets add a new test case to enable progress

public class TestGame extends TestCase {
public void testOneThrow() {
Game g = new Game();
g.addThrow(5);
assertEquals (5, g.getScore());
}
public void testTwoThrows() ({
Game g = new Game()
g.addThrow(5)
g.addThrow(4)
assertEquals (9, g.getScore());

}
- The first test passes, but the second case fails (since 9 # 5)

« This code is written using JUnit; it uses reflection to invoke tests automatically

—xample (V)

- We have duplication of information between the first test and the Game class
* |In particular, the number 5 appears in both places

* This duplication occurred because we were writing the simplest code to
make the test pass

« Now, in the presence of the second test case, this duplication does more
harm than good

« S0, we must now refactor the code to remove this duplication

10

—xample (VI)

public class Game {
private int score = 0;
public void addThrow(int pins) {
score += pins;
}
public int getScore() {

return score;

Both tests now pass. Progress!

11

—xample (V)

- But now, to make additional progress, we add another test case to the
TestGame class

public void testSimpleSpare() {
Game g = new Game()
g.addThrow(3); g.addThrow(7); g.addThrow(3);
assertEquals (13, g.scoreForFrame(l));

assertEquals (16, g.getScore());

- We’re back to the code not compiling due to scoreForFramel()

« We’ll need to add a method body for this method and give it the simplest
implementation that will make all three of our tests cases pass

12

TDD Life Cycle

 The life cycle of test-driven development is
 Quickly add a test
* Run all tests and see the new one falil
« Make a simple change
« Run all tests and see them all pass
- Refactor to remove duplication
- This cycle is followed until you have met your goal;

 note that this cycle simply adds testing to the “add functionality; refactor”
loop covered in the our lecture on refactoring

13

T

D

D Life Cycle, continued

« Kent Beck likes to perform TDD using '
a testing framework, such as JUnit.

« Within such frameworks

« As such, the TDD life cycle is
sometimes described as

- failing tests are indicated with a

“red bar”

passing tests are shown with a
“green bar”

“red bar/green bar/refactor”

Junit

Test class name:

ory jfree junit.JCommonTestSul ¥ | | ..

lv| Reload classes every run

Runs: 125125

X Ervors: 0 “ Failures: 0

Results:

IFinished: 8.086 seconds

| Exit |

14

JUnit: Red Bar...

« When a test fails:
* You see a red bar
Failures/Errors are listed

» Clicking on a failure displays more
detailed information about what
went wrong

JUnit

Testclass name:

................

FileTester ‘Run:

................

[¢] Reload classes every run

I /U

Runs: 1 Errors: 0 Failures: 1
Errors and Failures:

Failure: testGetName(FileTester).expected:<...> but was:<c\xxx\yyy\...

Run

L¢] NEY

junitframework.ComparisonFailure: expected:<...> but was:<c\xxx\|
at_Jv_CallAnyMethodA(java.lang.Object, java.lang.Class, _Jv_N
at _Jv_CallAnyMethodA(java.lang.Object, java.lang.Class, _Jv_N
at _Jv_ThreadRun(java.lang.Thread) (/local/gcc-clean/libflibgcj.s =
at GC_start_routine (/local/gcc-clean/lib/libgcj.s0.6.0.0)

L¢] | [*]

Finished: 0.054 seconds Exit

15

Test-Driven Development: End of Detour

« Our textbook assumes that something like this is happening in the
background as we add expectations to our user stories

- When | say “translate the expectations/details” into test cases, I’m talking
about exactly this

* Pick your testing framework (there are a lot of them out there)
» Use that framework to write code that
» gets your system into a particular state

- and then makes as many asserts() as needed to verify that the
system performed as expected

* Run your test cases multiple times per day while developing the system.
- Any changes that cause failures in previously working code will be
detected right away

© Kenneth M. Anderson, 2014 16

—xample: User Story with Expectations

* For the user story
« A company can pay for a job posting with a credit card
* The associated expectations might be
- Verify that only Visa, MasterCard, and American Express are accepted
 Test payments with good, bad, and missing card numbers
+ Test payments with an expired card

- Test with different purchase amounts (including at least one payment over
the card’s limit)

© Kenneth M. Anderson, 2014

17

Write Tests Before Coding (l)

» Acceptance tests provide a great deal of information that developers can use
in advance of coding a user story

* |In order for that to occur, the tests have to be added to the card before it
becomes “active” in one of the project’s iterations

- Tests are therefore typically written at the following times

* whenever a conversation about the story occurs and details need to be
recorded

- as part of a dedicated effort at the start of an iteration before coding
begins

- whenever coding of a story reveals new questions that lead to new details
that need to be translated into tests

© Kenneth M. Anderson, 2014

18

Write Tests Before Coding (ll)

- The start of an iteration is also a good time for a customer to review all stories
that have become active and ask

- what else do the developers need to know about this story?

- what am | assuming about how this story will be implemented?

- what can go wrong during this story?
- are there variations on this story’s behavior?

« The answers to these questions should be jotted down as expectations and
eventually translated into tests

 Or, in the case of the last question, translated to new user stories that are
planned for later iterations

- The important point is that test writing is an integral part of our development
process; something that happens on a regular basis at specified times

© Kenneth M. Anderson, 2014 19

Users Write Tests

+ A desired goal of agile software development is that tests come from users

« We don’t expect them to write their tests in JUnit (!) but the expectations
that get generated come from the user/customer

- The developers can always add on additional tests (as long as their tests
do not contradict the expectations of the user)

* but we want a strong user-centered perspective about what is being
tested

- Why?
* QOur tests tell us when we are done!

 As such, they need to specify what the user needs from the user story
being tested

© Kenneth M. Anderson, 2014

20

How do we get users to write tests?

« Given that most users will not be comfortable with low-level test automation

frameworks

, how do we get them to write tests during development

- We can always restrict them to textual annotations on user stories

- but that then requires developers to do a lot of translation work

« The book points at Ward Cunningham’s Framework for Integrated Test

« See <http://fit.c2.com/> for a still-running but “musty” website for FIT

« See <http://fitnesse.org/> for a FIT-based tool under active development

- The idea here is that users can generate tables of data that can be

automatical

* Feedbac

y read by a testing framework and used to test an application

K is provided by turning cells in the table green/red after the tests

have been executed

© Kenneth M. Anderson, 2014

21

http://fit.c2.com/
http://fitnesse.org/

How many user tests should be written?

» The user should continue to write tests as long as they add value an
clarification to the story

» The goal is not to generate a comprehensive set of tests
- rather it is to provide sufficient detail for the story to get implemented
* The user is not responsible for low-level unit tests
* Developers can write these using test-driven development
- The customer instead focuses on writing tests that
- clarify the intent of the story

 documents the behaviors that need to be handled to be considered
“done”

© Kenneth M. Anderson, 2014

22

Other types of tests

 Unit tests and acceptance tests focus primarily on functional testing
* Does the system do what it needs to do to solve the user’s problem
« There are many other types of tests that can be performed
- Ul testing: requires specialized testing frameworks
- Usability testing: requires specialized HCC training
« Performance testing and Stress testing
« See CSCI 4753/5753 Computer Performance Modeling for details

- It will be up to the people responsible for software quality assurance (SQA) on
your development team to perform these other test as appropriate

© Kenneth M. Anderson, 2014

23

Guidelines for Good User Stories

« The book provides additional - Some Things Are Not Stories
insight into the generation of useful | |
stories with 13 user story guidelines * Include User Roles in Stories

- Start with Goal Stories * Write for One User

« Slice the Cake » Write in Active Voice

» Write Closed Stories - Customer Writes

» Put Constraints on Cards * Don’t Number Story Cards
- Size the Story to the Horizon * Don't Forget the Purpose

« Keep the Ul Out as Long as
Possible

© Kenneth M. Anderson, 2014

24

Start with Goal Stories

A great way to kick start the process of generating user stories is to
» Identify as many user roles for the system as possible
- Identify the goals that user role has for interacting with the system
- Each goal can be considered a user story (at least at the start)

* These user stories will then serve as inspiration for generating additional
stories that are more detailed and more oriented to system functionality

 Thus

- “A Job Seeker wants to search for jobs continuously until they have
found a job”

« might lead to user stories related to the creation of persistent queries that
are run on a regular basis (daily, weekly, etc.)

© Kenneth M. Anderson, 2014 25

Slice the Cake

 User stories should touch all levels of a program’s functionality

« Think of user stories as defining a “vertical slice” of functionality, similar to
slicing the cake (and revealing all the layers)

- If you are building a web app, then for each story, you would develop
- a little bit of the Ul (i.e. a web page)
- a controller that will respond to events from that page
 either user clicks, form submits, or AJAX calls
 the “database” that stores the data associated with that page

+ By exercising every layer in the system, you reduce the risks of finding last
minute problems; you also tackle hard issues up front

© Kenneth M. Anderson, 2014 26

Write Closed Stories

+ A “closed” story is one that finishes with the successful completion of a user/
customer goal or objective

» Thus, while it might be easy to write a requirement like this
* A recruiter can manage the ads she has placed

- it doesn’t really help us create functionality that helps recruiters achieve
their goals. Instead it can be used to identify “closed stories” that do

* A recruiter can review resumes from applications in response to an ad
* A recruiter can change the expiration date of an ad
* A recruiter can delete an application that is not a good match for a job

- Each of these stories accomplishes a clear task/goal, thereby providing
value to that user

© Kenneth M. Anderson, 2014

27

Put Constraints on Cards

- Every now and then the customer mandates an approach or implementation
detail that must be obeyed rather than analyzed and designed

* The new system must use our existing order database

» The system must run on Windows 8 and Mac OS X 10.9.

« The system must support peak usage of up to 50 concurrent users

» Our book recommends creating stories for these requirements and tagging
them with the keyword “Constraint”

« These stories do not get estimated/prioritized/scheduled

* Instead they are “always on” and should be displayed such that team
members are reminded of them

- Best of all, tests should be written to monitor them (when that makes
sense)

© Kenneth M. Anderson, 2014 28

Size the Story to the Horizon

- Let iterations and releases guide you with respect to the level of detalil
associated with a story. You might start out with several “epic” stories

+ Job seekers can post resumes
+ Job seekers can search job openings
 Recruiters can post job openings
 Recruiters can search resumes
* And then be told that that posting resumes is the highest priority item

* You would then start breaking that epic up into smaller, more detailed,
more manageable stories and leave the others alone

- Basically, this guideline says to focus your efforts on stories that are active
now; don’t spend too much effort adding details to stories that won’t be
active for four or five iterations in the future

© Kenneth M. Anderson, 2014 29

Keep the Ul Out as Long as Possible

« You want to avoid specifying Ul details in user stories
« Think back to the use case that | presented at the start of Lecture 6
* The “bad” version had direct references to the user interface
- and that made the use case brittle (easy to break when things change)

« The “better” version presented the desired functionality without reference
to a particular Ul or Ul paradigm

 This is way more flexible allowing us to design/implement the Ul in a
number of ways

 For a particular story, its Ul may change (or multiple Ul’'s may be
supported), but the functionality should be the same

- “Edit User” means the same thing regardless of how the edit is
actually accomplished

© Kenneth M. Anderson, 2014

30

Some Things Aren’t Stories

- “If all you have is a hammer, everything looks like a nail.”

* You're learning about user stories and how they can be used to structure and
drive agile software development life cycles

* Now that you’ve learned a useful tool, it might be tempting to use it for
everything!

 Functionality = User Stories
« Constraints = User Stories
« Ul Guidelines = User Stories

 Personas = User Stories

* You get the picture... don’t use user stories to document information that
would be better served in some other format

© Kenneth M. Anderson, 2014

31

INnclude User Roles in the Stories

If you go to the trouble of identifying user roles at the start of development

- and you should (!)

Then, use those roles in your user stories

Do not do this

A user can access the last five days of server logs

Do this

- An administrator can access the last five days of server logs

The author suggests a template for user stories that can encourage this

- lasa (role) want (function) sothat (business value)

* | as an administrator want to access five days of server logs so | can
monitor performance and identify problems

© Kenneth M. Anderson, 2014

Write for One User

* This guideline recommends writing user stories from the stand point of a
single user

* This makes sense; even though a system can support multiple users at the
same time, each user is interacting with the system individually

 This can also identify ambiguity

* “A job seeker can remove resumes” might imply that a job seeker can
remove the resumes of other job seekers

- It would then become “A job seeker can remove her own resumes.”

© Kenneth M. Anderson, 2014 33

Write In Active Voice

 Active voice lends energy to a statement
- Compare

« “Ajob seeker can post a resume” or “A job seeker posts resumes”

« \/s.

* A resume can be posted by a job seeker

* This is generically a good recommendation for writing style; passive voice can
drag a document down, even when your “document” is one or two sentences
long!

© Kenneth M. Anderson, 2014 34

Customer Writes

 This guideline has been presented multiple times in the book
* because it is such an important concept
* Your stories should be user-centered and speak with the user’s voice

- It should be written from the user’s perspective and make use of
terminology that makes sense to them

 terminology that has to be learned by the developers

- It is REALLY EASY to let this drop and adopt a developer perspective on what
the system needs to do

 Agile guards against this by mandating frequent interaction with your
users/customers and writing stories from their point of view

© Kenneth M. Anderson, 2014 35

Don’t Number Story Cards

* Avoid the temptation to add numbers to user stories

* It’s more important to talk about the “A list owner can create new topics”
story than it is to talk about “Story 23” or “Story 42”

 This temptation will creep in when you want to associate stories with each
other

« Story 3 is too big?
* Replace it with stories 3.1, 3.2, 3.3

« Doing this just adds “busy work” to the process, attempting to keep the
numbers consistent rather than working on the stories themselves

© Kenneth M. Anderson, 2014

36

Don't Forget the Purpose

» Don’t forget user stories are meant to serve as “placeholders for
conversations”

* They don’t try to document everything

* Instead our numerous conversations build up a shared understanding
about the feature that is distributed across the team

- and documented by executable test cases

- Let them serve their purpose as a scheduling and planning tool, allowing you
to focus on getting details into code and test cases

- We are likely more willing to keep code/test cases up-to-date than we are
non-executable text on index cards anyway!

© Kenneth M. Anderson, 2014 37

Summary

« Acceptance Testing User Stories

» It is important that writing acceptance tests is integrated into the daily
work practice of your software development project

« The customer/user should write these tests (which are different from unit
tests) and developers should then assist with translating them into

executable tests
» The goal is to clarify the intent of the story and identify when we are done
 Guidelines for Good User Stories

» There are many things we can do to write useful user stories; the
guidelines presented today can help

- We’re now ready to look at iteration/release planning in detail

© Kenneth M. Anderson, 2014 38

Coming Up Next

» Lecture 11: Concurrency in Clojure, Part One

 Lecture 12: Concurrency in Clojure, Part Two

© Kenneth M. Anderson, 2014

39

