
-Aditya Bhave
CSCI-5448 Graduate Presentation

04-01-2011

 MSEE at CU finishing up in Summer 11

 Work full time at Alticast Inc

 Background in Embedded Systems

◦ Media Processing

◦ Middleware

◦ Cable TV industry

 Concurrency in C and Java
 Need for a framework
 Threads

◦ Creation and Starting

 Synchronization
 Executor Interfaces
 Thread Pools
 Future Interface
 More Synchronizers
 AbstractQueueSynchronizer framework
 BlockingQueueInterfaces
 References

 Sequential programs: execute a single stream of
operations

 Concurrent program: several streams of operations
may execute concurrently
◦ Streams can communicate and interfere with one another

◦ Each such sequence of instructions is called a thread

◦ Operations in threads are interleaved in an unpredictable
order. Operations within a thread are strictly ordered

◦ Different than parallel execution
◦ Difficult to design, test, write, reason about, debug and

tune

 Things to worry about:
◦ Shared data

 Locking

 Visibility

 Atomicity

◦ Coordination

 Communication between Threads

◦ Performance

 Deadlock

 Spin wait

 Lock Contention

 Locking in C:
◦ Initialize mutex

◦ Explicitly guard shared data “shared”:

 pthread_mutex_lock(m1);

shared++; // This operation should be atomic

pthread_mutex_unlock(m1);

 Increased development overhead
◦ Explicitly create threads, remember thread id’s

◦ Explicit locking and unlocking

◦ Remembering which thread holds which locks

◦ Can break modularity completely

 Need for abstracting the internals of
synchronization and atomicity from developers

 Package java.util.concurrent to the rescue

 Important aspects
◦ Defining and starting threads

◦ Synchronization

◦ Liveness

◦ Immutable objects

◦ High Level Concurrency

 Lock Objects

 Executors

 Thread Pools

 Atomic Variables

 Method I: Imlementing Runnable
◦ public class PrimeRun implements Runnable {

long minPrime;

public PrimeRun(long minPrime) {

this.minPrime= minPrime;

}

public void run() {

// Compute prime larger than minPrime

}

public static void main(String[] args) {

PrimeRun pr= new PrimeRun(7);

new Thread(pr).start();

}

}

 Method II: Extending Thread
◦ public class PrimeThread extends Thread {

long minPrime;
public PrimeThread(long minPrime) {

this.minPrime= minPrime;
}
public void run() {

// Compute prime larger than minPrime
}
public static void main(String[] args) {

PrimeThread pt= new PrimeThread(7);
pt.start();

}
}

◦ Thread class itself implements Runnable

 Method I better:
◦ more general, because the Runnable object can subclass a

class other than Thread

◦ more flexible

◦ applicable to the high-level thread management APIs

 Invoke start method to start the thread

 Run method of thread object can be invoked by
current thread without starting new thread. (Error
Prone)

 Memory Consistency Errors

 Ex: Threads A and B increment shared variable “ct”
◦ Race condition !!!

 A fetches ct = 0

 B fetches ct = 0

 A computes the value ct++ = 1

 A stores the value 1 in ct

 B computes new value ct++ = 1

 B stores the value 1 in ct

◦ Make “ct” atomic. i.e. All threads should have same view of
“ct” and access it in a synchronized manner

 Thread Interference
◦ when two operations, running in different threads, but

acting on the same data, interleave

◦ Ex: Thread A and B share variable int c;

 Thread A: Retrieve c.

 Thread B: Retrieve c.

 Thread A: Increment retrieved value; result is 1.

 Thread B: Decrement retrieved value; result is -1.

 Thread A: Store result in c; c is now 1.

 Thread B: Store result in c; c is now -1.

 Synchronized Methods
◦ public synchronized void increment() { c++; }

◦ public synchronized void decrement() { c--; }

◦ It is not possible for two invocations of synchronized
methods on the same object to interleave

◦ Automatically establishes a happens-before relationship
with any subsequent invocation of a synchronized method
for the same object

◦ Thread invoking synchronized method automatically
acquires the intrinsic lock for that method's object and
releases it when the method returns

 Synchronized Statements
◦ public class MsLunch {

private long c1 = 0;

private long c2 = 0;

private Object lock1 = new Object();

private Object lock2 = new Object();

public void inc1()

{ synchronized(lock1) { c1++; } }

public void inc2()

{ synchronized(lock2) { c2++; } }

}

 To make update of c1 independent of update of c2,
but still keep both updates synchronized.

 Fine grained synchronization

 java.util.concurrent.atomic provides classes
methods to have atomic variables

 Ex: in previous example, replace int c with atomic
integer c:
◦ private AtomicInteger c = new AtomicInteger(0);

◦ Replace “c++” by c. incrementAndGet()

◦ Replace “c--” by c.decrementAndGet();

◦ You can obtain value of c by c.get();

 Has performance advantages.

 Neatly encapsulate operations; prevent inadvertent
access to data from unsynchronized code

 Implemented using the fastest native construct
available on the platform (compare-and-swap etc.)

 Separate the thread management and creation from
the rest of the application

 Objects that encapsulate these functions are known
as executors

 Three interfaces:
◦ Executor

◦ ExecutorService

◦ ScheduledExecutorSercice

 Simple interface that supports launching new tasks

 Provides a single method, execute

 Runnable object “r” and Executor object “e” then,
◦ (new Thread(r)).start(); e.execute(r);

 Can create a new thread and launch it immediately

 More likely to use an existing worker thread to
run “r”

 Supplements executor with more versatile submit
method
◦ submit accepts Runnable objects, but also

accepts Callable objects, which are similar to Runnable but
allow the task to return a value

◦ submit returns a Future object
 used to retrieve the Callable return value and to manage the

status of both Callable and Runnable tasks

 ExecutorService provides methods for submitting
large collections of Callable objects

 It provides methods for managing the shutdown of
the executor

 Supplements the methods of its parent
ExecutorService with schedule method
◦ schedule executes a Runnable or Callable task after a

specified delay

 Defines scheduleAtFixedRate and scheduleWithFixe
dDelay
◦ To execute specified tasks repeatedly, at defined intervals

 Thread pools consist of worker threads

 Minimize the overhead due to thread creation

 Avoid allocating and de-allocating many thread
objects. Reduce significant memory management
overhead

 Fixed thread pool
◦ Always has a specified number of threads running

◦ If a thread is somehow terminated while it is still in use, it
is automatically replaced with a new thread.

◦ Tasks are submitted to the pool via an internal queue

◦ Queue holds extra tasks whenever there are more active
tasks than threads

 Create an executor that uses a fixed thread pool
◦ invoke the newFixedThreadPool factory method in

java.util.concurrent.Executors

 Additional Methods:
◦ newCachedThreadPool method creates an executor with an

expandable thread pool, suitable for applications that
launch many short-lived tasks

◦ newSingleThreadExecutor method creates an executor that
executes a single task at a time

 FactoryMethod design pattern in practice

 public class RunnableTester {

public static void main(String[] args) {

// create and name each runnable

SomeTask task1 = new SomeTask("thread1");

SomeTask task2 = new SomeTask("thread2");

// create ExecutorService to manage threads

ExecutorService threadExecutor = Executors.newFixedThreadPool(2);

// start threads and place in runnable state
threadExecutor.execute(task1); // start task1
threadExecutor.execute(task2); // start task2

// shutdown worker threads

threadExecutor.shutdown();

System.out.println("Threads started, main ends\n"); }

} // end class RunnableTester

 public SomeTask implements Runnable{

// do something here

}

 public class MyScheduledExecutorService {

ScheduledExecutorService scheduler= Executors.newScheduledThreadPool(1);

public void beepForAnHour() {

final Runnable beeper = new Runnable() {

public void run() { System.out.println("beep");

}

};

ScheduledFuture<?> beeperHandle = scheduler.scheduleAtFixedRate(beeper, 1, 5,
SECONDS);

// Schedule to beep every five seconds

scheduler.schedule(new Runnable() {

public void run() { beeperHandle.cancel(true); }

}, 60 * 60, SECONDS);

}

public static void main(String args[]) {

MyScheduledExecutorService mses = new MyScheduledExecutorService();
mses.beepForAnHour();

}

}

 Future represents the result of an asynchronous
computation

 Methods are provided to check if the computation
is complete, to wait for its completion, and to
retrieve the result of the computation

 The result can only be retrieved using
method get when the computation has completed

 Cancellation is performed by the cancel method

 interface ArchiveSearcher {
String search(String target); }

class App {
ExecutorService executor = ...
ArchiveSearcher searcher = ...
void showSearch(final String target) throws

InterruptedException { Future<String>
future = executor.submit(new
Callable<String>() {

public String call() {
return searcher.search(target); }

}
);
displayOtherThings(); // do other things while searching try {

displayText(future.get()); // use future }
catch (ExecutionException ex) { cleanup(); return; } }

}
 The ScheduledFuture<?> in the previous code states that you would like

to use a ScheduledFuture for the sake of cancellability but not provide a
usable result. It is return value of ScheduledExecutorService methods.

 Semaphores
◦ Semaphore maintains a set of permits.

◦ acquire() blocks if necessary until a permit is available, and
then takes it

◦ release() adds a permit, potentially releasing a blocking
acquirer

◦ Used to restrict the number of threads than can access
some (physical or logical) resource

◦ Semaphore encapsulates the synchronization needed to
restrict access to the resource pool, separately from any
synchronization needed to maintain the consistency of the
pool itself

◦ Methods provided to ensure fairness, checking for permits,
acquire in non-blocking manner and get number of threads
queued to acquire that semaphore object

 Cyclic Barrier
◦ A synchronization aid that allows a set of threads to all wait

for each other to reach a common barrier point

◦ barrier is called cyclic because it can be re-used after the
waiting threads are released

◦ await()

 Waits until all parties have invoked await on this barrier

 If the current thread is not the last to arrive then it is disabled
for thread scheduling purposes and lies dormant until:

 The last thread arrives

 Some other thread interrupts the current thread

 Some other thread interrupts one of the other waiting threads

 Some other thread times out while waiting for barrier

 Some other thread invokes reset() on this barrier

 Thread starting code in some class:
◦ barrier = new CyclicBarrier (N, new Runnable()

{ public void run()

{ some_random_function(...); }

});

for (int i = 0; i < N; ++i) {

new Thread(new some_random_class(i)).start();
}

 Code for threads to wait on cyclic barrier
◦ class some_random_class implements Runnable {

public void run() {

while (!done()) {

function1(arg1);

try { barrier.await();

} catch (InterruptedException ex) { return; }

catch (BrokenBarrierException ex) { return; }

}

}

}

 some_random_function() is executed each time a barrier is encountered
and tripped by a thread

 Provides a framework for implementing blocking locks and
related synchronizers (semaphores etc. that rely on first-in-
first-out (FIFO) wait queues

 Nearly any synchronizer can be used to implement nearly any
other
◦ it is possible to build semaphores from reentrant locks, and vice versa

 But…
◦ Doing so often entails enough complexity, overhead, and inflexibility

◦ It is conceptually unattractive. If none of these constructs are intrinsically
more primitive than the others, developers should not be compelled to
arbitrarily choose one of them as a basis for building others.

 Instead, JSR166 establishes a small framework
◦ centered on class AbstractQueuedSynchronizer

◦ Provides common mechanics that are used by most of the provided
synchronizers in the package

 Generic Synchronizers have acquire() and release() methods in
some form
◦ Eg: methods Lock.lock, Semaphore.acquire, CountDownLatch.await,

and FutureTask.get all map to acquire operations in the framework

 Support for these operations requires the coordination of
three basic components:
◦ Atomically managing synchronization state
◦ Blocking and unblocking threads
◦ Maintaining queues

 Synchronizer framework has a concrete implementation of
each of these three components, while still permitting a wide
range of options in how they are used.

 This intentionally limits the range of applicability, but
provides efficient enough support that there is practically
never a reason not to use the framework (and instead build
synchronizers from scratch)

 Implementation of Mutex class using the framework

 Mutex class, that uses synchronization state zero to mean
unlocked, and one to mean locked

 class Mutex {
class Sync extends AbstractQueuedSynchronizer {

public boolean tryAcquire(int ignore) {
return compareAndSetState(0, 1);
}
public boolean tryRelease(int ignore) {
setState(0); return true;
}

}
private final Sync sync = new Sync();
public void lock() { sync.acquire(0); }
public void unlock() { sync.release(0); }

};

 ArrayBlockingQueue
◦ A bounded blocking queue backed by an array

◦ This queue orders elements FIFO (first-in-first-out)

◦ Head: element that has been on the queue the longest time

◦ Tail: element that has been on the queue the shortest time

◦ New elements are inserted at the tail of the queue, and the queue
retrieval operations obtain elements at the head of the queue

◦ It is classic Bounded Buffer: Fixed-sized array holds elements inserted
by producers and extracted by consumers

◦ Attempts to put an element to a full queue will result in the put
operation blocking; attempts to retrieve an element from an empty
queue will similarly block

 ArrayBlockingQueue code
◦ private ArrayBlockingQueue messageQ = new ArrayBlockingQueue

<String> (10);

Logger logger = new Logger(messageQ);

public void run () {

String someMsg;

try {

while (true){

// do something

// blocks if no space available

messageQ.put(someMsg);

}

} catch (InterruptedException IE) { … }

}

 LinkedBlockingQueues
◦ Not hard bounded as ArrayBlockingQueues

◦ Same features as ArrayBlockingQueues, but based on linked
nodes

◦ Linked queues typically have higher throughput than array-
based queues but less predictable performance in most
concurrent applications

◦ The optional capacity bound constructor argument serves
as a way to prevent excessive queue expansion

◦ Linked nodes are dynamically created upon each insertion
unless this would bring the queue above capacity

 PriorityBlockingQueue
◦ An unbounded blocking queue that uses the same ordering rules

as class PriorityQueue and supplies blocking retrieval operations

◦ While this queue is logically unbounded, attempted additions may
fail due to resource exhaustion (causing OutOfMemoryError)

◦ A priority queue relying on natural ordering also does not permit
insertion of non-comparable objects (doing so results in
ClassCastException)

◦ This class and its iterator implement all of the optional methods
of the Collection and Iterator interfaces

◦ The Iterator provided in method iterator() is not guaranteed to
traverse the elements of the PriorityBlockingQueue in any
particular order

◦ If you need ordered traversal, consider using
Arrays.sort(pq.toArray())

 http://gee.cs.oswego.edu/dl/papers/aqs.pdf

 http://download.oracle.com/javase/1.5.0/docs/api
/java/util/concurrent/package-summary.html

 http://www.wiziq.com/tutorial/183-Concurrency-
in-Java

 http://www.slideshare.net/alexmiller/java-
concurrency-gotchas

 http://book.javanb.com/java-threads-
3rd/jthreads3-CHP-14-SECT-3.html

http://gee.cs.oswego.edu/dl/papers/aqs.pdf
http://download.oracle.com/javase/1.5.0/docs/api/java/util/concurrent/package-summary.html
http://download.oracle.com/javase/1.5.0/docs/api/java/util/concurrent/package-summary.html
http://download.oracle.com/javase/1.5.0/docs/api/java/util/concurrent/package-summary.html
http://download.oracle.com/javase/1.5.0/docs/api/java/util/concurrent/package-summary.html
http://www.wiziq.com/tutorial/183-Concurrency-in-Java
http://www.wiziq.com/tutorial/183-Concurrency-in-Java
http://www.wiziq.com/tutorial/183-Concurrency-in-Java
http://www.wiziq.com/tutorial/183-Concurrency-in-Java
http://www.wiziq.com/tutorial/183-Concurrency-in-Java
http://www.wiziq.com/tutorial/183-Concurrency-in-Java
http://www.wiziq.com/tutorial/183-Concurrency-in-Java
http://www.wiziq.com/tutorial/183-Concurrency-in-Java
http://www.slideshare.net/alexmiller/java-concurrency-gotchas
http://www.slideshare.net/alexmiller/java-concurrency-gotchas
http://www.slideshare.net/alexmiller/java-concurrency-gotchas
http://www.slideshare.net/alexmiller/java-concurrency-gotchas
http://www.slideshare.net/alexmiller/java-concurrency-gotchas
http://book.javanb.com/java-threads-3rd/jthreads3-CHP-14-SECT-3.html
http://book.javanb.com/java-threads-3rd/jthreads3-CHP-14-SECT-3.html
http://book.javanb.com/java-threads-3rd/jthreads3-CHP-14-SECT-3.html
http://book.javanb.com/java-threads-3rd/jthreads3-CHP-14-SECT-3.html
http://book.javanb.com/java-threads-3rd/jthreads3-CHP-14-SECT-3.html
http://book.javanb.com/java-threads-3rd/jthreads3-CHP-14-SECT-3.html
http://book.javanb.com/java-threads-3rd/jthreads3-CHP-14-SECT-3.html
http://book.javanb.com/java-threads-3rd/jthreads3-CHP-14-SECT-3.html
http://book.javanb.com/java-threads-3rd/jthreads3-CHP-14-SECT-3.html
http://book.javanb.com/java-threads-3rd/jthreads3-CHP-14-SECT-3.html
http://book.javanb.com/java-threads-3rd/jthreads3-CHP-14-SECT-3.html
http://book.javanb.com/java-threads-3rd/jthreads3-CHP-14-SECT-3.html
http://book.javanb.com/java-threads-3rd/jthreads3-CHP-14-SECT-3.html

 The presentation talks about the following things:
◦ General concurrency: what it means, how is it important
◦ Concurrency in C: with some code thrown in, we explore how it is to write

concurrent programs in C, and how it is complicated.
◦ Concurrency in Java: Based off previous, point describe the need for

abstracting all the concurrency related constructs from application
developers, thus a need for Java framework.

◦ Threads: How to create and start threads in efficient and scalable manner
◦ Synchronization:

Explore the need for Thread synchronization and different methods to do so

like synchronized methods, synchronized statements, atomic variables etc.

◦ Explore abstractions for thread creation and starting like Executor,
ExecutorService and ScheduledExecutorService

◦ Introduction to Thread Pools and usage
◦ Usage of ExecutorService and Thread Pools together explained using code

examples
◦ Explanation of Future interface with code
◦ More on Synchronizers like Semaphores and CyclicBarriers with code

examples
◦ Explanation of AbstractQueueSynchronizer class and the abstract

framework it provides based on which various Synchronizers mentioned
before are implemented, including code example

◦ Introduction to BlockingQueueInterfaces

