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Introduction to Software Life Cycles and Agile

CSCI 5828: Foundations of Software Engineering

Lecture 03 — 09/02/2014
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Goals

• Present an introduction to the topic of software life cycles


• concepts and terminology


• benefits and limitations


• examples


• the agile response to traditional life cycles
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Background (I)

• In software engineering, “process is king”


• That is, the process by which we do things is of utmost importance


• We want our activities to be coordinated and planned


• that is, “engineered”


• Why?


• A high quality process increases our ability to create a high quality product
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Background (II)

• process 

• a series of steps that people follow involving activities and resources 
that produce an intended output of some kind


• Activities are arranged into a workflow with


• sequences of steps (supports basic work practice)


• branches (supports conditional behavior)


• loops (supports iteration)


• Each activity


• has a set of inputs and/or entry criteria


• and may produce an output that is used in a subsequent step
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Background (III)

• A process typically has a set of guiding principles about why you should follow 
its particular approach


• it should be able to articulate the goals of each of its activities


• A process uses resources, subject to a set of constraints


• two primary constraints: schedule (time) & budget (money)


• Designers of software life cycles created their particular life cycle to help 
software engineers achieve their goals while meeting their constraints


• Unfortunately, few life cycles offer guidance on what to do when a limit has 
been reached


• i.e. you’ve run out of time or you’ve run out of money


• Agile is different, as we shall see
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Background (IV)

• Why bother with defining and following a life cycle for software development?


• Impose consistency and structure on the work practice of an organization


• especially across project teams in a single organization


• or across two or more projects performed by the same team


• provide a vehicle for capturing/measuring performance to


• improve future performance by a particular team


• to provide evidence needed to change/improve the process


• To answer the question: What do I do today?☺
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Background (V)

• Similarities and differences with manufacturing processes


• Software life cycles are similar to manufacturing processes


• You need to design the process to produce a high quality product


• You need to monitor the process and look for ways to improve it


• The process organizes the steps to ensure the product can be produced 
within budgetary and scheduling constraints


• BUT


• in manufacturing, design is “short”, production is “long” and most of your 
costs are tied up in production; use varies from instant to long lived


• in software, design is “long” (and difficult), production is instantaneous (it’s 
trivial to create a new copy of the final system) and use can be “forever”
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Typical Steps in a Software Life Cycle

• Feasibility; Development of a Business Plan

• Requirements Analysis and Specification

• Design

• Implementation and Integration

• Operation and Maintenance

!

• Pervasive Concerns 
• Testing

• Change Management

• Configuration Management

• Build Management and Continuous Integration
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Heads-Up

• In the following slides (10-29), I adopt a traditional perspective of SE


• one that is consistent with the “waterfall” model of development


• one that assumes a development context with many large stakeholders


• one that assumes “requirements and design up front”


!

• We will revisit and unpack this material as we present/investigate agile life 
cycles more deeply


• A lot of this material is “musty” from a modern software engineering 
perspective but it is important to understand the changes that Agile life 
cycles made to the more traditional perspective of SE
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Feasibility and Business Plan

• In some (most?) development contexts


• an idea for a new software system does NOT lead straight to requirements


• instead, just enough of the proposed system is defined/discussed to 
assess


• whether it is technically feasible to develop


• whether there are enough resources to develop it


• whether it will produce enough revenue to justify the costs of 
development


• Many proposed systems fail to get past this stage
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Requirements Analysis and Specification

• Problem Definition ⇒ 
Requirements Specification 

• determine exactly what client 
wants and identify constraints


• develop a contract with client


• Specify the product’s task 
explicitly


• Difficulties 

• client asks for wrong product


• client is computer/software 
illiterate


• specifications may be 
ambiguous, inconsistent, 
incomplete


• Validation 

• extensive reviews to check that 
requirements satisfy client needs


• look for ambiguity, consistency, 
incompleteness


• develop system/acceptance test 
plan
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Design

• Requirements Specification ⇒ 
Design 

• develop architectural design 
(system structure)


• decompose software into 
modules with module interfaces


• develop detailed design (module 
specifications)


• select algorithms and data 
structures


• maintain record of design 
decisions


• Difficulties 

• miscommunication between 
module designers


• design may be inconsistent, 
incomplete, ambiguous


• Verification 

• extensive design reviews 
(inspections) to determine that 
design conforms to requirements


• check module interactions


• develop integration test plan
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Implementation and Integration

• Design ⇒ Implementation 

• implement modules and verify 
they meet their specifications


• combine modules according to 
architectural design


• Difficulties 

• module interaction errors


• order of integration has a critical 
influence on product quality


!

!

• Verification and Testing 

• code reviews to determine that 
implementation conforms to 
requirements and design


• develop unit/module test plan: 
focus on individual module 
functionality


• develop integration test plan: 
focus on module interfaces


• develop system test plan: focus 
on requirements and determine 
whether product as a whole 
functions correctly
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Operation and Maintenance

• Operation ⇒ Change 

• maintain software after (and 
during) user operation


• determine whether product as a 
whole still functions correctly


• Difficulties 

• design not extensible


• lack of up-to-date 
documentation


• personnel turnover


• Verification and Testing 

• review  to determine that change 
is made correctly and all 
documentation updated


• test to determine that change is 
correctly implemented


• test to determine that no 
inadvertent changes were made 
to compromise system 
functionality
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Discussion

• You will see the previous five activities appear in almost every software life 
cycle


• Within each of these major types of development activities, there will be


• lots of different sub-activities


• UI design, code reviews, refactoring, build management, configuration 
management, deployment, testing, profiling, debugging, etc.


• meetings, e-mail, texting, IM, phone calls, etc. (i.e. coordination)


• change requests, identification of problems, resolution of ambiguities, 
problem solving, etc.


• “controlled chaos”
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Example Life Cycles

• One Anti Life Cycle


• “Code & Fix”


• Exemplars


• Waterfall


• Rapid Prototyping


• Incremental


• Spiral Model


• Rational Unified Process
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Code & Fix

17

Build First 
Version 

Retirement 

Operations Mode 

Modify until 
Client is satisfied 
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Discussion
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• Useful for small-scale, personal development


• Problems become apparent in any serious coding effort


• No process for things like versioning, testing, change management, etc.


• If you do any of these things, you are no longer doing “code and fix”


• Difficult to coordinate activities of multiple programmers


• Non-technical users cannot explain how the program should work


• Programmers do not know or understand user needs
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Waterfall

19

Requirements!

Verify!

Retirement!

Operations!

Test!

Implementation!
Verify!

Design!

Req. Change!
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Discussion

20

• Proposed in early 70s by Winston Royce


• Widely used (even today)


• Advantages


• Straightforward to Measure


• Possible to move between stages when the need occurs 


• Experience applying steps in past projects can be used in estimating 
duration of steps in future projects


• Produces software artifacts that can be re-used in other projects
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Discussion

• The original waterfall model had disadvantages because it disallowed 
iteration


• This made the process inflexible and monolithic


• Making estimates about how long the process would take was difficult


• Did not deal well with changing requirements


• Maintenance phase not handled well


• However, these are challenges that all life cycle models face


• The “waterfall with feedback” model was created in response


• Slide 19 shows the “with feedback” version
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Rapid Prototyping

22

Rapid Prototype!

Verify!

Retirement!

Operations!

Test!

Implementation!
Verify!

Design!

Req. Change!
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Discussion
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• Prototypes are used to develop requirements specifications


• Once reqs. are known, waterfall is used


• Prototypes are discarded once design begins


• Prototypes should not be used as a basis for implementation. Prototyping 
tools do not create production quality code


• In addition, customer needs to be “educated” about prototypes


• they need to know that prototypes are used just to answer requirements-
related questions


• otherwise, they get impatient!
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Incremental

24

For each build:!
Perform detailed!
design, implement.!
Test. Deliver.!

Requirements!

Verify!

Retirement!

Operations!

Verify!

Arch. Design!
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Discussion
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• Used by Microsoft (at least when building Windows XP)


• Programs are built everyday by the build manager


• If a programmer checks in code that “breaks the build” they become 
the new build manager!


• Iterations are planned according to features


• e.g. features 1 and 2 are being worked on in iteration 1


• features 3 and 4 are in iteration 2, etc.


• This life cycle also specifies two critical roles


• product manager and program manager


• Note: the original link is no longer active; fortunately I saved a copy

http://www.cs.colorado.edu/~kena/classes/5828/f14/supplemental-materials/productmanagementvsprogramm.pdf
http://www.25hoursaday.com/weblog/CommentView.aspx?guid=25c92015-9172-4bc8-8f91-f901f8811aff
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Spiral Model [Boehm, 1988]
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Discussion
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• Similar to Iterative Model, but:


• each iteration is driven by “risk management”


• Determine objectives and current status


• Identify Risks


• Develop plan to address highest risk items and proceed through 
iteration


• Repeat
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Rational Unified Process
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Discussion
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• A variant of the waterfall model with all of the major steps

• It advocates the use of object-oriented analysis and design techniques 

throughout

• Our “big three” concepts from Lecture 1 writ large


• Specification: objects and classes used in all phases

• Translation: objects and classes go from high level specs to extremely 

detailed specs that can be translated directly to code

• some OO A&D tools will generate source code based on UML designs


• Iteration: Product Cycles ⇒ Phase ⇒ Iterations ⇒ Major Life Cycle Steps


• A step towards agile in that the activities are “fractal”

• You may find yourself performing implementation and testing during 

project inception
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Agile Life Cycles

• Agile development is a response to the problems of traditional “heavyweight” 
software development processes


• too many artifacts


• too much documentation


• inflexible plans


• late, over budget, and buggy software
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Agile Manifesto

• “We are uncovering better ways of developing software by doing it and 
helping others do it. Through this work we have come to value


• individuals and interactions over processes and tools


• working software over comprehensive documentation


• customer collaboration over contract negotiation


• responding to change over following a plan


• That is, while there is value in the items on the right, we value the items on the 
left more”

31
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Agile Principles

• From this statement of values, twelve principles have been identified that 
distinguish agile practices from traditional software life cycles


• Lets look at five of them


• Deliver Early and Often to Satisfy Customer


• Welcome Changing Requirements


• Face to Face Communication is Best


• Measure Progress against Working Software


• Simplicity is Essential

32
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Deliver Early and Often to Satisfy Customer

• MIT Sloan Management Review published an analysis of software 
development practices in 2001


• Strong correlation between quality of software system and the early 
delivery of a partially functioning system


• the less functional the initial delivery the higher the quality of the final 
delivery!


• Strong correlation between final quality of software system and frequent 
deliveries of increasing functionality


• the more frequent the deliveries, the higher the final quality!


• Customers may choose to put initial/intermediate systems into production 
use; or they may simply review functionality and provide feedback
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Welcome Changing Requirements

• Welcome change, even late in the project!


• Statement of Attitude


• Developers in agile projects are not afraid of change; changes are good 
since it means our understanding of the target domain has increased


• More importantly


• agile practices (such as pair programming, refactoring, test driven 
development) produce systems that are flexible and thus, it is argued, easy 
to change

34
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Face to Face Communication is Best

• In an agile project, people talk to each other!


• The primary mode of communication is conversation


• there is no attempt to capture all project information in writing


• artifacts are still created but only if there is an immediate and significant 
need that they satisfy


• they may be discarded, after the need has passed


• as Kent Beck says “Shred It!”

35
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Measure Progress against Working Software

• Agile projects measure progress by the amount of software that is currently 
meeting customer needs


• They are 30% done when 30% of required functionality is working AND 
deployed


• Progress is not measured in terms of phases or creating documents

36
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Simplicity is Essential

• This refers to the art of maximizing the amount of work NOT done


• Agile projects always take the simplest path consistent with their current 
goals


• They do not try to anticipate tomorrow’s problems; they only solve today’s 
problems


• High-quality work today should provide a simple and flexible system that 
will be easy to change tomorrow if the need arises
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Agile Life Cycles

• Quite a few agile life cycles out there


• Extreme Programming


• Scrum


• Lean Development


• Feature-Driven Development


• Crystal


• Our textbook will present a generic life cycle that can map to most of them


• In addition, I will likely review Scrum in more detail at some point in the 
semester


• For now, let’s look at Extreme Programming
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Extreme Programming

• One example of an Agile method is extreme programming


• It was developed by Kent Beck during the late 90s when he became the 
project lead on a system called Chrysler Comprehensive Compensation 
System (C3). C3 was a payroll system written in SmallTalk


• The basic idea is that


• it takes standard programming practices to the “extreme”


• if software testing is good


• then we’ll write test cases every day


• and run them every time we make a change, etc.


• As Kent Beck says extreme programming takes certain practices and “sets 
them at 11 (on a scale of 1 to 10)”

39
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XP Practices (I)

• Insight into Agile Methods can be 
gained by looking at some of XP’s 
practices


• Customer Team Member


• User Stories


• Short Cycles


• Acceptance Tests


• Pair Programming


• Test-Driven Development


• Collective Ownership


!

!

• Continuous Integration


• Sustainable Pace


• Open Workspace


• The Planning Game


• Simple Design


• Refactoring


• Metaphor
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XP Practices (II)

• Customer Team Member


• The client should have a representative on the development team


• User Stories


• Requirements are captured in brief statements about the functionality 
discussed with the client


• Acceptance Tests


• Details of a user story are documented via test cases


• The user story is complete when the test cases pass


• Short Cycles


• Too many things can change during development, so plan to release working 
software every few weeks (typically 2 weeks, 10 working days)
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XP Practices (III)

• Pair Programming


• All production code is written by pairs of programmers working together


• Studies in 2000/2001 indicated that pair programming helped to significantly 
reduce a project’s defect rate while minimally impacting team efficiency


• Test-Driven Development


• No production code is written except to make a failing test case pass


• Collective Ownership


• A pair is allowed to check out any module and improve it


• Developers are never individually responsible for a module


• The system is owned by the team
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XP Practices (IV)

• Continuous Integration


• The system is built and deployed at least once per day


• Helps to identify integration problems early


• Encourages developers to “grow” a system incrementally


• Sustainable Pace


• Software development is not a 5K race, it’s a marathon


• You need a sustainable pace or your team will burn out


• As a result, XP teams do not work overtime; “40 hour work week”
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XP Practices (V)

• Open Workspace


• Pairs work near each other in order to promote “team awareness” of the current 
state of the system


• The team naturally helps each other as problems are encountered


• Some pushback on this: others prefer pairs to work in isolation to allow them to 
“get in the flow” and avoid interruption


• The Planning Game


• Estimates are attached to ALL user stories


• The team creates the estimate (in terms of points)


• The customer assigns priorities


• Each iteration, we use the priorities and estimates to decide what to work on
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XP Practices (VI)

• Simple Design


• XP emphasizes simplicity at all times


• “Consider the simplest thing that could possibly work”


• “You ain’t going to Need It”


• “Once and Only Once” (Don’t Repeat Yourself)


• Refactoring


• Supported by test cases, XP teams constantly refactor their code to fight “bit rot”: 
clutter that can accumulate over time in a design


• Metaphor


• Make sure to have a theme that ties the entire system together


• Can be used to discuss the system’s architecture and improve morale (t-shirts!)
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Shared Goal: Delivering Value to your Customer

• Extreme programming is just one example of an agile method


• Other agile methods will differ in some of the practices, the way they 
arrange the work day, or the way they arrange the team (such as Scrum)


• However, they all have a shared goal


• Delivering something of value to your customer every iteration


• If you adopt the customer’s perspective, this makes sense


• What do you want to see from the developers working on your project?


• Status reports or working code?
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Summary

47

• Life cycles make software development


• predictable, repeatable, measurable, and efficient


• High-quality processes should lead to high-quality products


• at least it improves the odds of producing good software


• We’ve seen


• Typical stages in software life cycles


• Examples of software life cycles


• The agile response to traditional life cycles
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Coming Up Next

• Lecture 4: Introduction to Concurrent Software Systems


• Lecture 5: User Stories


!

• Homework 2 assigned today; Due by start of Lecture 6 on 9/11/2014

48


