
© Kenneth M. Anderson, 2014

Threads and Locks

CSCI 5828: Foundations of Software Engineering

Lecture 07 — 09/16/2014

1

© Kenneth M. Anderson, 2014

Goals

• Cover the material presented in Chapter 2, Day 1 of our concurrency textbook

• Creating threads

• Locks

• Memory Models and Optimizations

• The need for synchronization to get past the “memory barrier”

• Deadlocks

• Dining Philosophers

• Alien Methods

• How to Fix?

2

© Kenneth M. Anderson, 2012

But First…

• As mentioned in Homework 3, I wanted to cover one additional Java threading
construct that allows for synchronization between threads

• We covered

• the use of the keyword volatile to ensure that updates to a variable cross
the memory barrier

• the use of the keyword synchronized on a method to ensure that only
one thread can execute the method at a time

• I forgot to cover another use of the synchronized keyword

• where it can be applied to an object and then allow a section of code to
be run while blocking other threads from accessing the object at that time

• This is referred to as a synchronized block since we synchronize on an
object and then execute a block of code

3

© Kenneth M. Anderson, 2012

Syntax

• To use the synchronized keyword in this fashion, you write code like this:

• …

• synchronized (foo) {

• a = foo.getValue();

• if (a > b) {

• foo.setSomeOtherValue(a -b);

• }

• }

• …

• This ensures that no other thread can access the object foo while this critical
section is being executed as long as they also write their code in this way

4

© Kenneth M. Anderson, 2014

Ensures?

• On the previous slide, I said

• This ensures that no other thread can access the object foo while this
critical section is being executed as long as they also write their code in
this way

• But, does it really?

• No. Because it requires ALL threads that access foo to wrap calls to foo in
a synchronized block.

• If just one thread that has a pointer to foo forgets to wrap calls to a
critical section of code in a synchronized block then all bets are off

• At that point, there can still be a race condition in your code because
that rogue thread can make updates while other threads are in the
critical section

5

© Kenneth M. Anderson, 2014

Homework 3?

• So, how does this relate to homework 3?

• Hint: this approach to locking/synchronization may be helpful in solving
the problems with the producer/consumer program presented in
Homework 3

!

• Good luck and have fun!

6

© Kenneth M. Anderson, 2014

Concurrency (the hard way)

• The most basic way to gain concurrency in your program is to use threads

• Most programming languages provide access to a library that provides the
ability to create threads

• While the syntax will differ, at the conceptual level, you do the following

1. Identify code that needs to run in a separate thread

• This code might exist in a run() method or be called by a method
called run()

2. You create a thread that “wraps” the code in the previous step

3. You call start() on that new thread

4. At some point in the future, the wrapped code begins executing in a
new thread of control

7

© Kenneth M. Anderson, 2014

In Java

• public class HelloWorld {
• public static void main(String[] args) throws InterruptedException {

• Thread myThread = new Thread() {
• public void run() {

• System.out.println(“Hello from new thread”);
• }

• };
• myThread.start();
• Thread.yield()
• System.out.println(“Hello from main thread”);
• myThread.join();

• }
• }
!

• To compile: javac -d build HelloWorld.java

• To run: java -classpath build HelloWorld

8

© Kenneth M. Anderson, 2014

Using the book’s source code (I)

• To run the book examples, it assumes you have Maven installed

• <http://maven.apache.org/index.html>

• On Mac OS X, if you have Homebrew installed

• <http://brew.sh>

• You can install Maven with this command

• brew install maven

• You then need to set your Maven 3 environment variable

• export M3_HOME=/usr/local/Cellar/maven/3.2.3

• Other platforms: download Maven 3 and set the M3_HOME to point at it

• NOTE: Be sure to include the Maven bin directory in your path and make
sure your JAVA_HOME variable is also set correctly

9

http://maven.apache.org/index.html
http://brew.sh

© Kenneth M. Anderson, 2014

Using the book’s source code (II)

• You can then go into any directory in the book’s source code for Chapter 2
and type

• mvn compile

• mvn exec:java

• In the first step, Maven will download any packages it needs to compile the
software and then compile it

• In the second step, Maven will execute the program

• You will discover that Maven is “chatty”. You can reduce the noise by
including the -q flag (the quiet flag)

• mvn -q compile

10

© Kenneth M. Anderson, 2014

Using the book’s source code (III)

• Note: you can obtain the book’s source code by first going here

• <https://www.pragprog.com/book/pb7con/seven-concurrency-models-in-
seven-weeks>

• Then click on the small link near the top of the page that says “Source Code”

• <https://www.pragprog.com/titles/pb7con/source_code>

• Then download either the .zip or .tar.gz file (the contents are the same),
unpack the archive, and you’re ready to go!

11

https://www.pragprog.com/book/pb7con/seven-concurrency-models-in-seven-weeks
https://www.pragprog.com/titles/pb7con/source_code

© Kenneth M. Anderson, 2014

In Ruby

• Just to show that you can achieve the same effect in a different language

!

• t = Thread.new { puts "Hello from new thread" }

• Thread.pass

• puts "Hello from main thread"

• t.join

!

• Just put this code in a file and invoke via “ruby hello_world.rb”

12

© Kenneth M. Anderson, 2014

Looking at Locks

• Our book starts with an example similar to what I showed in Lecture 4

• The program has a class to store an integer value called Counter

• It instantiates a single instance of that class

• It creates a second class called CountingThread that extends Thread

• In its run() routine, it loops 10 thousand times and increments Counter

• It creates two instances of CountingThread, starts them, and joins them

• Calling join() on a thread means “Block me until this thread has stopped
running”

• It then prints out the final result which is not 20,000 because of the race
condition between the two threads

13

© Kenneth M. Anderson, 2014

To “fix” this code, try synchronized

• The first change to this code is the obvious one

• Change the Counter class so that its increment() routine is synchronized

• class Counter {

• private int count = 0;

• public synchronized void increment() { ++count; }

• public int getCount() { return count; }

• }

• This makes sure that if two threads are calling increment(), they have to
wait their turn

• If we run the program now, the final count is 20K. Of course, at this
point, we would be better off just writing a single threaded program!

14

© Kenneth M. Anderson, 2014

Puzzle: Memory Models and Optimizations (I)

• The book mentions that the first attempt to fix the Counter program has a
subtle bug and then introduces a program that can reveal the nondeterminism
that governs concurrent programs

• One thread does this

• answer = 42

• answerReady = true;

• Another thread does this:

• if (answerReady)

• System.out.println("The meaning of life is: " + answer);

• else

• System.out.println("I don't know the answer”);

• The main program starts both threads and waits for them to finish

15

© Kenneth M. Anderson, 2014

Puzzle: Memory Models and Optimizations (II)

• The book mentions that we can expect to see both outputs

• Although on my computer, I only ever see one output

• However, even if we can’t see it, the chance for reordering is still there!

• The book mentions that in this scenario

• the compiler (javac), the run-time (java), and the hardware (the CPU)

• has the option to reorder the two assignment statements

• It also raises the issue of “memory barriers” and says that with the following
code, Thread 2 may never stop running, as we saw in Lecture 4

• public void run() {
• while (!answerReady) Thread.sleep(100);
• System.out.println("The meaning of life is: " + answer);

• }

16

© Kenneth M. Anderson, 2014

Puzzle: Memory Models and Optimizations (III)

• It says

• If your first reaction to this is that the compiler, JVM, and hardware should

keep their sticky fingers out of your code, that’s understandable.
Unfortunately, it’s also unachievable—much of the increased performance
we’ve seen over the last few years has come from exactly these
optimizations. Shared-memory parallel computers, in particular, depend
on them. So we’re stuck with having to deal with the consequences.

• Memory visibility

• In order for one thread to see changes in memory made by another thread

• then both threads (the reading thread and the writing thread) need to
use synchronization of some kind

• It’s not enough to have just one of the threads use synchronization

• Thus in the counting program, getCount() needs to be synchronized

17

© Kenneth M. Anderson, 2014

Multiple Locks and Deadlock (I)

• We’ve now seen race conditions and memory visibility as two types of
problems in concurrent programs

• Let’s take a look at Deadlock with the Dining Philosophers example

• Making the two methods of the Counter class synchronized is an example of
placing two locks in the code, one for reading and one for writing

• In actuality, we have a single lock on the object but it is accessed in two
methods, one that reads a value and the other that updates the value

18

© Kenneth M. Anderson, 2014

Multiple Locks and Deadlock (II)

• You might think that one solution to concurrency problems is to make every
method on a shared object synchronized

• BUT

• such programs are terribly inefficient

• blocking threads when they don’t need too;

• plus, it can lead to deadlock (as we will see next);

• and you can STILL have race conditions

• as Homework 3’s program is meant to show you (!)

19

© Kenneth M. Anderson, 2014

Multiple Locks and Deadlock (III)

• Dining Philosophers

• Multiple threads with shared resources

• Five philosophers (threads) sit at a table

• There are five chopsticks (resources) on the table

• If a philosopher wants to eat, they acquire the chopstick to their left and
their right and eat

• otherwise they sit at the table thinking quietly

• This situation can deadlock if all philosophers decide to eat at the same time
and they each pick up the chopstick to their left

• They now all want to pick up the chopstick on their right; they’re stuck!

20

© Kenneth M. Anderson, 2014

Implementation

• Chopstick is implemented as a class that keeps track of an id

• It receives its id via its constructor and can return its id via getId()

• Philosopher is implemented as a class that is a subclass of Thread

• It has instance variables for its right and left chopsticks which it receives

via its constructor

• It makes use of the synchronized (object) syntax that we saw at the start of

this lecture, to acquire each chopstick

• It sits in a loop where it thinks for about a second, gets its chopsticks, and

eats for about a second

• DiningPhilosophers is a class that contains the main() routine

• It creates five chopsticks and five philosophers, gives each philosopher
the correct chopsticks, starts the philosophers, and waits for them to finish

• They never will… we’re just letting them run until deadlock occurs

21

© Kenneth M. Anderson, 2014

Contention

• When you first run the Dining Philosophers program, it may happily run for a
long time

• The default implementation is to have the philosophers pick a random

number from 1 and 1000 and sleep that many milliseconds for “sleeping”
and “eating”

• That’s a relatively long time for the scheduler and so there’s low

contention on the locks associated with each chopstick

• As a result, there’s not a lot of opportunity for deadlock to occur

• If you want to see the program lock up right away, simply decrease the
amount of time the philosophers spend sleeping and eating

• I changed my copy of the program to pick a number between 1 and 10

milliseconds

• We now have high contention on the locks and the program quickly

deadlocks

22

© Kenneth M. Anderson, 2014

How to Fix? (I)

• Fortunately, most deadlock problems can be solved with this rule

• Always acquire resources in the same order

• In the first version of the program, it was possible for this situation to occur

• Philosopher 0 has been assigned Chopsticks 0 and 1

• Philosopher 4 has been assigned Chopsticks 4 and 0

• Assume Chopsticks 1, 2, and 3 are locked

• Philosopher 0 locks Chopstick 0 and waits for 1

• Philosopher 4 locks Chopstick 4 and waits for 0

• Deadlock!

23

© Kenneth M. Anderson, 2014

How to Fix? (II)

• In the second version of the program, we follow this rule and…

• P0 has been assigned Chopsticks 0 and 1

• P4 has been assigned Chopsticks 4 and 0

• Assume Chopsticks 1, 2, and 3 are locked

• P0 locks Chopstick 0 and waits for 1

• P4 locks Chopstick 0 and is blocked

• Chopstick 4 is still free. It gets grabbed by P3

• P3 eats and releases chopsticks 3 and 4, freeing P2, and so on

• This eventually leads to Chopstick 1 being freed releasing P0

• P0 eats and releases Chopstick 0, releasing P4 who can then eat

24

© Kenneth M. Anderson, 2014

Alien Methods

• Our book has a section called “The Perils of Alien Methods”

• If you find it confusing, you’re not alone!

• It is not well explained AND, even worse, the example program does NOT

demonstrate deadlock in this situation

• The basic idea is the following

• You write code that has a resource that is potentially shared by one or
more objects

• You engineer your code to make sure that they follow the proper rules

for synchronizing access to the shared resource

• BUT, your code also provides an extension mechanism, that allows

code NOT written by you to be “plugged into” your system

• If you invoke that code and it accesses your shared resource from another

thread, deadlock can occur

25

© Kenneth M. Anderson, 2014

The Example (I)

• The “alien methods” example has the following set-up

• A “downloader” object is given a URL to a large data file on the web

• The “downloader” object implements a “listener” mechanism that
allows other code to “plug in” and get notifications about the progress
of the download

• The listener methods are all marked as synchronized to allow
multiple threads to add/remove listeners during the download

• The example code implements a simple plug-in that simply prints out the
progress in bytes for each notification that it receives

• The example code does NOT show how this could lead to deadlock

• Also not mentioned: it’s trying to download a 10.3GB file!

26

© Kenneth M. Anderson, 2014

The Example (II)

• So, I created a modified version of the program to demonstrate how deadlock
could occur

• My modification does the following

• The listener creates an object called AlienThread which is a subclass of
Thread. It passes to AlienThread a reference to the downloader and itself

• The listener then calls start() on that object and then join()

• As a result, this listener’s event handler becomes “long running”,
holding on to the lock that was acquired by the downloader’s
synchronized listeners methods

• Then in the run() method of the thread, we call downloader’s
removeListener() method. Since this method is synchronized, we try to
acquire the lock and DEADLOCK results

27

© Kenneth M. Anderson, 2014

Source Code for AlienThread

• public class AlienThread extends Thread {

• private Downloader downloader;

• private ProgressListener l;

• AlienThread(Downloader d, ProgressListener l) {

• this.downloader = d;

• this.l = l;

• }

• public void run() {

• downloader.removeListener(l);

• }

• }

28

© Kenneth M. Anderson, 2014

Modified Code for HttpDownload

• final Downloader downloader = new Downloader(from, “download.out");
!

• final ProgressListener l = new ProgressListener() {
• public void onProgress(int n) {

• try {
• System.out.print(“\r"+n);
• System.out.flush();
• AlienThread alien = new AlienThread(downloader, this);
• alien.start(); alien.join();

• } catch (InterruptedException ex) {
• }

• }
• public void onComplete(boolean success) {}

• };
• downloader.start();
• downloader.addListener(l);
• downloader.join();

29

© Kenneth M. Anderson, 2014

The Example (III)

30

Downloader

 private synchronized void updateProgress(int n) {
 for (ProgressListener listener: listeners)
 listener.onProgress(n);
 }

 public synchronized void removeListener(ProgressListener listener) {
 listeners.remove(listener);
 }

Thread 1

Thread 2
DEADLOCK!

ProgressListener

<<create>> start() join()

© Kenneth M. Anderson, 2014

Note: creating a new thread was required! (I)

• To make a deadlock happen, I had to create a new thread before calling the
Downloader’s removeListener() method

• That’s because the lock that Java creates for each object is a ReentrantLock

• When you call a synchronized method on an object, Java asks for that
object’s lock and tries to lock it

• If that synchronized method turns around and calls another synchronized
method on the same object, it has to acquire the lock again

• Deadlock would occur right there even with a single thread of control if
the lock wasn’t reentrant.

31

© Kenneth M. Anderson, 2014

Note: creating a new thread was required! (II)

• Instead, the reentrant lock

• detects that the same thread is trying to lock it again

• it allows that to happen but it keeps track of the number of times that
thread calls lock()

• it then requires the same number of unlock() calls by the same thread
before it considers itself “unlocked”

• In our example, if we did not create a second thread of control, then when the
listener called removeListener on the Downloader, the reentrant lock would
have allowed the call to happen

• And, instead, our program would die with a concurrent modification
exception; that is, we would be trying to remove a listener from the list
while updateProgress() was iterating over that list

32

© Kenneth M. Anderson, 2014

How to fix? (I)

• To fix this type of deadlock, you need to make sure that you do not call the
“alien method” while holding a lock on a potentially shared resource

• With our example, this means that we remove the synchronized keyword
on the updateProgress method. That way, we are not holding the lock on
the Downloader (our shared resource) when we call the listeners

• Instead, INSIDE of the method, we temporarily acquire the lock and use
that lock to copy the current list of listeners. We then release the lock
and invoke the listeners onProgress() methods via the copy of the list

• This is called making a defensive copy of the list

• It also reduces the amount of time we hold the lock and therefore we
reduce contention

• We can verify that this solution works with my variation of the example

33

© Kenneth M. Anderson, 2014

How to fix? (II)

• If we apply my changes to the HttpDownloadFixed directory

• We will see our progress indicator publish one event

• By printing 1024 to standard out

• It then removes itself from the set of listeners

• so it no longer receives any updates

• But, by looking at the file system, we can see that file is still
downloading

• The system did not DEADLOCK

• The solution worked!

34

© Kenneth M. Anderson, 2014

Summary

35

• In this lecture, we’ve encountered an introduction to doing concurrency the
hard way via threads and locks

• We’ve discussed the various problems you might encounter

• race conditions

• memory visibility (as well as operation re-ordering)

• deadlocks

• To solve the first two problems

• you need locks and synchronization

• To solve the third

• you need to either acquire shared resources in the same order across all
threads or you need to do what you can to reduce lock contention

© Kenneth M. Anderson, 2014

Coming Up Next

• Lecture 8: Concurrency: Threads and Locks, Part Two

• Material from Day 2 and Day 3

36

