
© Kenneth M. Anderson, 2014

Introduction to Software Life Cycles and Agile

CSCI 5828: Foundations of Software Engineering

Lecture 03 — 09/02/2014

1

© Kenneth M. Anderson, 2014

Goals

• Present an introduction to the topic of software life cycles

• concepts and terminology

• benefits and limitations

• examples

• the agile response to traditional life cycles

2

© Kenneth M. Anderson, 2014

Background (I)

• In software engineering, “process is king”

• That is, the process by which we do things is of utmost importance

• We want our activities to be coordinated and planned

• that is, “engineered”

• Why?

• A high quality process increases our ability to create a high quality product

3

© Kenneth M. Anderson, 2014

Background (II)

• process

• a series of steps that people follow involving activities and resources
that produce an intended output of some kind

• Activities are arranged into a workflow with

• sequences of steps (supports basic work practice)

• branches (supports conditional behavior)

• loops (supports iteration)

• Each activity

• has a set of inputs and/or entry criteria

• and may produce an output that is used in a subsequent step

4

© Kenneth M. Anderson, 2014

Background (III)

• A process typically has a set of guiding principles about why you should follow
its particular approach

• it should be able to articulate the goals of each of its activities

• A process uses resources, subject to a set of constraints

• two primary constraints: schedule (time) & budget (money)

• Designers of software life cycles created their particular life cycle to help
software engineers achieve their goals while meeting their constraints

• Unfortunately, few life cycles offer guidance on what to do when a limit has
been reached

• i.e. you’ve run out of time or you’ve run out of money

• Agile is different, as we shall see

5

© Kenneth M. Anderson, 2014

Background (IV)

• Why bother with defining and following a life cycle for software development?

• Impose consistency and structure on the work practice of an organization

• especially across project teams in a single organization

• or across two or more projects performed by the same team

• provide a vehicle for capturing/measuring performance to

• improve future performance by a particular team

• to provide evidence needed to change/improve the process

• To answer the question: What do I do today?☺

6

© Kenneth M. Anderson, 2014

Background (V)

• Similarities and differences with manufacturing processes

• Software life cycles are similar to manufacturing processes

• You need to design the process to produce a high quality product

• You need to monitor the process and look for ways to improve it

• The process organizes the steps to ensure the product can be produced
within budgetary and scheduling constraints

• BUT

• in manufacturing, design is “short”, production is “long” and most of your
costs are tied up in production; use varies from instant to long lived

• in software, design is “long” (and difficult), production is instantaneous (it’s
trivial to create a new copy of the final system) and use can be “forever”

7

© Kenneth M. Anderson, 2014

Typical Steps in a Software Life Cycle

• Feasibility; Development of a Business Plan

• Requirements Analysis and Specification

• Design

• Implementation and Integration

• Operation and Maintenance

!

• Pervasive Concerns
• Testing

• Change Management

• Configuration Management

• Build Management and Continuous Integration

8

© Kenneth M. Anderson, 2014

Heads-Up

• In the following slides (10-29), I adopt a traditional perspective of SE

• one that is consistent with the “waterfall” model of development

• one that assumes a development context with many large stakeholders

• one that assumes “requirements and design up front”

!

• We will revisit and unpack this material as we present/investigate agile life
cycles more deeply

• A lot of this material is “musty” from a modern software engineering
perspective but it is important to understand the changes that Agile life
cycles made to the more traditional perspective of SE

9

© Kenneth M. Anderson, 2014

Feasibility and Business Plan

• In some (most?) development contexts

• an idea for a new software system does NOT lead straight to requirements

• instead, just enough of the proposed system is defined/discussed to
assess

• whether it is technically feasible to develop

• whether there are enough resources to develop it

• whether it will produce enough revenue to justify the costs of
development

• Many proposed systems fail to get past this stage

10

© Kenneth M. Anderson, 2014

Requirements Analysis and Specification

• Problem Definition ⇒
Requirements Specification

• determine exactly what client
wants and identify constraints

• develop a contract with client

• Specify the product’s task
explicitly

• Difficulties

• client asks for wrong product

• client is computer/software
illiterate

• specifications may be
ambiguous, inconsistent,
incomplete

• Validation

• extensive reviews to check that
requirements satisfy client needs

• look for ambiguity, consistency,
incompleteness

• develop system/acceptance test
plan

11

© Kenneth M. Anderson, 2014

Design

• Requirements Specification ⇒
Design

• develop architectural design
(system structure)

• decompose software into
modules with module interfaces

• develop detailed design (module
specifications)

• select algorithms and data
structures

• maintain record of design
decisions

• Difficulties

• miscommunication between
module designers

• design may be inconsistent,
incomplete, ambiguous

• Verification

• extensive design reviews
(inspections) to determine that
design conforms to requirements

• check module interactions

• develop integration test plan

12

© Kenneth M. Anderson, 2014

Implementation and Integration

• Design ⇒ Implementation

• implement modules and verify
they meet their specifications

• combine modules according to
architectural design

• Difficulties

• module interaction errors

• order of integration has a critical
influence on product quality

!

!

• Verification and Testing

• code reviews to determine that
implementation conforms to
requirements and design

• develop unit/module test plan:
focus on individual module
functionality

• develop integration test plan:
focus on module interfaces

• develop system test plan: focus
on requirements and determine
whether product as a whole
functions correctly

13

© Kenneth M. Anderson, 2014

Operation and Maintenance

• Operation ⇒ Change

• maintain software after (and
during) user operation

• determine whether product as a
whole still functions correctly

• Difficulties

• design not extensible

• lack of up-to-date
documentation

• personnel turnover

• Verification and Testing

• review to determine that change
is made correctly and all
documentation updated

• test to determine that change is
correctly implemented

• test to determine that no
inadvertent changes were made
to compromise system
functionality

14

© Kenneth M. Anderson, 2014

Discussion

• You will see the previous five activities appear in almost every software life
cycle

• Within each of these major types of development activities, there will be

• lots of different sub-activities

• UI design, code reviews, refactoring, build management, configuration
management, deployment, testing, profiling, debugging, etc.

• meetings, e-mail, texting, IM, phone calls, etc. (i.e. coordination)

• change requests, identification of problems, resolution of ambiguities,
problem solving, etc.

• “controlled chaos”

15

© Kenneth M. Anderson, 2014

Example Life Cycles

• One Anti Life Cycle

• “Code & Fix”

• Exemplars

• Waterfall

• Rapid Prototyping

• Incremental

• Spiral Model

• Rational Unified Process

16

© Kenneth M. Anderson, 2014

Code & Fix

17

Build First
Version

Retirement

Operations Mode

Modify until
Client is satisfied

© Kenneth M. Anderson, 2014

Discussion

18

• Useful for small-scale, personal development

• Problems become apparent in any serious coding effort

• No process for things like versioning, testing, change management, etc.

• If you do any of these things, you are no longer doing “code and fix”

• Difficult to coordinate activities of multiple programmers

• Non-technical users cannot explain how the program should work

• Programmers do not know or understand user needs

© Kenneth M. Anderson, 2014

Waterfall

19

Requirements!

Verify!

Retirement!

Operations!

Test!

Implementation!
Verify!

Design!

Req. Change!

© Kenneth M. Anderson, 2014

Discussion

20

• Proposed in early 70s by Winston Royce

• Widely used (even today)

• Advantages

• Straightforward to Measure

• Possible to move between stages when the need occurs

• Experience applying steps in past projects can be used in estimating
duration of steps in future projects

• Produces software artifacts that can be re-used in other projects

© Kenneth M. Anderson, 2014

Discussion

• The original waterfall model had disadvantages because it disallowed
iteration

• This made the process inflexible and monolithic

• Making estimates about how long the process would take was difficult

• Did not deal well with changing requirements

• Maintenance phase not handled well

• However, these are challenges that all life cycle models face

• The “waterfall with feedback” model was created in response

• Slide 19 shows the “with feedback” version

21

© Kenneth M. Anderson, 2014

Rapid Prototyping

22

Rapid Prototype!

Verify!

Retirement!

Operations!

Test!

Implementation!
Verify!

Design!

Req. Change!

© Kenneth M. Anderson, 2014

Discussion

23

• Prototypes are used to develop requirements specifications

• Once reqs. are known, waterfall is used

• Prototypes are discarded once design begins

• Prototypes should not be used as a basis for implementation. Prototyping
tools do not create production quality code

• In addition, customer needs to be “educated” about prototypes

• they need to know that prototypes are used just to answer requirements-
related questions

• otherwise, they get impatient!

© Kenneth M. Anderson, 2014

Incremental

24

For each build:!
Perform detailed!
design, implement.!
Test. Deliver.!

Requirements!

Verify!

Retirement!

Operations!

Verify!

Arch. Design!

© Kenneth M. Anderson, 2014

Discussion

25

• Used by Microsoft (at least when building Windows XP)

• Programs are built everyday by the build manager

• If a programmer checks in code that “breaks the build” they become
the new build manager!

• Iterations are planned according to features

• e.g. features 1 and 2 are being worked on in iteration 1

• features 3 and 4 are in iteration 2, etc.

• This life cycle also specifies two critical roles

• product manager and program manager

• Note: the original link is no longer active; fortunately I saved a copy

http://www.cs.colorado.edu/~kena/classes/5828/f14/supplemental-materials/productmanagementvsprogramm.pdf
http://www.25hoursaday.com/weblog/CommentView.aspx?guid=25c92015-9172-4bc8-8f91-f901f8811aff

© Kenneth M. Anderson, 2014

Spiral Model [Boehm, 1988]

26

Concept of
Operation

Requirements
Plan

Requirements
OAC

Risk
Assessment

Risk
 Ite

m Set

Risk M
anagement P

lan

Requirements

Risk
Control

Requirements
Validation

Abstract Specification
 Plan

 Abstract
Specifcation
OAC

Risk
Assessment

Risk
Control

Abstract
Specification

Abstract Specification
Validation

Concrete Specification
 Plan

 Concrete
Specification
OAC

Concrete
Specification

Concrete
Specification Validation
and Verification

Software
Development Plan

Risk
Assessment

Risk
Control

Progress
through
steps

Cumulative
cost

Evaluate alternatives,
identify, resolve risks

Develop, verify
next-level product

Plan next phases

CommitReview partition

Determine
objectives,
alternatives,
constraints
(OAC)

© Kenneth M. Anderson, 2014

Discussion

27

• Similar to Iterative Model, but:

• each iteration is driven by “risk management”

• Determine objectives and current status

• Identify Risks

• Develop plan to address highest risk items and proceed through
iteration

• Repeat

© Kenneth M. Anderson, 2014

Rational Unified Process

28

PHASES

PRODUCT
CYCLES

CORE
WORKFLOWS

CYCLE 1 CYCLE 2 CYCLE 3 . . . CYCLE N

INCEPTION ELABORATION CONSTRUCTION TRANSITION

iteration
1

iteration
2

iteration
3

iteration
4

iteration
5

iteration
6 . . . iteration

n - 1
iteration

n

Requirements Analysis Design Implementation Test

ITERATIONS

© Kenneth M. Anderson, 2014

Discussion

29

• A variant of the waterfall model with all of the major steps

• It advocates the use of object-oriented analysis and design techniques

throughout

• Our “big three” concepts from Lecture 1 writ large

• Specification: objects and classes used in all phases

• Translation: objects and classes go from high level specs to extremely

detailed specs that can be translated directly to code

• some OO A&D tools will generate source code based on UML designs

• Iteration: Product Cycles ⇒ Phase ⇒ Iterations ⇒ Major Life Cycle Steps

• A step towards agile in that the activities are “fractal”

• You may find yourself performing implementation and testing during

project inception

© Kenneth M. Anderson, 2014

Agile Life Cycles

• Agile development is a response to the problems of traditional “heavyweight”
software development processes

• too many artifacts

• too much documentation

• inflexible plans

• late, over budget, and buggy software

30

© Kenneth M. Anderson, 2014

Agile Manifesto

• “We are uncovering better ways of developing software by doing it and
helping others do it. Through this work we have come to value

• individuals and interactions over processes and tools

• working software over comprehensive documentation

• customer collaboration over contract negotiation

• responding to change over following a plan

• That is, while there is value in the items on the right, we value the items on the
left more”

31

http://agilemanifesto.org/

© Kenneth M. Anderson, 2014

Agile Principles

• From this statement of values, twelve principles have been identified that
distinguish agile practices from traditional software life cycles

• Lets look at five of them

• Deliver Early and Often to Satisfy Customer

• Welcome Changing Requirements

• Face to Face Communication is Best

• Measure Progress against Working Software

• Simplicity is Essential

32

© Kenneth M. Anderson, 2014

Deliver Early and Often to Satisfy Customer

• MIT Sloan Management Review published an analysis of software
development practices in 2001

• Strong correlation between quality of software system and the early
delivery of a partially functioning system

• the less functional the initial delivery the higher the quality of the final
delivery!

• Strong correlation between final quality of software system and frequent
deliveries of increasing functionality

• the more frequent the deliveries, the higher the final quality!

• Customers may choose to put initial/intermediate systems into production
use; or they may simply review functionality and provide feedback

33

© Kenneth M. Anderson, 2014

Welcome Changing Requirements

• Welcome change, even late in the project!

• Statement of Attitude

• Developers in agile projects are not afraid of change; changes are good
since it means our understanding of the target domain has increased

• More importantly

• agile practices (such as pair programming, refactoring, test driven
development) produce systems that are flexible and thus, it is argued, easy
to change

34

© Kenneth M. Anderson, 2014

Face to Face Communication is Best

• In an agile project, people talk to each other!

• The primary mode of communication is conversation

• there is no attempt to capture all project information in writing

• artifacts are still created but only if there is an immediate and significant
need that they satisfy

• they may be discarded, after the need has passed

• as Kent Beck says “Shred It!”

35

© Kenneth M. Anderson, 2014

Measure Progress against Working Software

• Agile projects measure progress by the amount of software that is currently
meeting customer needs

• They are 30% done when 30% of required functionality is working AND
deployed

• Progress is not measured in terms of phases or creating documents

36

© Kenneth M. Anderson, 2014

Simplicity is Essential

• This refers to the art of maximizing the amount of work NOT done

• Agile projects always take the simplest path consistent with their current
goals

• They do not try to anticipate tomorrow’s problems; they only solve today’s
problems

• High-quality work today should provide a simple and flexible system that
will be easy to change tomorrow if the need arises

37

© Kenneth M. Anderson, 2014

Agile Life Cycles

• Quite a few agile life cycles out there

• Extreme Programming

• Scrum

• Lean Development

• Feature-Driven Development

• Crystal

• Our textbook will present a generic life cycle that can map to most of them

• In addition, I will likely review Scrum in more detail at some point in the
semester

• For now, let’s look at Extreme Programming

38

© Kenneth M. Anderson, 2014

Extreme Programming

• One example of an Agile method is extreme programming

• It was developed by Kent Beck during the late 90s when he became the
project lead on a system called Chrysler Comprehensive Compensation
System (C3). C3 was a payroll system written in SmallTalk

• The basic idea is that

• it takes standard programming practices to the “extreme”

• if software testing is good

• then we’ll write test cases every day

• and run them every time we make a change, etc.

• As Kent Beck says extreme programming takes certain practices and “sets
them at 11 (on a scale of 1 to 10)”

39

http://en.wikipedia.org/wiki/Chrysler_Comprehensive_Compensation_System

© Kenneth M. Anderson, 2014

XP Practices (I)

• Insight into Agile Methods can be
gained by looking at some of XP’s
practices

• Customer Team Member

• User Stories

• Short Cycles

• Acceptance Tests

• Pair Programming

• Test-Driven Development

• Collective Ownership

!

!

• Continuous Integration

• Sustainable Pace

• Open Workspace

• The Planning Game

• Simple Design

• Refactoring

• Metaphor

40

© Kenneth M. Anderson, 2014

XP Practices (II)

• Customer Team Member

• The client should have a representative on the development team

• User Stories

• Requirements are captured in brief statements about the functionality
discussed with the client

• Acceptance Tests

• Details of a user story are documented via test cases

• The user story is complete when the test cases pass

• Short Cycles

• Too many things can change during development, so plan to release working
software every few weeks (typically 2 weeks, 10 working days)

41

© Kenneth M. Anderson, 2014

XP Practices (III)

• Pair Programming

• All production code is written by pairs of programmers working together

• Studies in 2000/2001 indicated that pair programming helped to significantly
reduce a project’s defect rate while minimally impacting team efficiency

• Test-Driven Development

• No production code is written except to make a failing test case pass

• Collective Ownership

• A pair is allowed to check out any module and improve it

• Developers are never individually responsible for a module

• The system is owned by the team

42

© Kenneth M. Anderson, 2014

XP Practices (IV)

• Continuous Integration

• The system is built and deployed at least once per day

• Helps to identify integration problems early

• Encourages developers to “grow” a system incrementally

• Sustainable Pace

• Software development is not a 5K race, it’s a marathon

• You need a sustainable pace or your team will burn out

• As a result, XP teams do not work overtime; “40 hour work week”

43

© Kenneth M. Anderson, 2014

XP Practices (V)

• Open Workspace

• Pairs work near each other in order to promote “team awareness” of the current
state of the system

• The team naturally helps each other as problems are encountered

• Some pushback on this: others prefer pairs to work in isolation to allow them to
“get in the flow” and avoid interruption

• The Planning Game

• Estimates are attached to ALL user stories

• The team creates the estimate (in terms of points)

• The customer assigns priorities

• Each iteration, we use the priorities and estimates to decide what to work on

44

© Kenneth M. Anderson, 2014

XP Practices (VI)

• Simple Design

• XP emphasizes simplicity at all times

• “Consider the simplest thing that could possibly work”

• “You ain’t going to Need It”

• “Once and Only Once” (Don’t Repeat Yourself)

• Refactoring

• Supported by test cases, XP teams constantly refactor their code to fight “bit rot”:
clutter that can accumulate over time in a design

• Metaphor

• Make sure to have a theme that ties the entire system together

• Can be used to discuss the system’s architecture and improve morale (t-shirts!)

45

© Kenneth M. Anderson, 2014

Shared Goal: Delivering Value to your Customer

• Extreme programming is just one example of an agile method

• Other agile methods will differ in some of the practices, the way they
arrange the work day, or the way they arrange the team (such as Scrum)

• However, they all have a shared goal

• Delivering something of value to your customer every iteration

• If you adopt the customer’s perspective, this makes sense

• What do you want to see from the developers working on your project?

• Status reports or working code?

46

© Kenneth M. Anderson, 2014

Summary

47

• Life cycles make software development

• predictable, repeatable, measurable, and efficient

• High-quality processes should lead to high-quality products

• at least it improves the odds of producing good software

• We’ve seen

• Typical stages in software life cycles

• Examples of software life cycles

• The agile response to traditional life cycles

© Kenneth M. Anderson, 2014

Coming Up Next

• Lecture 4: Introduction to Concurrent Software Systems

• Lecture 5: User Stories

!

• Homework 2 assigned today; Due by start of Lecture 6 on 9/11/2014

48

