
a guide to an object oriented
programming language

Niket Sheth

JAVA

Agenda

Outline of Java

History of
Java

OOP Using
Java

Features of
Java 4Closing

Remarks

History of Java

Brief History Of How Java Came To Be

History (I)

• The Java platform and language began as an internal
project at Sun Microsystems in December 1990.

• Initiated due to the frustration caused by the
complexity of C++ and its lack in services of security,
portability, distributed programming, and
multithreading.

• Patrick Naughton, James Gosling, and Mike Sheridan
decided to create the new programming language
instead of modifying and extending C++.

History (II)

• Initially called Oak, the language and the platform failed to
make an impression in the cable TV industry which forced the
developers to re-launch product for the World Wide Web in
1994.

• A small browser was created by Naughton called WebRunner
(later renamed HotJava) which was implemented using Java.
The browser supported Java applets and served as a
demonstration for Sun’s new technology.

• BOOM! Java’s potential was finally acknowledged in the
World Wide Web and the rest, as they say, is history.

OOP Using Java

Object Oriented Concepts In Java

Classes

Objects

Inheritance

Interfaces

Overview

OOP Using Java

• Classes are a blueprint for an object

• Declared as follows:

• Class declarations include:
• Access modifies (discussed later) preceding the class keyword

• The class name
• The name of parent class (superclass, discussed later) preceded by the keyword

extends.
• A the name of the interface (discussed later) that the class represents preceded by

the keyword implements. A comma-separated list if more than one interface.

• The class body inside the braces {}

Classes – Declarations

Classes – Access Modifiers (I)

• To help increase the integrity of the software system built by
developers, Java offers the use of modifiers to control the access to
members defined in a class.

• public: Members are accessible anywhere the class itself is
accessible and are also inherited by all subclasses.

• protected: Members accessible within its own class as well
as its own package. Furthermore, accessible to and
inheritable by code in subclasses in another package.

• private: Members declared private are accessible only
within their own class.

Classes – Access Modifiers (II)

• When no modifier precedes a member declaration, a default
modifier is supplied by Java of type package-private.

• package-private: Member accessible and visible only within its own
package.

• The table below summarizes the modifiers and their access levels:

Modifier Class Package Subclass Outside World

public ✓ ✓ ✓ ✓

protected ✓ ✓ ✓ X

private ✓ ✓ X X

package-private ✓ X X X

• Constructor is a body of code that is executed to initialize an object
after its creation.

• Declared in the same fashion methods are declared, but they have the
same name as the class they initialize with no return types.

• A class can have multiple constructors and each constructor can have
zero or more arguments.

Classes – Constructors (I)

ClassName myObject = new ClassName(args);

• The new operator in the sample above creates an object by
invoking the constructor with the corresponding arguments to
initialize the object.

• The new operator invokes the appropriate constructor based
on the number of arguments that were provided to it.

• Java differentiates the multiple constructors based on the
number and type of parameters in the list like it would with
overloaded methods.

Classes – Constructors (II)

• If no explicit constructor is defined in a class, Java provides a default
constructor which takes no arguments and performs no special actions or
initializations.

• This default no-argument constructor is of the superclass.

• Access modifiers can be used to control the call of the constructor in
relation with other classes

Classes – Constructors (III)

• Initializing objects as they are created seem easy, but how about
destroying the objects?

• Some languages require the programmer to delete objects that are
no longer in use to free up memory in the system.

• Java realizes the disadvantages of that concept and provides a
utility that automatically takes care of destroying the objects.

• This internal destructor of Java is referred to as Garbage Collection
and is a form of automatic memory management.

• The programmer has no control over this feature of when the
object gets destroyed.

Classes – Destructors (I)

• Garbage collector calls the finalize() method on an object when it

determines that there are no more references to it.

• Destroying and freeing up memory is now the responsibility of
the system, not the programmer.

• GREAT! No more memory leaks due to programmer’s inability
to delete objects when necessary or any accidents where an
object is deleted even if it has references to it (referred to as
the dangling pointer error).

Classes – Destructors (II)

Classes – Nested Classes (I)

• Java allows the programmer to define a class within another class, called a
Nested Class.

• Nested classes can be static or non-static. Non-static classes are called
Inner Classes.

• Nested classes are defined the following way:

• OuterClass can access public or private members of the nested classes.

Classes – Nested Classes (II)

• Static Nested Classes
• Have class scope. Associated with its outer class.

• Static nested classes are top-level classes. Definition is preceded by the
static keyword followed by class and then then class name.

• Can access ONLY static members of the outer class.

• Use outer class members ONLY through an object reference.

• Instance of outer class not needed to instantiate static nested class.

• Static nested classes accessed via the following way:
• OuterClass.StaticNestedClass

• To create an object of the static nested class
• OuterClass.StaticNestedClass staticObj = new OuterClass.StaticNestedClass();

Classes – Nested Classes (III)

• Inner Classes
• Instance scope (associated with an instance of its outer class).

• CANNOT define static members since associated with an instance.

• InnerClass instance exists ONLY WITHIN an OuterClass instance.

• InnerClass instance has direct access to all the methods and attributes of
OuterClass, even if they are defined to be private.

• To instantiate an inner class, the outer class needs to be instantiated first
and then create the inner class object within the outer class object

OuterClass outObj = new OuterClass();
OuterClass.InnerClass innerObj = outerObject.new InnerClass();

Classes – Nested Classes (IV)

• Why Nested Classes?

• Logical Grouping of Classes – If a class needs the help of another
class, it is logical to embed it in the class and keep them grouped.
This nest of helper classes simplifies the code.

• Increased Encapsulation – If class B needs class A, then B can be
defined in A. That way while keeping A’s members private, B can
still access them and be hidden from the rest of the world.

• Increased Readability/Maintainability of Code – Small nested
classes within top-level outer classes place the code closer to
where it is being used.

Objects - Creation

• Objects are an instance of a class.

• Interact with other objects by invoking methods.

• Have their own copy of class attributes.

• Three parts to creating an object
1. Declaration

• type objName;

2. Instantiation
• The new operator creates the object by allocating memory for the object and its’

attributes.

3. Initialization
• The new operator calls the constructor to initialize the object. Constructor can have

zero or more arguments.

1. 2. 3.

ClassName objName = new ClassName(args);

Objects - Usage

• Referencing Object’s Attributes
• objectReference.attributeName;

• Referencing Object’s Methods
• objectReference.methodName(args);

- or -
• new ClassName(args).methodName(args);

• ClassName above refers to the constructor.

• A method is invoked as long as it is acted upon by an object reference.
The second way above returns an object reference and therefore the
expression is valid.

• There can be zero or more arguments provided to the method.

Objects - Deletion

• Some OO languages require the programmer to keep track of all
the objects created and have them explicitly delete them.

• As mentioned before, Java provides a destructor feature (Garbage
Collection) which keeps track of the object created and deletes it
when it is no longer needed.

• This shifts the responsibility of deleting objects to the system and
prevents any accidents or memory leaks from occurring.

Inheritance – java.lang.Object

• java.lang package of the Java platform defines a class Object which
implements behavior common to all classes and sits at the top of the class
hierarchy tree. ***

• All classes in the Java platform (even the one the programmer creates) are
subclasses of the Object class.

• The default no-argument constructor that Java provides for classes with no
explicit constructor defined comes from the Object class since it has one
defined in its class body.

• java.lang.Object provides methods that can be invoked on any Java object for
utility and threading support (i.e. finalize(), clone(), getClass()).

*** The Java Tutorials

Inheritance – Declaration and Overriding

• Inheritance is declared via the extends keyword which is placed after the class name and before the
superclass name. It is declared the following way:

• A subclass can define a method with the same method signature as the one in its superclass which will
hide the method implementation in the superclass. This is called method overriding.

• Inheritance is a powerful OO technique, but can be dangerous if a subclass does not uphold the
contract set forth by its superclass.

• One of the ways to avoid such a concern can be through Java’s final modifier. When this modifier
precedes a class or method declaration, it prevents the class from being subclassed and prevents the
method from being overridden, respectively.

• Imagine a CheckersGame algorithm which goes through and evaluates the game. If there happened to
be a subclass for this algorithm, we would not want the subclass to change the getFirstPlayer() method to
return something different. Thus, it is declared with the final modifier to prevent it from it being
overridden and exhibit unwanted results from such an action.

Inheritance – super operator (I)

• Through inheritance, Java provides its developers with the use of the super keyword.

• super is for use in a subclass and it refers to the methods in the superclass.

• super is used to access all the non-private methods of a superclass.

• super knows nothing about the methods of a subclass when used. It ONLY knows about the

methods in the superclass and executes them.

• We know that overriding methods in a subclass hides those same methods in the superclass

instead of replacing them. So, to access those hidden methods, super can be used.

• super is handy when an overridden method in the subclass is not appropriate and actual

behavior of the superclass method is necessary or a method in superclass is needed for use in
the subclass definition.

Inheritance – super operator (II)

• In this example, Subclass overrides methodOne().

• Within the Subclass, methodOne() refers to the implementation defined in SubClass since it overrides the

method declared in SuperClass. So to refer to the method defined SuperClass, the SubClass must use

the proper name invocation using super as shown.

• Compiling and executing Subclass prints the following print statements in the command prompt.

• It can be seen that super.methodOne() invokes the methodOne() of SuperClass and executes its code.

Output when Subclass.java is
compiled and executed. Shows

how super is used to invoke

superclass methods.

Inheritance – this operator

• At times the object needs to know its own reference and so Java provides the
use of this operator.

• It is generally used in the body of code of an instance method to refer to the
object that contains the method.

• The intent is to refer to “this object”, the one right here that the method is in.

• For example, in the constructor above, I need to assign a value to the instance
field of the object that contains the constructor and so this.name=name does
exactly that. It sets the name field of the object of the class by assigning the
“value” of the name argument that was passed in to the constructor.

Inheritance – Constructor Chaining

• A subclass inherits all of the public methods and attributes of its superclass except
its constructors. However, a subclass can use its superclass’ constructor by using the
super operator followed by the arguments that need to be passed in if appropriate.

• Invocation of a superclass’ constructor must be the first line in the subclass
constructor and then the initialization code of that subclass follows.

• this can be used to access other constructors in the same class and must be the first

line in the class’s constructor.

• If a subclass constructor invokes a constructor of its superclass, either explicitly
through super or implicitly by Java, one can see that there will be a whole chain of

constructors called, all the way back to the constructor of Object. This is called

constructor chaining.

Inheritance – Constructor Chaining

• In the example to the right, Subclass
inherits all the public fields of its
superclass while adding its own fields.
However, the constructor does not get
inherited.

• With the use of super, the subclass can

still access the superclass’ constructor.

• this can be used to access other

constructors in the same class for help in
initializations.

• In SubClass, Constructor 2 calls the
SuperClass constructor while Constructor
3 calls Constructor 1 of SubClass for part
of the initialization.

Inheritance – Multiple Inheritance

• Java DOES NOT support multiple inheritance.

• Java creators wanted a simplified language than C++ that developers can
grasp quickly. So they made a language similar to C++ without carrying over
its complexities, hence to make it simple and easy to use.

• Since multiple inheritance causes confusion and many problems than it
actually solves, it was taken out of the equation by the creators.

• The concept of multiple inheritance can still be achieved through the use of
interfaces which will be discussed in later topics.

Inheritance – Abstract Classes (I)

• Programmers, in the creation of their software system, might want to make the
“design by contract” principle explicit. This is where abstract classes and interfaces
are useful. Java supports both these OO concepts of Abstract Classes and Interfaces
(which will be discussed in a later topic).

• Abstract classes are meant to be subclassed. Subclasses must provide the abstract
method implementations. Abstract classes can also provide implementations to
method behaviors which are common to all subclasses.

• Abstract classes are defined with the use of abstract preceding the class keyword

• Abstract methods are declared with the keyword abstract preceding the return type of

the method

Inheritance – Abstract Classes (II)

• There are going to be times when a
programmer defines a superclass which
outlines the structure of a given
abstraction (a generalized form) which in
some respects is shared by all its
subclasses, but leaves the subclasses to
fill in the rest of the details.

• An abstract class would come into play
for this type of a scenario.

• For example, say a user wants to create
an application which draws different
shapes (i.e. circles, square) and displays
their data (i.e. area). All shapes would
have some common methods and
attributes, but the way they are drawn
and the calculation of their data is
specific to the different shapes.

Interfaces - Declaration

• Another way to “design by contract” explicitly is through the use of interfaces which Java
provides its users. Interfaces are important and useful when programmers want to define roles
in a software system that can be played by its classes.

• Interface declaration composes of an access modifier, the keyword interface, the name of the
interface, and the body of the interface. If an interface extends from several other parent
interfaces, then the keyword extends with a comma-separated list of parent interfaces follows
after the name of the interface.

• The interface body consists of only method signatures (not their implementations) followed by
a semicolon. Method implementations are not provided. All methods in an interface are
implicitly public so the explicit use of the modifier is not required. Interfaces can define
constant values which are public, static, and final.

• A class implements an interface by having the implements clause in the class declaration. The
class can implement more than one interface, so a comma-separated list follows the implements
clause. The implements clause follows the extends clause (if any).

Interfaces - Implementation

• As an example we will build a Speak
interface for the subclasses of
countryPerson.

• The subclasses implement the Speak
interface by providing implementations
to those methods declared in the
interface. The method
implementations are specific to the
subclass.

• At times a programmer might want to
expose only the functionality of an
object to its user, its programming
interface, without revealing its
implementation. This exhibits the
concept of encapsulation which is
important in OOP. Interfaces are a
great way to showcase a thorough
description between what the
application programming interface is
and what isn’t.

• This way the implementation of the
objects can change without having the
user be affected by it or have the user
be dependent on it.

Interface – Multiple Inheritance

• Since Java does not support multiple inheritance, a programmer can still reap the
benefits of such concept through multiple interfaces in which a class can implement
more than one interface.

• Since Java classes can implement any number of interfaces, the classes can play
multiple roles. Due to this, a class can take advantage of the multiple inheritance
scheme as they display behavior of the various interfaces it implements without
having to deal with the complexities and difficulties of multiple inheritance.

• Implementation of more than one interface is done through a comma-separated list.

• Shape would have to provide implementations for all the methods declared in all the

interfaces it implements.

• As one can see, a developer can still take advantage of multiple inheritance by
having Shape play several different roles via the interfaces it implements.

Interfaces – Interface Inheritance

• An interface can extend any
number of other interfaces through
inheritance. This is referred to as
Interface Inheritance.

• If an interface extends from several
other parent interfaces, then the
keyword extends with a comma-
separated list of parent interfaces
follows after the name of the
interface.

• A class who implements Baseball
must implement the methods
defined by that interface as well as
the methods inherited from its
parent interfaces.

Features of Java

The Things That Make Java A Powerful OO Language

Annotations

Anonymous Classes

Generics

Packages

Enum Types

Application Programming Interface (API)

Features of Java

Overview

Annotations – What they are and for what?

• Java introduces many new features for its users, one of them being Annotations.

• Annotations offer a way to associate and add metadata with program elements
like classes, interfaces, and methods.

• They serve as a systematic way to support a declarative programming model.

• Annotations provide data about a program without affecting the operation of the
code they annotate.

• Some uses for the Java feature of annotations:
– Information for the Compiler – Annotations used by the compiler to detect errors or

suppress warnings.

– Compiler-Time and Deployment-Time Processing – Tools can process annotations to
generate code, XML files, and etc.

– Runtime Processing – Annotations can also be examined at runtime.

• The inclusion of annotations leads developers to create programs that are less
likely to be bug-prone.

Annotations – Three Predefined by Java (I)

@Deprecated
• As a software system evolves due to new requirements, changes to its API are expected (i.e. new and

better methods added, methods renamed, attribute fields change). Such changes introduce problems
because the old API needs to be kept around until developers make the transition to the new API and not
continue to program the old one.

• So to illustrate this deprecation of the old API, @Deprecated can be used. A developer can add an

@deprecated (notice the lower case ‘d’) tag to a method’s javadoc comments for an explanation of why it

was deprecated.

• The program element marked with this annotation informs the compiler that the element is deprecated
and should not be used. The compiler then produces a warning when an element is used with the
@Deprecated annotation.

• @Deprecated is put above the deprecated fields or methods as shown. The warning as a result of

compiling a file that uses @Deprecated is shown.

Annotations – Three Predefined by Java (II)

@Override

• This annotation is meant to be used with method declarations in a program. This
annotation informs the compiler that the method is required to override a method of the
superclass. Compiling a program with this annotation would produce a compile-time
error notifying the user if the method did not override its superclass method.

• This annotation helps capture errors quickly. Programmers can make mistakes and
misspell the method name, specify the wrong arguments, or have a different return type
when trying to override an existing method. This helps considerably with the debugging
phase if such an issue were to occur since the compiler would generate the error to let
the developer know.

• @Override is put above the method that needs to be overridden as shown:

• Example: The example shows how the user

misspelled the hashCode() function

of Object class and received an error.

Annotations – Three Predefined by Java (III)

@SuppressWarnings
• This annotation informs the compiler to suppress specific warnings that it would normally tell you

about.

• In Java, warnings belong to a certain category, so one has to tell the annotation which type of
warnings to suppress.

• For example, if you want to use a deprecated method, the compiler would normally produce a
warning. However, @SuppressWarnings annotation causes such a warning to be suppressed.

• The category of which warnings you want to suppress are put in parenthesis followed by braces as
shown. More than one warning type is done through a comma-separated list in those braces. The
annotation is put above the expression you don’t want the compiler to generate a warning about.

@SuppressWarnings({warning1, warning2})

• The example from @Deprecated is used to show how the compiler does not generate a

warning when @SuppressWarning is used with deprecation as the type of warning.

Anonymous Classes – What, When, Why?

What?
• Anonymous Classes are classes without names (hence anonymous).
• They are defined and instantiated in a succinct manner using the new operator.

• Anonymous Class is a Java expression where defining the class and instantiating it are
combined into one step. Since this type of a definition is an expression it can be included
as part of a larger Java expression, like a method call.

• Methods defined in anonymous classes have direct access to all of the members of the
enclosing class, even private members.

When?
• Anonymous classes should be used when

• The class body is short
• Only one instance of the class needs to be instantiated
• The class is going to be used right after it’s declaration

Why?
• Improves readability of code since syntax is succinct and reduces clutter in code.
• Lets developers define one-shot, “on the fly” classes where they are needed when a

specific event takes place.
• Is a good way to group classes together

Anonymous Classes –Declaration & Rules

Declaration

• The syntax of how to define and instantiate an anonymous class is shown in the figure
below:

• Either of the two expressions can be used and they are usually incorporated in a larger
overall Java expression (like a method call).

Rules

• Anonymous classes cannot be public, private, protected, or static. No modifiers specified
in anonymous class definitions.

• Only one instance of an anonymous class can be created since the definition is a single “in-
line” expression. Anonymous classes not appropriate for creation of more than one
instance of the class whenever the code is executed.

• Cannot define constructors in anonymous classes.

Anonymous Classes – Example

• Anonymous classes are most often used in handling events in a GUI. So rather than defining a
new class and then instantiating an object from it to handle each event of related to a GUI (press
of a button in a menu), anonymous classes would be used.

• In the example below, to do processing on a button in the GUI, we implement ActionListener for
the button we want to listen to and define the class and instantiate the object right on the spot
while defining and calling a method for it.

• Notice the fact that there is no name for the class when it is defined. It starts with the new
keyword. ActionListener() is the interface name and implementation for its method is provided.

• The semicolon at the end of the statement is actually part of the class definition and required at
the end of every Java expression.

Generics – What, When, and Why?

What?
• Generics are a feature that define generic types and methods. The generic types or methods are

composed of type parameters.

• Allow developers to write generic code independent of a particular type. This is similar to the
template feature in C++.

• Generic types form parameterized types by providing actual type arguments to replace the
formal type parameters.

ArrayList<E> Generic type with type parameter E

ArrayList<String> Parameterized type with actual type argument String

When?
• Mostly when working with the implementation and use of collections (i.e. ArrayList, LinkedList)

Why?
• Enables an early error detection of bugs at compile time instead of at run-time.

• Requires fewer type casts and allows the compiler to carry out more type checks.

Generics – Generic Type

• If you define a generic class as defined below, it basically makes T a placeholder for a type
that the user wants to later concretely define. T is a variable whose value is anything that
the user passes in (i.e. class type, interface type). T is a formal type parameter.

• In the class declaration, it defines a private attribute of type T and the getter and setter
methods return a value of type T.

• In order to create a reference to this generic class, the user has to do a generic type
invocation where T is overridden to be an actual type, like String.

• To instantiate this class
• ToolKit<String> strToolKit = new ToolKit>();
• strToolKit is now referencing a “ToolKit of String”

• Furthermore, if the user invokes set with an incompatible type, like Integer, a compile error
would be generated.

Generics – Parameterized

• Let’s say you are using a simple linked list stored with Integers of data. You want to retrieve

all the elements from it and do more processing. The linked list is defined as follows.

• Now if you want retrieve a specific part of the list, you’ll need to do type casting since
collections accept objects of various types but return an Object reference. Now if the user

wants the third Integer, Integer i=(Integer) list.get(2); would be overlooked during compile time

but at run-time CLassCastException will be thrown since we have stored a String at that

location.

• If the list is designed with generics in mind, the bug would have been caught during
compile time instead of run-time.

• Use of generics suppresses the use of casts since objects with a different reference other
than the parameterized type (shown below between < >) used in generics would produce a
compile time error.

Packages – The What

What?
• As software developers, we tend to start with small projects where we put all our files

under one directory. However, as our project grows bigger and bigger, putting all the
files under one directory would not be a great idea and managing them would be a
nightmare.

• To avoid such a crisis, Java gives us the feature of using Packages.

• Packages help organize a developer’s java files into directories under the right
categories according to their functionality and usability. It is a mechanism for
grouping related types (i.e. classes, interfaces) into one common bundle.

• The basic concept is that files in one package have a different functionality than those
in another package.

• For example, java.io package deals with I/O related services of reading and writing
classes while java.net deals with providing users with classes that implement
networking applications.

• As you can see, various packages of the Java platform are grouped by the function of
their classes.

Packages – The Why

Why?
• Packages provide the ease of maintenance, organization, and improved collaboration

amid developers.

• They are great for avoiding naming conflicts since packages create a new namespace.
• For instance, if you have a class named Calendar(), this name would be in conflict with the

Calendar() class defined in the JDK. However, java.util is the package for the Calendar() class in
JDK. So putting your Calendar() class in another package you define prevents the name
collision from occurring.

• Packages provide control access over your defined types.
• Types within a package can have unrestricted access to other types in the same package,

but a developer can still restrict access of those types outside the package.

• Packages offer the simplicity of finding and using the specific types of a software
system.
• Since packages are a mechanism for grouping related types (i.e. classes, interfaces) into a

common bundle, it is easier for developers to know which types are related and where to
find specific ones with a certain functionality.

Packages – Creation

• Packages are defined with the
keyword package followed by the
name for the package at the top of
the source file before any type
definitions. It’s that simple!

• Packages are for related types. In
the Abstract Class section earlier
we defined a bunch of classes that
represented graphical shapes. Let’s
say we write an interface
Transformable which transforms the
shapes in a particular way which
the classes can implement. The
interface and classes are in their
respective .java files. Since they are
all related, let’s bundle them up in
a package. The way the package
statement is written is shown at
the right.

Packages – Usage (I)

• The types composed in a package are what’s known as package members.

• To use a package member for writing code within the same package then those members can be
referred to by their simple name such as Circle or Square.

• To use a member from a different package, there are three ways to refer to and use the member

1) Refer to the member by its fully qualified name
• If the package has not been imported, you must use the fully qualified name of the

member you want access that member. The following shows you the full qualified
name of for the Circle class in the shapes package.

• shapes.Circle
• To create an instance of that member

• shapes.Circle circleObj = new shapes.Circle();

2) Import the package member
• To use a member you can just import the specific package member into your file.

• Use the import keyboard followed by the package name, dot, and the specific member
you want to use. Import statement is at the beginning of the file.

• import shapes.Circle;
• After the import statement, you can refer to Circle by its simple name

• Circle circleObj = new Circle();

Packages – Usage (II)

3) Import the member’s entire package

• Instead of importing a specific member at a time, a user can import the entire
package and all its types.

• To import the entire package just use the import keyword along with the package

name, dot (.), and an asterisk (*).

• import shapes.*; //import all classes from the shapes package

• With this statement, the user can refer to any class or interface in the shapes
package by their simple name.

• Circle circleObj = new Circle();

• Square squareObj = new Square();

Enum Types – The What

• Enum Types is a type whose fields compose of fixed constants. Enum types are implicitly final. Nested enum

types are implicitly static.

• Since they are constants, the fields of the enum type are in ALL CAPS.

• They are used whenever a programmer is in need to denote a fixed set of constants like data points, choices on
a menu, days of the week, and etc.

• You can define an enum type with an access modifier, then the enum keyword, followed by the name you want

to refer to for your definition of the fixed set of constants. An example is shown below.

• Java’s enum types are much more effective than the ones used by other languages. The enum keyword

defines a class which can include not only constants, but methods and other attributes as well.

• Enums are extended from the java.lang.Enum. So enum cannot extend any other class, but still is able to

implement interfaces. Java.lang.Enum offers its programmers special methods to invoke on the enum types

such as name() which returns the of the enum constant and equals(Object o) which returns true if the specified

object is equal to the enum constant.

• The compiler automatically generates some special methods when enums are created. One such method is
the values() method which returns an array of all the constants of the enum type in the order they are defined.

This special method can be used with a for loop to iterate over all the constants of the enum to perform some
type of processing.

• Use of Enums provides a cleaner implementation for a group of constants.

• Enums can be defined separately or nested within a class.

Enum Types – The How
• In this example, each enum is defined the team’s wins,

loses, and Points Against (PA) stats. They get passed in to
the constructor when the constants get created. A rule for
enum types is such that constants must be declared first
and then field and methods are defined (if any). At the
end of the constant declaration, there should be a
semicolon.

• The Football enum defines its own fields and methods
which calculate the points per game of each team. This
program iterates through each constant using a for loop via

the values() method and outputs the points per game stat

of that team with the calculation method built in the enum

declaration called ptsPerGame().

• When java Football is executed from the command

prompt, the following output is displayed.

The Java API

• The Java Application Programming Interface (API) provides Java users with features, some of
which we covered like java.lang.Enum and java.lang.Object, to help them with their object
oriented programming.

• The API is composed of everything, from collection classes to GUI classes.

• Since programmers are generally lazy, Java has produced an API that saves a programmer both
time and effort in implementing their software design.

• Instead of writing an implementation to calculate the square root of a number or want to read in
a file, using the API classes of Java can provide a simple and worrisome implementation and
execution of both those things.

• As mentioned before, all the classes in the Java API are grouped by relation and broken down
into packages in which the import keyword is used to access them. There are packages that are
useful for creating applets, for data transfer, for rendering and modifying images, for security
frameworks, as well as packages for thread support, to name a few.

• So as a developer, it is always important to keep a reference of the Java API handy for
programming purposes.

4 Closing Remarks

A Recap Of Java

Closing
Remarks

Last Words…

• It can be seen how Java is a simple language for any person to
grasp, whether they are an expert in OOP or are just trying it for
the first time.

• Classes, Objects, Inheritance, and Interfaces are easy to define and
implement.

• Java doesn’t leave its developers hanging and offers them a wide
variety of predefined classes in its API to assist them in their
programming tasks. These features save the time and effort of a
developer in the implementation of a software system.

Resources

The following sites were used for reference while making this presentation…

• The Java Tutorials: http://download.oracle.com/javase/tutorial/java/index.html

• Java Language Specification: http://java.sun.com/docs/books/jls/third_edition/html/classes.html

• Object-Oriented Programming in Java: http://docstore.mik.ua/orelly/java-ent/jnut/ch03_01.htm

• Object Oriented Programming: School of Computer Science, University KwaZulu-Natal (PDF)

• Java: http://en.wikipedia.org/wiki/Java_%28programming_language%29

• Intro to Java: http://www.cs.colorado.edu/~kena/classes/5448/s11/lectures/10_introtojava.pdf

• Introduction to Java and Object Oriented Programming for Web Applications: http://www.devdaily.com/java/java_oo/

• Introducing Annotations: http://www.java-tips.org/java-se-tips/java.lang/introducing-annotations.html

• The Essence of OOP using Java, Anonymous Classes: http://www.developer.com/java/other/article.php/3300881/The-
Essence-of-OOP-using-Java-Anonymous-Classes.htm

http://download.oracle.com/javase/tutorial/java/index.html
http://java.sun.com/docs/books/jls/third_edition/html/classes.html
http://docstore.mik.ua/orelly/java-ent/jnut/ch03_01.htm
http://docstore.mik.ua/orelly/java-ent/jnut/ch03_01.htm
http://docstore.mik.ua/orelly/java-ent/jnut/ch03_01.htm
http://en.wikipedia.org/wiki/Java_(programming_language)
http://www.cs.colorado.edu/~kena/classes/5448/s11/lectures/10_introtojava.pdf
http://www.devdaily.com/java/java_oo/
http://www.java-tips.org/java-se-tips/java.lang/introducing-annotations.html
http://www.java-tips.org/java-se-tips/java.lang/introducing-annotations.html
http://www.java-tips.org/java-se-tips/java.lang/introducing-annotations.html
http://www.java-tips.org/java-se-tips/java.lang/introducing-annotations.html
http://www.java-tips.org/java-se-tips/java.lang/introducing-annotations.html
http://www.java-tips.org/java-se-tips/java.lang/introducing-annotations.html
http://www.java-tips.org/java-se-tips/java.lang/introducing-annotations.html
http://www.java-tips.org/java-se-tips/java.lang/introducing-annotations.html
http://www.java-tips.org/java-se-tips/java.lang/introducing-annotations.html
http://www.developer.com/java/other/article.php/3300881/The-Essence-of-OOP-using-Java-Anonymous-Classes.htm
http://www.developer.com/java/other/article.php/3300881/The-Essence-of-OOP-using-Java-Anonymous-Classes.htm
http://www.developer.com/java/other/article.php/3300881/The-Essence-of-OOP-using-Java-Anonymous-Classes.htm
http://www.developer.com/java/other/article.php/3300881/The-Essence-of-OOP-using-Java-Anonymous-Classes.htm
http://www.developer.com/java/other/article.php/3300881/The-Essence-of-OOP-using-Java-Anonymous-Classes.htm
http://www.developer.com/java/other/article.php/3300881/The-Essence-of-OOP-using-Java-Anonymous-Classes.htm
http://www.developer.com/java/other/article.php/3300881/The-Essence-of-OOP-using-Java-Anonymous-Classes.htm
http://www.developer.com/java/other/article.php/3300881/The-Essence-of-OOP-using-Java-Anonymous-Classes.htm
http://www.developer.com/java/other/article.php/3300881/The-Essence-of-OOP-using-Java-Anonymous-Classes.htm
http://www.developer.com/java/other/article.php/3300881/The-Essence-of-OOP-using-Java-Anonymous-Classes.htm
http://www.developer.com/java/other/article.php/3300881/The-Essence-of-OOP-using-Java-Anonymous-Classes.htm
http://www.developer.com/java/other/article.php/3300881/The-Essence-of-OOP-using-Java-Anonymous-Classes.htm
http://www.developer.com/java/other/article.php/3300881/The-Essence-of-OOP-using-Java-Anonymous-Classes.htm
http://www.developer.com/java/other/article.php/3300881/The-Essence-of-OOP-using-Java-Anonymous-Classes.htm
http://www.developer.com/java/other/article.php/3300881/The-Essence-of-OOP-using-Java-Anonymous-Classes.htm

java

Niket Sheth

A new approach to OOP

