
© Kenneth M. Anderson, 2014

Course Overview

CSCI 5828: Foundations of Software Engineering

Lecture 01 — 08/26/2014

1



© Kenneth M. Anderson, 2014 2

All problems in computer science can be solved by another level of indirection.

David Wheeler



© Kenneth M. Anderson, 2014

Goals

• Present a fundamental introduction to the field of software engineering


• Present brief history and foundational theory of software engineering


• Survey software engineering concepts, terminology, and techniques


!

• Take an in-depth look at three important software engineering concepts


• software development life cycles, with an emphasis on agile methods


• designing and implementing concurrent software systems


• software design

3



© Kenneth M. Anderson, 2014

About Me

• Associate Professor


• Ph.D. at UC Irvine


• 16 Years at CU;


• Start of my 33rd Semester!


• 8th time teaching this class


• Research Interests


• Software & Web Engineering


• Software Architecture


• Crisis Informatics

4



© Kenneth M. Anderson, 2014

Office Hours

• Fridays, 2 PM to 3 PM, or by 
appointment


• DLC 170 (shown in red on right)


!

• Please send me e-mail to let me 
know you plan to stop by

5



© Kenneth M. Anderson, 2014

Class Website

6

<http://www.cs.colorado.edu/~kena/classes/5828/f14/>

http://www.cs.colorado.edu/~kena/classes/5828/f14/


© Kenneth M. Anderson, 2014

Check the website every day! (I’m serious)

7

• To make it easy for you to track updates


• Go to the “What’s New” page and


• Subscribe to the RSS feed


• Feed readers are available for all platforms


• Feedly, NetNewsWire, etc.


• The website is your source for


• the class schedule, homework assignments, announcements, etc.


• To turn assignments in and to distribute some class materials, I will make use 
of D2L, which you can access via MyCUInfo.



© Kenneth M. Anderson, 2014

Textbooks

8

Available at the CU bookstore or on-line

<http://www.cs.colorado.edu/~kena/classes/5828/f14/textbooks.html>

http://www.cs.colorado.edu/~kena/classes/5828/f14/textbooks.html


© Kenneth M. Anderson, 2014

Three Main Topics

• Agile and User Stories


• Agile is an example of a software life cycle


• User stories are the primary way that Agile life cycles capture requirements


• Design and Implementation of Concurrent Systems


• The days of waiting for faster hardware is (long) gone


• To make software systems that perform efficiently, you need to incorporate 
concurrency into your system designs


• Software Design


• Can you identify/describe the design of a software system? (As distinct 
from a system’s features and requirements?) How does a system’s design 
contribute to the success of a software development project?


• Contrast Sandvox with Macaw with Muse

9

http://www.karelia.com/products/sandvox/
http://macaw.co
http://www.adobe.com/products/muse.html


© Kenneth M. Anderson, 2014

Tentative Course Structure

10



© Kenneth M. Anderson, 2014

Emphasis on Tentative

11

• The schedule on the previous slide WILL change


• However, you can trust that


• There will be homeworks, quizzes, a midterm, a presentation, and a 
project


• The midterm will be held on Tuesday, October 14th 
• CAETE students will need to work with CAETE to identify a person to 

proctor their midterm exam; You will have from October 14th to 
October 21st (one week) to take your exam and have it sent to me by 
your proctor

☞



© Kenneth M. Anderson, 2014

Course Evaluation

• Your grade will be determined by your work on


• Class Participation and Attendance (5%)


• Quizzes (10%)


• Homeworks (25%)


• Midterm (20%)


• Presentation (20%)


• Project (20%)


• Quizzes will be taken on D2L; the presentation and project will be submitted 
on D2L as well

12



© Kenneth M. Anderson, 2014

Honor Code

• You are allowed to work together in teams of up to 4 people on


• the homeworks


• the presentation


• the project


• The quizzes and the midterm are individual work


!

• The Student Honor Code applies to classes in all CU schools and colleges. 
You can learn about the honor code at:


• <http://www.colorado.edu/academics/honorcode/>.

13

http://www.colorado.edu/academics/honorcode/


© Kenneth M. Anderson, 2014

Late Policy

• Assignments submitted late incur a 15% penalty


• You may submit a homework assignment and the presentation up to one 
week late


• after that the submission will not be graded and you’ll receive 0 points 
for it


• The quizzes, the midterm, and the project may not be submitted late


• If you discover that you cannot attend the midterm on October 14th, 
you need to get in touch with me ASAP before the midterm to make 
other arrangements


• trying to make arrangements after the midterm will be very difficult

14



© Kenneth M. Anderson, 2014

Syllabus Statements

• The University asks that various policies be presented to students at the start 
of each semester. These policies include


• Disability Accommodations


• Religious Observances


• Classroom Behavior


• Discrimination and Harassment


• Honor Code


• See <http://www.cs.colorado.edu/~kena/classes/5828/f14/syllabus-
statements.html> for more details

15

http://www.cs.colorado.edu/~kena/classes/5828/f14/syllabus-statements.html


© Kenneth M. Anderson, 2014

Programming Languages

• Code examples this semester will be drawn from a number of languages


• Java, Objective-C, Clojure, Elixir, C, Ruby, Python, possibly more!


• In general, I’m agnostic on programming languages used for assignments


• However, some of your homework assignments will require a specific 
language in order to make use of a specific concurrency framework


• Take a look at your concurrency textbook to get an idea of the range of 
languages and frameworks we’ll be looking at

16



© Kenneth M. Anderson, 2014

What is Software Engineering

• Software 

• Computer programs and their related artifacts


• e.g. requirements documents, design documents, test cases, UI 
guidelines, usability tests, …


• Engineering 

• The application of scientific principles in the context of practical 
constraints


• Consider: Chemist versus Chemical Engineer


• Software engineers have a similar relationship with computer scientists


• Software engineering has a similar relationship with computer science

17



© Kenneth M. Anderson, 2014

Emphasizing the Point

• Consider this story on Slashdot from 2012:


• IBM Shrinks Bit Size To 12 Atoms


• From the story:


• “IBM researchers say they've been able to shrink the number of iron atoms 
it takes to store a bit of data from about one million to 12… Andreas 
Heinrich, who lead the IBM Research team on the project for five years, 
said the team used the tip of a scanning tunneling microscope and 
unconventional antiferromagnetism to change the bits from zeros to 
ones… That solved a theoretical problem of how few atoms it could take 
to store a bit; now comes the engineering challenge: how to make a 
mass storage device perform the same feat as a scanning tunneling 
microscope.

18

http://hardware.slashdot.org/story/12/01/12/206224/ibm-shrinks-bit-size-to-12-atoms


© Kenneth M. Anderson, 2014

What is Software Engineering

• What is Engineering?


• Engineering is a sequence of well-defined, precisely-stated, sound steps, 
which follow a method or apply a technique based on some combination 
of


• theoretical results derived from a formal model


• empirical adjustments for unmodeled phenomenon


• rules of thumb based on experience


• This definition is independent of purpose


• i.e. engineering can be applied to many disciplines

19



© Kenneth M. Anderson, 2014

What is Software Engineering

• Software engineering is that form of engineering that applies…


• a systematic, disciplined, quantifiable approach,


• the principles of computer science, design, engineering, management, 
mathematics, psychology, sociology, and other disciplines…


• to creating, developing, operating, and maintaining cost-effective, reliably 
correct, high-quality solutions to software problems. (Daniel M. Berry)


!

• With respect to disciplined


• Consider: Difference between professional musician and amateur musician

20



© Kenneth M. Anderson, 2014

What is Software Engineering?

• Issues of Scale


• Software engineers care about developing techniques that enable the 
construction of large scale software systems


• Issues of Communication


• Consider the set of tools provided by sites like Rally, Fogbugz, or 
Assembla.com


• Issues of Regulation


• Other engineering disciplines require certification; should SE?


• Issue of Design


• dealing with integration of software/hardware/process

21

http://www.rallydev.com/agile_products/editions/community/
http://www.fogcreek.com/FogBUGZ/
http://www.assembla.com/
http://www.apple.com/macbookair/


© Kenneth M. Anderson, 2014

Types of Software Development

• Desktop Application Development


• Contract Software Development / Consulting


• Mobile Application Development


• Web Engineering (Development of Web Applications)


• Military Software Development


• Open Source Software Development


• Others??


• These categories are not orthogonal!

22



© Kenneth M. Anderson, 2014

Jobs related to Software Engineering

• Software Developer


• Software Engineer


• SQA (Software Quality Assurance) 
Engineer


• Usability Engineer


• requires strong HCI/CSCW 
background


• Systems Analyst


• professional requirements gather 
and/or designer


• DBA


• System administrator / DevOps


• Software Architect


• Software Consultant


• Web Designer


• Build Manager /  Configuration 
Management Engineer


• Systems Engineer


• Computer Graphics Animator

23



© Kenneth M. Anderson, 2014

Core Principles (What I call “The Big Three”)

• Specification 

• Software engineers specify everything


• requirements, design, code, test plans, development life cycles


• What makes a good specification?


• Translation 

• The work of software engineering is one of translation, from one 
specification to another; from one level of abstraction to another; from one 
set of structures to another (e.g. problem/design decomposition)


• Iteration 

• The work of software engineering is done iteratively; step by step until we 
are “done”

24



© Kenneth M. Anderson, 2014

These Core Principles are Everywhere

• You will find these principles in all things related to software engineering


• its techniques & tools


• its development life cycles


• its practices


• And the most important part of software engineering?


• The people who perform it


• Ultimately, software engineering comes down to the people involved


• the customers, the developers, the designers, the testers, the marketers, 
etc.; You’ll find the best development projects are conversations

25



© Kenneth M. Anderson, 2014

Software Engineering: More than just Programming

• Sample Application with a performance problem


• A program which loads a directory of images and animates them


• It takes a while for the images to appear


• How would a software engineer go about discovering what part of the code is 
slowing things down?


!

• The fix will often not be easy


• Case in point: to fix the problem, we needed to introduce concurrency


• and that can introduce its own problems!

26



© Kenneth M. Anderson, 2014

Software Engineering: More than just Programming

• Discussion


• We could have used “print” statements to diagnose problem


• but that introduces a bunch of code that we have to delete later


• problem: we might make a mistake when adding those statements 
or taking them away ⇒ i.e. maintenance headaches


• plus, we’re just duplicating (badly) the functionality that more powerful 
tools can provide


• debuggers and profilers exist: software engineers use them


• Solutions are not straightforward and will trigger re-designs


• Adding a queue and chunking the work into tasks is not easy

27



© Kenneth M. Anderson, 2014

Software Engineering is Hard

• No doubt about it: software engineering is hard


• Projects are late, over budget, and deliver faulty systems


• See 1995 Standish Report for one summary of the problem


• Why?


• For insight, we will take a look at an article by Fred Brooks called No Silver 
Bullet


• Please read it by Thursday’s lecture 

• Paper is available on IEEE Digital Library: No Silver Bullet

28

http://net.educause.edu/ir/library/pdf/NCP08083B.pdf
http://www.computer.org/portal/web/csdl/doi/10.1109/MC.1987.1663532


© Kenneth M. Anderson, 2014

Questions?

29



© Kenneth M. Anderson, 2014

Coming Up Next

• Lecture 2: No Silver Bullet, Homework 1 (Due next Tuesday)


• Lecture 3: Introduction to Software Life Cycles and Agile, Homework 2


• Lecture 4: Introduction to Concurrent Software Systems

30


