
© Kenneth M. Anderson, 2014

Introduction to Concurrent Software Systems

CSCI 5828: Foundations of Software Engineering

Lecture 04 — 09/04/2014

1



© Kenneth M. Anderson, 2014

Goals

• Present an overview of concurrency in software systems


• Review the benefits and challenges associated with designing and 
implementing concurrent software systems


• Review material from Chapter 1 of our concurrency textbook


• as well as some material from the book “Programming Concurrency on 
the JVM” by Venkat Subramaniam

2

http://pragprog.com/book/vspcon/programming-concurrency-on-the-jvm


© Kenneth M. Anderson, 2014

Why worry about concurrency? (I)

• “Concurrency is hard and I’ve only ever needed single-threaded programs. 
Why should I care about it?”


• Changing environment


• multi-core computers (including handheld devices)


• use of computing clusters to solve problems on the rise


• Performance


• Growth rates for chip speed are flat; 


• You can’t wait 18 months for a 2x speed-up anymore


• Instead, chips are becoming “wider”


• More cores, wider bus (more data at a time), more memory

3



© Kenneth M. Anderson, 2014

Why worry about concurrency? (II)

• Since chips are not getting faster (in the same way they used to)


• a single-threaded, single-process application is not going to see any 
significant performance gains from new hardware


• Instead, software will only see performance gains from new hardware


• if it is designed to do more work in parallel


• as the number of processors available to it increases


• THIS IS NOT EASY


• the application’s computations must be amenable to parallelization


• that is, it must be possible to break its work into tasks that can run at 
the same time with no need to coordinate with each other

4



© Kenneth M. Anderson, 2014

Why worry about concurrency? (III)

• If you can design your system in this way, you pave the way to seeing linear 
speed ups as the number of processors increases


• That is a system on n-cores will be n times faster than the same system 
running on a single core CPU


• In the past few years, laptops are shipping with 8 cores, smart phones 
with 2-4 cores, desktops with 12-16 cores, and this is increasing


• Some threading frameworks will allow you to send tasks to your 
machine’s graphics card and these cards can have hundreds to 
thousands of cores (although, granted, they are designed to be used by 
very specific types of algorithms)


• However, it is very difficult to achieve linear speed-ups, but performance 
gains can still be quite significant

5



© Kenneth M. Anderson, 2014

In addition…

• Concurrent programming is becoming hard to ignore


• lots of application domains in which concurrency is the norm


• Embedded software systems, robotics, “command-and-control”, high-
performance computing (use of clusters), …


• Web programming often requires concurrency (AJAX)


• Web browsers are themselves examples of multi-threaded GUI 
applications


• without threads the UI would block as information is downloaded

6



© Kenneth M. Anderson, 2014

BUT…

• “A DEEP CHASM OPENS BEFORE YOU…” ‡


• Concurrency is HARD


• While concurrency is widespread, it is error prone


• Programmers trained for single-threaded programming face unfamiliar 
problems


• synchronization, race conditions, deadlocks, “memory barriers”, etc.


!

• Let’s review some terminology

7

‡ — Taken from Cocoa Programming For Mac OS X, 4th Edition by Aaron Hillegass and Adam Preble



© Kenneth M. Anderson, 2014

Basic Definitions

• When we execute a program, we create a process


• A sequential program has a single thread of control


• A concurrent program has multiple threads of control


• A single computer can have multiple processes running at once;


• If that machine has a single processor, then the illusion of multiple 
processes running at once is just that: an illusion


• That illusion is maintained by the operating system; it coordinates access to 
the single processor by the various processes; only one process runs at a time


• If a machine has more than a single processor, then true parallelism can occur


• you can have N processes running simultaneously on a machine that has 
N processors

8



© Kenneth M. Anderson, 2014

Thus…

9

Concurrency

Parallelism

Concurrent program 
on a multicore machine

Concurrent program on 
a single core machine

Note: this is still 
possible. Ruby’s GIL, for 
instance, does not allow 
concurrent programs to 
run in parallel



© Kenneth M. Anderson, 2014

• A concurrent program has multiple logical THREADS OF CONTROL. These 
threads may or may not run in parallel.


• A parallel program has the ability to execute multiple computations 
simultaneously. It may or may not have more than one logical thread of 
control (typically it does, but in data parallelism it might not).


!

• Alternative way of thinking about it


• Concurrency is part of the problem domain


• multiple events can happen at the same time


• Parallelism is an aspect of the solution domain


• we design a program such that computations occur simultaneously

Concurrency Textbook Definitions (Adapted)

10



11

Basics: Single Thread, Single Process, Single Machine

Machine

Process

Thread

Data/Code

Sequential Program == Single Thread of Control

Note: 
Repetition 
is good!



12

Basics: Multiple Thread, Single Process, Single Machine

Machine

Process

Thread

Data/Code

Thread

Concurrent Program == Multiple Threads of Control



If the machine has 
multiple processors, then 
true parallelism can 
occur. Otherwise, 
parallelism is simulated

13

Multi-Thread: But is it truly parallel?

Machine

Process

Thread

Data/Code

Thread

Concurrent Program == Multiple Threads of Control

We may have multiple 
threads in this 
process, but we may 
not have events truly 
occurring in parallel. 
Why not?

It depends on the machine!



Machine

14

Basics: Single Thread, Multiple Process, Single Machine

Process

Thread

Data/Code

Process

Thread

Data/Code

Process

Thread

Data/Code



15

Basics: Multi-thread, Multi-Process, Single Machine

Machine
Process

Thread

Data/Code

Thread

Process

Thread

Data/Code

Thread

Process

Thread

Data/Code

Thread

Note: You can have way more than just two threads per process.



16

Basics: Multi-everything

Machine
Process

Thread

Data/Code

Thread

Process

Thread

Data/Code

Thread

Process

Thread

Data/Code

Thread

Machine
Process

Thread

Data/Code

Thread

Process

Thread

Data/Code

Thread

Process

Thread

Data/Code

Thread



Applications are Dead! Long Live Applications!

17

Due to the ability to have multiple threads, multiple processes, and 
multiple machines work together on a single problem, the notion of 
an application is changing. It used to be that:

Process

Thread

Data/Code
Application == 



Machine
Process

Data/Code
Process

Data/Code
Process

Data/Code

Machine
Process

Data/Code
Process

Data/Code
Process

Data/Code

Machine
Process

Data/Code
Process

Data/Code
Process

Data/Code

Machine
Process

Data/Code
Process

Data/Code
Process

Data/Code

Machine
Process

Data/Code
Process

Data/Code
Process

Data/Code

Machine
Process

Data/Code
Process

Data/Code
Process

Data/Code

Machine
Process

Data/Code
Process

Data/Code
Process

Data/Code

Machine
Process

Data/Code
Process

Data/Code
Process

Data/Code

Now… we might refer to this as “an application”

18

Machine

6

Basics: Multiple Thread, Single Process, Single Machine

Process

Thread

Data/Code

Thread

For instance, we might call 
this “Google”

Machine
Process

Data/Code
Process

Data/Code
Process

Data/Code

Machine
Process

Data/Code
Process

Data/Code
Process

Data/Code

Machine

6

Basics: Multiple Thread, Single Process, Single Machine

Process

Thread

Data/Code

Thread

multi-threaded client, 
multi-threaded server 
that, in turn, relies on a 
cluster of machines to 
service the request



© Kenneth M. Anderson, 2014

Parallel Architecture

• Within a single machine, there are many levels of parallelism

• which may or may not have an impact on our concurrent systems


• Bit-Level Parallelism

• A 32-bit computer can process 32-bit numbers faster than an 8-bit 

computer

• Instruction-Level Parallelism


• Processor techniques such as pipelining, out-of-order execution, and 
speculative execution can impact the behaviors we see in parallel code


• Data Parallelism

• GPUs can process lots of data in parallel with a single instruction


• Task-Level Parallelism

• Multiple threads of control executing simultaneously; memory models

19



© Kenneth M. Anderson, 2014

Software Architecture Design Choices

20

• When designing a modern application, we now have to ask


• How many machines are involved?


• What software components will be deployed on each machine?


• For each component


• Does it need concurrency?


• If so, how will we achieve that concurrency?


• multiple threads?


• multiple processes?


• both?



© Kenneth M. Anderson, 2014

Consider Chrome

• Google made a splash in 2008 by announcing the creation of a new web 
browser that was


• multi-process (one process per tab) and


• multi-threaded (multiple threads handle loading of content within each tab)


• They documented their engineering choices via a comic book


• http://www.google.com/googlebooks/chrome/index.html

21

http://www.google.com/googlebooks/chrome/index.html


© Kenneth M. Anderson, 2014

Chrome Advantages

• Some of the advantages they cite for this design


• stability 

• single-process, multi-threaded browsers are vulnerable to having a 
crash in one tab bring down the entire browser


• speed 

• multi-process browsers can be more responsive due to OS support


• security 

• exploits in single-process browsers are easier if malware loaded in one 
tab can grab information contained in another tab; much harder to grab 
information across processes

22



© Kenneth M. Anderson, 2014

Chrome Demo

• You can use an operating system’s support for process monitoring to verify 
that Chrome is indeed multi-process and multi-threaded


• Demo

23



© Kenneth M. Anderson, 2014

Other benefits to multi-process design ‡

• Lots of existing applications that do useful things


• Think of all the powerful command line utilities found in Unix-based 
platforms; You can take advantage of that power in your own application


• Create a sub-process, execute the desired tool in that process, send it 
input, make use of its output


• Memory leaks in other programs are not YOUR memory leaks


• As soon as the other program is done, kill the sub-process and the OS 
cleans up


• Flexibility: An external process can run as a different user, can run on a 
different machine, can be written in a different language, …

24

‡ — Also taken from Cocoa Programming For Mac OS X, 4th Edition by Aaron Hillegass and Adam Preble



© Kenneth M. Anderson, 2014

Two Reasons for Using Concurrency

• Making applications more responsive


• See example next slide


• We also saw an example of this in Lecture 1 with the Scattered App


• Making applications faster


• In particular, computationally intensive apps (compute bound) or data 
processing apps (I/O bound)

25



© Kenneth M. Anderson, 2014

Example: SelfishWindow & ConsiderateWindow

• Background: In modern application frameworks, there is one thread devoted to 
updating the graphical user interface


• if an event handler invokes a long running task, it will block the GUI; the long 
running task needs to be put in the background to keep the GUI responsive


• DEMO


• Important to Understand


• How many threads does Selfish Window have? Why does the GUI become 
blocked?


• How many threads does Considerate Window have? Why did we have to use 
SwingUtilities.invokeAndWait()?


• Note how the complexity of our system went up as we fixed the problem and 
followed best practices to avoid having a non-GUI thread update the GUI

26



© Kenneth M. Anderson, 2014

The Dangers of Concurrency (I)

• Starvation


• All threads are active in the system but none of them are making progress


• Thread A is waiting for an input that takes a long time to arrive


• It’s not blocked but it’s not making progress


• Generic solution:


• Timeouts: have Thread A do something else once a timeout occurs


• Deadlock


• Thread A is waiting for B to give up resource C


• Thread B is waiting for A to give up resource D


• Both are blocked and will never be unblocked


• Generic solution: Have threads acquire resources in the same order

27



© Kenneth M. Anderson, 2014

The Dangers of Concurrency (II)

• Race Conditions


• If two threads access the same resource, we may have a race condition


• In particular, if two threads have access to the same variable, they may 
attempt to change its value at the same time


• this can result in the value getting set to an inconsistent state


• You can also get into problems even when one thread is doing the writing 
and a second thread is doing the reading

28



© Kenneth M. Anderson, 2014

The Dangers of Concurrency (III)

• First Example of Race Condition


• threads A and B have access to an integer variable C


• C currently equals 0 and then both A & B execute the code “C = C + 1”


• A reads the value 0 and gets suspended


• then B reads the value 0 and updates it to 1


• then A wakes up and updates the value to 1


• DEMO


• Final value should have been 30; typically, the value was much less than 
that, due to the problem above; note: code had to be made way more 
complex than normal to make the problem appear consistently

29



© Kenneth M. Anderson, 2014

The Dangers of Concurrency (IV)

• Second Example of Race Condition


• Thread A is designed to loop until a boolean variable switches from true to 
false


• Thread B creates A, then goes to sleep for a bit, then changes the boolean 
variable from true to false


• Observed behavior: sometime the program works, sometimes it does not


• See example in source code that comes with Programming 
Concurrency on the JVM


• The problem?


• Thread A cached the value of the boolean variable and B’s write never 
“crosses the memory barrier” to allow A to see the updated value

30

http://pragprog.com/book/vspcon/programming-concurrency-on-the-jvm


© Kenneth M. Anderson, 2014

The memory barrier (I)

• The term “memory barrier” simply refers to transferring values from main 
memory into working memory and back again


• Each thread has its own flow of execution and this means that it has


• its own program stack


• its own set of values for the machine’s registers


• Each thread also shares access to the program’s heap and static data

31



© Kenneth M. Anderson, 2014

The memory barrier (II)

• In order to make a program run faster, the compiler will look for ways to 
optimize memory reads/writes.


• It may choose to cache a value stored in main memory into its set of 
registers


• once that occurs, only certain types of operations will cause a change in 
the cached value to be synced back to its home in main memory


• If the cached value corresponds to a value accessed by more than one 
thread, then problems can occur when changes made by one thread to 
shared memory are not made visible to another thread

32



© Kenneth M. Anderson, 2014

The memory barrier (III)

• To avoid the race condition in our second example, we must do something to 
ensure that B’s change to the shared boolean variable is made visible to A


• Examples of techniques that cause the write to pass the memory barrier


• Tagging the variable with the keyword “volatile”


• Tagging methods that access the variable with the keyword 
“synchronized”


• There are a few others that we will see later this semester


• As we have seen, having values that can be changed shared between 
multiple threads (a.k.a. shared mutability) can lead to incorrect behavior, 
unstable systems, crashes, locked apps, etc.

33



© Kenneth M. Anderson, 2014

The Response: Avoid Shared Mutability 

• To get around the problems associated with shared mutability, we must


• AVOID SHARED MUTABILITY


• As the Programming Concurrency on the JVM textbook author says


• “Shared mutability is pure evil. Avoid it!”


!

• In our upcoming lectures


• we will look for ways to deal with shared mutability when we can’t avoid it


• learn how to design systems to avoid shared mutability altogether

34

http://pragprog.com/book/vspcon/programming-concurrency-on-the-jvm


© Kenneth M. Anderson, 2014

Summary

• Introduced the subject of concurrency in software systems


• why it is important


• why we cannot really avoid it


• what problems occur when dealing with concurrency


• starvation, deadlock, race conditions


• learned about shared mutability and why to avoid it


• learned about the “memory barrier” which is related to Java’s memory 
model and contributes to some of the problems of shared mutability

35



© Kenneth M. Anderson, 2014

Coming Up Next

• Lectures 5 and 6: User Stories

36


