
© Kenneth M. Anderson, 2014

Introduction to User Stories

CSCI 5828: Foundations of Software Engineering

Lecture 05 — 09/09/2014

1

© Kenneth M. Anderson, 2014

Goals

• Present an introduction to the topic of user stories

• concepts and terminology

• benefits and limitations

• examples

2

© Kenneth M. Anderson, 2014

User Stories

• User stories are a means to capture requirements during the analysis phase
of software development

• whenever that phase occurs during your particular software life cycle

• (in agile life cycles, analysis can happen at any time)

• They are a lightweight mechanism for spreading decision making out across a
software development project with respect to individual features

• We know we need feature A but we don’t know much about it?

• name it and put it in a user story

• We learned a little bit more about feature A today?

• add a short note to the user story (or even better write a test)

3

© Kenneth M. Anderson, 2014

Background (I)

• Agile life cycles evolved the notion of a user store because capturing software
requirements is a communication problem

• Those who want new software need to communicate what they need to
those who will build it

• Many stakeholders will provide input to the process

• customers, users, and domain experts

• business and marketing

• developers

4

© Kenneth M. Anderson, 2014

Background (II)

• If any group dominates this discussion, the whole project suffers

• if business dominates, it may mandate features and schedules with little
regard to feasibility

• if the developers dominate, a focus on technology may obscure business
needs and the developers may miss important requirements

• Furthermore, the goal is to understand the user’s problem and ensure the
software meets their needs

• both business and developers will move on, the users have to live with the
produced software day in and day out

5

© Kenneth M. Anderson, 2014

Background (III)

• Another important issue during this phase is resource allocation (who should
work on what and when and supported by $x amount of funds)

• If developers have this responsibility, they may

• trade quality for more features (or vice versa)

• only partially implement some features

• or make decisions on their own when they should have sought
feedback from business and from the users

• If business has this responsibility, they may

• generate way too many features on too small of a budget

• leading to (lots of) features being removed as the project progresses

6

© Kenneth M. Anderson, 2014

Background (IV)

• Furthermore, everything about the project is in flux

• We still don’t understand exactly what the user needs

• Their domain is complex; they are experts, we are novices

• We’ll get things wrong and need to be corrected

• We’ll get to a certain point and then they will remember things that they
forgot to tell us

• We’ll show them prototypes and they’ll come up with new ideas

• We don’t have enough information to make accurate estimates

• what we thought would be easy, turns out to be very complex

7

© Kenneth M. Anderson, 2014

Background (V)

• But, we must make progress!

• And, so we have to make decisions based on the information we have

• We set our scope small (one feature, for instance) and our development life
cycle short (one week, for instance)

• and then we show the customer what we have

• By then, new information will be available and we’ll have feedback on the
work we’ve done so far

• With that input, we identify the new scope and start a new iteration

• We thus spread out the decision making

• It’s not “everything up front” but “a little at a time”

8

© Kenneth M. Anderson, 2014

User Stories: The Basics (I)

• That’s where User stories come in; they describe functionality that will be
valuable to the user and/or customer

• Note the distinction:

• user: the people who actually use the produced software in their work

• customer: a person, not necessarily a user, who is responsible for
purchasing the software for a set of users

• Sometimes they are one and the same, but not always

• Note also the use of the word “valuable”

• We do NOT implement a feature because it is “cool”

• we implement features to provide value to users

9

© Kenneth M. Anderson, 2012

Who is the customer?

• The person or persons playing the role of the customer can vary across
development contexts

• This is very important because sometimes the answer will be hard to pin
down

• Consider a case where you are asked to develop a website for a small
business

• The owner of the small business is clearly the customer at first

• he/she is providing requirements and paying for the work

• But when the website is deployed, who becomes the customer?

• The customers of the small business

10

© Kenneth M. Anderson, 2012

Customer == User

• HCI and CSCW research shows that systems live or die by how happy the
“end users” are with the system

• The customers of the small business in this case are the end users

• However, in the initial development project, we will only have access to
the owners of the small business and we’ll have to go by what they say

• In the future, they will be hearing from their customers about the utility
and usability of our website and they will convey that feedback to us

• What’s the difference between utility and usability?

11

© Kenneth M. Anderson, 2012

Other Types of Customers

• You (!)

• Often for only small scale software

• CTOs

• Acquiring enterprise level systems for an organization

• Who are the end users in this situation?

• New Application Development (be it desktop, web, mobile)

• For version one: development team

• How can you avoid this? Who are the end users?

12

© Kenneth M. Anderson, 2014

Customer Team

• Our book addresses this concern in a short section in Chapter 1 (and will go
into more detail in Chapter 5)

• The Customer Team

• If you can’t have a user sit on your development team then assemble a
team of employees whose job is to represent the customer

• testers, product managers, usability and interaction designers

• these people work hard to understand the customer and represent
their needs as best as possible in each iteration

!

• Important because: The highest priority of an agile life cycle is meeting a
customer’s needs via early and frequent delivery of working software

13

© Kenneth M. Anderson, 2014

User Stories: The Basics (II)

• User stories consist of

• a short written description of a feature used for planning and a reminder

• conversations about the feature used to flesh out its details

• software tests that convey details about functionality and help us
determine when the story is completely implemented

• Ron Jeffries calls these three aspects Card, Conversation, and Confirmation

• He says “card” because traditionally users stories are written on index
cards and put up on a wall in the shared space of a development project

• Using index cards forces you to keep the story brief!

14

© Kenneth M. Anderson, 2014

User Stories: The Basics (III)

• Example users stories for a website that helps a person’s job search

• A user can post a resume to the website

• A user can search for jobs

• A company can post new job openings

• Users can restrict access to their resume

• Important:

• User stores are written so that customers value them

• This helps maintain a customer perspective within the development team

15

© Kenneth M. Anderson, 2014

User Stories: The Basics (IV)

• So, is this a good use case?

• The software will make use of a bloom filter to determine if a desired data
element is in our data set before we perform disk I/O to retrieve it

16

© Kenneth M. Anderson, 2014

It depends

• Is your customer a distributed systems researcher?

• Then, yes, this may be a good user story

• (as it is for Cassandra, a popular NoSQL database)

• But, in general, technical details like this do NOT make good user stories

• These details may change

• we need to switch from this framework to this other framework to be
compatible on a wider range of devices

• while the fundamental user story does not change

• Users need to access schedule information

17

© Kenneth M. Anderson, 2014

How do we track details?

• The users stories for an application can often be written simply at a high level
of abstraction (known as epic user stories or epics for short); for our jobs
website

• A user can search for jobs

• A company can post job openings

• But, you need to specify details at a lower level of abstraction

• how do we do that?

• Two places

• in the conversations around a user story; we will converge on details

• more users stories!

18

© Kenneth M. Anderson, 2014

More users stories

• You can take an epic like “A user can search for a job” and split it into new
stories

• A user can search for a job by attributes (such as …)

• A user can view information about a job found by a search

• A user can view profile information about a company offering a job

• On the epic, you note that it’s covered by these other stories and then you go
work on those stories

• The challenge: getting the balance right

• We want to resist the temptation to document everything on a user story

• Our conversations are the key element where details live (since the
details WILL change while the user story remains the same)

19

© Kenneth M. Anderson, 2014

Confirmation

• At the start of a user story, the “tests” might exist as a set of customer
expectations written on the back of a card

• Try feature with an empty job description

• Try feature with a really long job description

• etc.

• In this form, the tests can come and go as we learn more about the feature

• As this particular user story is worked on and implemented

• these expectations are transformed into unit tests and integration tests
that tell us when the feature is completely implemented

• We’re not done until all tests have passed!

20

© Kenneth M. Anderson, 2014

Overview of a Process

• A software development process driven by user stories feels very different
than traditional life cycles; for instance, customers are included throughout
the process (they do not disappear on you!)

• to get a project started, a story writing workshop is held to brainstorm
what features are valuable to the customer for an initial release

• developers will assign initial estimates to each story using “points”

• customers and developers set an iteration length (e.g. 2 weeks)

• developers then determine their velocity (how much work they can get
done in a single iteration)

• customers assign priorities to the stories

• iterations are formed by grouping stories by velocity based on their
priorities and estimates

21

© Kenneth M. Anderson, 2014

Midcourse Adjustments (I)

• This process is tunable (i.e. customizable)

• It has to be because the developers will make mistakes with respect to

• the points they assigned to a user story

• the velocity (number of points per iteration) they chose

• At the end of each iteration

• they will know more about their true velocity and

• they will know more about the skills of their team

• and thus have different opinions about the estimates that should be
assigned to each user story

22

© Kenneth M. Anderson, 2014

Midcourse Adjustments (II)

• With this new information, you can

• return to the remaining groups of user stories (i.e. iterations) and

• rebalance them

• stories will get new estimates

• stories may get new priorities (low to high and vice versa)

• new stories may get added

• existing stories may get removed

• “Our user doesn’t care about this anymore”

• existing stories may get moved forward or pushed backward

23

© Kenneth M. Anderson, 2014

Releases and Iterations

• An agile life cycle is thus broken down into planning releases and planning
iterations

• A release is some major group of functionality that can be put into
production (used by its users)

• A release is composed of many iterations which contain users stories that
are going to be implemented during that iteration

• Iterations always last the same amount of time and produce a working system
that can be reviewed by the customers

• Customers provide feedback and midcourse adjustments are made

• The next iteration begins

• Reminder: A user story is complete when it passes its user-specified tests

24

© Kenneth M. Anderson, 2012 25

Iteration is important because requirements
CHANGE

The Goal

The Trainwreck

Start

© Kenneth M. Anderson, 2012 26

The Goal

Start

With iteration a project can make course corrections as
requirements change so that what’s delivered matches what’s
needed

© Kenneth M. Anderson, 2014

Benefits

• Our book ends Chapter 1 with a short list of benefits for user stories

• They emphasize verbal rather than written communication

• They are comprehensible by customers and developers

• They are the right size for planning

• They encourage and “work” for iterative development

• They encourage deferring details until you have the best understanding of
what you really need to implement a feature

!

• What do you think (so far)? Anyone have experience using user stories?

27

© Kenneth M. Anderson, 2014

Summary

28

• User stories are short statements of customer-valued functionality

• The story serves as a visible reminder about a particular feature

• While that reminder is important, it is not as important as the
conversations around the story

• it is the conversation that helps us track details and understand what
the customer wants

• this conversation is supported and tracked by tests that can be
executed and tell us how close we are to being done

• User stories can drive software development via the concepts of releases and
iterations

• these are formed by assigning estimates and priorities to individual stories
and by determining an iteration length and the team’s velocity

© Kenneth M. Anderson, 2014

Coming Up Next

• Lecture 6: User Stories, Part 2

• Lecture 7: Concurrency: Threads and Locks

!

• Homework 2 Due on Thursday

29

