
-Aditya Bhave
CSCI-5448 Graduate Presentation

04-01-2011

 MSEE at CU finishing up in Summer 11

 Work full time at Alticast Inc

 Background in Embedded Systems

◦ Media Processing

◦ Middleware

◦ Cable TV industry

 Concurrency in C and Java
 Need for a framework
 Threads

◦ Creation and Starting

 Synchronization
 Executor Interfaces
 Thread Pools
 Future Interface
 More Synchronizers
 AbstractQueueSynchronizer framework
 BlockingQueueInterfaces
 References

 Sequential programs: execute a single stream of
operations

 Concurrent program: several streams of operations
may execute concurrently
◦ Streams can communicate and interfere with one another

◦ Each such sequence of instructions is called a thread

◦ Operations in threads are interleaved in an unpredictable
order. Operations within a thread are strictly ordered

◦ Different than parallel execution
◦ Difficult to design, test, write, reason about, debug and

tune

 Things to worry about:
◦ Shared data

 Locking

 Visibility

 Atomicity

◦ Coordination

 Communication between Threads

◦ Performance

 Deadlock

 Spin wait

 Lock Contention

 Locking in C:
◦ Initialize mutex

◦ Explicitly guard shared data “shared”:

 pthread_mutex_lock(m1);

shared++; // This operation should be atomic

pthread_mutex_unlock(m1);

 Increased development overhead
◦ Explicitly create threads, remember thread id’s

◦ Explicit locking and unlocking

◦ Remembering which thread holds which locks

◦ Can break modularity completely

 Need for abstracting the internals of
synchronization and atomicity from developers

 Package java.util.concurrent to the rescue

 Important aspects
◦ Defining and starting threads

◦ Synchronization

◦ Liveness

◦ Immutable objects

◦ High Level Concurrency

 Lock Objects

 Executors

 Thread Pools

 Atomic Variables

 Method I: Imlementing Runnable
◦ public class PrimeRun implements Runnable {

long minPrime;

public PrimeRun(long minPrime) {

this.minPrime= minPrime;

}

public void run() {

// Compute prime larger than minPrime

}

public static void main(String[] args) {

PrimeRun pr= new PrimeRun(7);

new Thread(pr).start();

}

}

 Method II: Extending Thread
◦ public class PrimeThread extends Thread {

long minPrime;
public PrimeThread(long minPrime) {

this.minPrime= minPrime;
}
public void run() {

// Compute prime larger than minPrime
}
public static void main(String[] args) {

PrimeThread pt= new PrimeThread(7);
pt.start();

}
}

◦ Thread class itself implements Runnable

 Method I better:
◦ more general, because the Runnable object can subclass a

class other than Thread

◦ more flexible

◦ applicable to the high-level thread management APIs

 Invoke start method to start the thread

 Run method of thread object can be invoked by
current thread without starting new thread. (Error
Prone)

 Memory Consistency Errors

 Ex: Threads A and B increment shared variable “ct”
◦ Race condition !!!

 A fetches ct = 0

 B fetches ct = 0

 A computes the value ct++ = 1

 A stores the value 1 in ct

 B computes new value ct++ = 1

 B stores the value 1 in ct

◦ Make “ct” atomic. i.e. All threads should have same view of
“ct” and access it in a synchronized manner

 Thread Interference
◦ when two operations, running in different threads, but

acting on the same data, interleave

◦ Ex: Thread A and B share variable int c;

 Thread A: Retrieve c.

 Thread B: Retrieve c.

 Thread A: Increment retrieved value; result is 1.

 Thread B: Decrement retrieved value; result is -1.

 Thread A: Store result in c; c is now 1.

 Thread B: Store result in c; c is now -1.

 Synchronized Methods
◦ public synchronized void increment() { c++; }

◦ public synchronized void decrement() { c--; }

◦ It is not possible for two invocations of synchronized
methods on the same object to interleave

◦ Automatically establishes a happens-before relationship
with any subsequent invocation of a synchronized method
for the same object

◦ Thread invoking synchronized method automatically
acquires the intrinsic lock for that method's object and
releases it when the method returns

 Synchronized Statements
◦ public class MsLunch {

private long c1 = 0;

private long c2 = 0;

private Object lock1 = new Object();

private Object lock2 = new Object();

public void inc1()

{ synchronized(lock1) { c1++; } }

public void inc2()

{ synchronized(lock2) { c2++; } }

}

 To make update of c1 independent of update of c2,
but still keep both updates synchronized.

 Fine grained synchronization

 java.util.concurrent.atomic provides classes
methods to have atomic variables

 Ex: in previous example, replace int c with atomic
integer c:
◦ private AtomicInteger c = new AtomicInteger(0);

◦ Replace “c++” by c. incrementAndGet()

◦ Replace “c--” by c.decrementAndGet();

◦ You can obtain value of c by c.get();

 Has performance advantages.

 Neatly encapsulate operations; prevent inadvertent
access to data from unsynchronized code

 Implemented using the fastest native construct
available on the platform (compare-and-swap etc.)

 Separate the thread management and creation from
the rest of the application

 Objects that encapsulate these functions are known
as executors

 Three interfaces:
◦ Executor

◦ ExecutorService

◦ ScheduledExecutorSercice

 Simple interface that supports launching new tasks

 Provides a single method, execute

 Runnable object “r” and Executor object “e” then,
◦ (new Thread(r)).start();  e.execute(r);

 Can create a new thread and launch it immediately

 More likely to use an existing worker thread to
run “r”

 Supplements executor with more versatile submit
method
◦ submit accepts Runnable objects, but also

accepts Callable objects, which are similar to Runnable but
allow the task to return a value

◦ submit returns a Future object
 used to retrieve the Callable return value and to manage the

status of both Callable and Runnable tasks

 ExecutorService provides methods for submitting
large collections of Callable objects

 It provides methods for managing the shutdown of
the executor

 Supplements the methods of its parent
ExecutorService with schedule method
◦ schedule executes a Runnable or Callable task after a

specified delay

 Defines scheduleAtFixedRate and scheduleWithFixe
dDelay
◦ To execute specified tasks repeatedly, at defined intervals

 Thread pools consist of worker threads

 Minimize the overhead due to thread creation

 Avoid allocating and de-allocating many thread
objects. Reduce significant memory management
overhead

 Fixed thread pool
◦ Always has a specified number of threads running

◦ If a thread is somehow terminated while it is still in use, it
is automatically replaced with a new thread.

◦ Tasks are submitted to the pool via an internal queue

◦ Queue holds extra tasks whenever there are more active
tasks than threads

 Create an executor that uses a fixed thread pool
◦ invoke the newFixedThreadPool factory method in

java.util.concurrent.Executors

 Additional Methods:
◦ newCachedThreadPool method creates an executor with an

expandable thread pool, suitable for applications that
launch many short-lived tasks

◦ newSingleThreadExecutor method creates an executor that
executes a single task at a time

 FactoryMethod design pattern in practice

 public class RunnableTester {

public static void main(String[] args) {

// create and name each runnable

SomeTask task1 = new SomeTask("thread1");

SomeTask task2 = new SomeTask("thread2");

// create ExecutorService to manage threads

ExecutorService threadExecutor = Executors.newFixedThreadPool(2);

// start threads and place in runnable state
threadExecutor.execute(task1); // start task1
threadExecutor.execute(task2); // start task2

// shutdown worker threads

threadExecutor.shutdown();

System.out.println("Threads started, main ends\n"); }

} // end class RunnableTester

 public SomeTask implements Runnable{

// do something here

}

 public class MyScheduledExecutorService {

ScheduledExecutorService scheduler= Executors.newScheduledThreadPool(1);

public void beepForAnHour() {

final Runnable beeper = new Runnable() {

public void run() { System.out.println("beep");

}

};

ScheduledFuture<?> beeperHandle = scheduler.scheduleAtFixedRate(beeper, 1, 5,
SECONDS);

// Schedule to beep every five seconds

scheduler.schedule(new Runnable() {

public void run() { beeperHandle.cancel(true); }

}, 60 * 60, SECONDS);

}

public static void main(String args[]) {

MyScheduledExecutorService mses = new MyScheduledExecutorService();
mses.beepForAnHour();

}

}

 Future represents the result of an asynchronous
computation

 Methods are provided to check if the computation
is complete, to wait for its completion, and to
retrieve the result of the computation

 The result can only be retrieved using
method get when the computation has completed

 Cancellation is performed by the cancel method

 interface ArchiveSearcher {
String search(String target); }

class App {
ExecutorService executor = ...
ArchiveSearcher searcher = ...
void showSearch(final String target) throws

InterruptedException { Future<String>
future = executor.submit(new
Callable<String>() {

public String call() {
return searcher.search(target); }

}
);
displayOtherThings(); // do other things while searching try {

displayText(future.get()); // use future }
catch (ExecutionException ex) { cleanup(); return; } }

}
 The ScheduledFuture<?> in the previous code states that you would like

to use a ScheduledFuture for the sake of cancellability but not provide a
usable result. It is return value of ScheduledExecutorService methods.

 Semaphores
◦ Semaphore maintains a set of permits.

◦ acquire() blocks if necessary until a permit is available, and
then takes it

◦ release() adds a permit, potentially releasing a blocking
acquirer

◦ Used to restrict the number of threads than can access
some (physical or logical) resource

◦ Semaphore encapsulates the synchronization needed to
restrict access to the resource pool, separately from any
synchronization needed to maintain the consistency of the
pool itself

◦ Methods provided to ensure fairness, checking for permits,
acquire in non-blocking manner and get number of threads
queued to acquire that semaphore object

 Cyclic Barrier
◦ A synchronization aid that allows a set of threads to all wait

for each other to reach a common barrier point

◦ barrier is called cyclic because it can be re-used after the
waiting threads are released

◦ await()

 Waits until all parties have invoked await on this barrier

 If the current thread is not the last to arrive then it is disabled
for thread scheduling purposes and lies dormant until:

 The last thread arrives

 Some other thread interrupts the current thread

 Some other thread interrupts one of the other waiting threads

 Some other thread times out while waiting for barrier

 Some other thread invokes reset() on this barrier

 Thread starting code in some class:
◦ barrier = new CyclicBarrier (N, new Runnable()

{ public void run()

{ some_random_function(...); }

});

for (int i = 0; i < N; ++i) {

new Thread(new some_random_class(i)).start();
}

 Code for threads to wait on cyclic barrier
◦ class some_random_class implements Runnable {

public void run() {

while (!done()) {

function1(arg1);

try { barrier.await();

} catch (InterruptedException ex) { return; }

catch (BrokenBarrierException ex) { return; }

}

}

}

 some_random_function() is executed each time a barrier is encountered
and tripped by a thread

 Provides a framework for implementing blocking locks and
related synchronizers (semaphores etc. that rely on first-in-
first-out (FIFO) wait queues

 Nearly any synchronizer can be used to implement nearly any
other
◦ it is possible to build semaphores from reentrant locks, and vice versa

 But…
◦ Doing so often entails enough complexity, overhead, and inflexibility

◦ It is conceptually unattractive. If none of these constructs are intrinsically
more primitive than the others, developers should not be compelled to
arbitrarily choose one of them as a basis for building others.

 Instead, JSR166 establishes a small framework
◦ centered on class AbstractQueuedSynchronizer

◦ Provides common mechanics that are used by most of the provided
synchronizers in the package

 Generic Synchronizers have acquire() and release() methods in
some form
◦ Eg: methods Lock.lock, Semaphore.acquire, CountDownLatch.await,

and FutureTask.get all map to acquire operations in the framework

 Support for these operations requires the coordination of
three basic components:
◦ Atomically managing synchronization state
◦ Blocking and unblocking threads
◦ Maintaining queues

 Synchronizer framework has a concrete implementation of
each of these three components, while still permitting a wide
range of options in how they are used.

 This intentionally limits the range of applicability, but
provides efficient enough support that there is practically
never a reason not to use the framework (and instead build
synchronizers from scratch)

 Implementation of Mutex class using the framework

 Mutex class, that uses synchronization state zero to mean
unlocked, and one to mean locked

 class Mutex {
class Sync extends AbstractQueuedSynchronizer {

public boolean tryAcquire(int ignore) {
return compareAndSetState(0, 1);
}
public boolean tryRelease(int ignore) {
setState(0); return true;
}

}
private final Sync sync = new Sync();
public void lock() { sync.acquire(0); }
public void unlock() { sync.release(0); }

};

 ArrayBlockingQueue
◦ A bounded blocking queue backed by an array

◦ This queue orders elements FIFO (first-in-first-out)

◦ Head: element that has been on the queue the longest time

◦ Tail: element that has been on the queue the shortest time

◦ New elements are inserted at the tail of the queue, and the queue
retrieval operations obtain elements at the head of the queue

◦ It is classic Bounded Buffer: Fixed-sized array holds elements inserted
by producers and extracted by consumers

◦ Attempts to put an element to a full queue will result in the put
operation blocking; attempts to retrieve an element from an empty
queue will similarly block

 ArrayBlockingQueue code
◦ private ArrayBlockingQueue messageQ = new ArrayBlockingQueue

<String> (10);

Logger logger = new Logger(messageQ);

public void run () {

String someMsg;

try {

while (true){

// do something

// blocks if no space available

messageQ.put(someMsg);

}

} catch (InterruptedException IE) { … }

}

 LinkedBlockingQueues
◦ Not hard bounded as ArrayBlockingQueues

◦ Same features as ArrayBlockingQueues, but based on linked
nodes

◦ Linked queues typically have higher throughput than array-
based queues but less predictable performance in most
concurrent applications

◦ The optional capacity bound constructor argument serves
as a way to prevent excessive queue expansion

◦ Linked nodes are dynamically created upon each insertion
unless this would bring the queue above capacity

 PriorityBlockingQueue
◦ An unbounded blocking queue that uses the same ordering rules

as class PriorityQueue and supplies blocking retrieval operations

◦ While this queue is logically unbounded, attempted additions may
fail due to resource exhaustion (causing OutOfMemoryError)

◦ A priority queue relying on natural ordering also does not permit
insertion of non-comparable objects (doing so results in
ClassCastException)

◦ This class and its iterator implement all of the optional methods
of the Collection and Iterator interfaces

◦ The Iterator provided in method iterator() is not guaranteed to
traverse the elements of the PriorityBlockingQueue in any
particular order

◦ If you need ordered traversal, consider using
Arrays.sort(pq.toArray())

 http://gee.cs.oswego.edu/dl/papers/aqs.pdf

 http://download.oracle.com/javase/1.5.0/docs/api
/java/util/concurrent/package-summary.html

 http://www.wiziq.com/tutorial/183-Concurrency-
in-Java

 http://www.slideshare.net/alexmiller/java-
concurrency-gotchas

 http://book.javanb.com/java-threads-
3rd/jthreads3-CHP-14-SECT-3.html

http://gee.cs.oswego.edu/dl/papers/aqs.pdf
http://download.oracle.com/javase/1.5.0/docs/api/java/util/concurrent/package-summary.html
http://download.oracle.com/javase/1.5.0/docs/api/java/util/concurrent/package-summary.html
http://download.oracle.com/javase/1.5.0/docs/api/java/util/concurrent/package-summary.html
http://download.oracle.com/javase/1.5.0/docs/api/java/util/concurrent/package-summary.html
http://www.wiziq.com/tutorial/183-Concurrency-in-Java
http://www.wiziq.com/tutorial/183-Concurrency-in-Java
http://www.wiziq.com/tutorial/183-Concurrency-in-Java
http://www.wiziq.com/tutorial/183-Concurrency-in-Java
http://www.wiziq.com/tutorial/183-Concurrency-in-Java
http://www.wiziq.com/tutorial/183-Concurrency-in-Java
http://www.wiziq.com/tutorial/183-Concurrency-in-Java
http://www.wiziq.com/tutorial/183-Concurrency-in-Java
http://www.slideshare.net/alexmiller/java-concurrency-gotchas
http://www.slideshare.net/alexmiller/java-concurrency-gotchas
http://www.slideshare.net/alexmiller/java-concurrency-gotchas
http://www.slideshare.net/alexmiller/java-concurrency-gotchas
http://www.slideshare.net/alexmiller/java-concurrency-gotchas
http://book.javanb.com/java-threads-3rd/jthreads3-CHP-14-SECT-3.html
http://book.javanb.com/java-threads-3rd/jthreads3-CHP-14-SECT-3.html
http://book.javanb.com/java-threads-3rd/jthreads3-CHP-14-SECT-3.html
http://book.javanb.com/java-threads-3rd/jthreads3-CHP-14-SECT-3.html
http://book.javanb.com/java-threads-3rd/jthreads3-CHP-14-SECT-3.html
http://book.javanb.com/java-threads-3rd/jthreads3-CHP-14-SECT-3.html
http://book.javanb.com/java-threads-3rd/jthreads3-CHP-14-SECT-3.html
http://book.javanb.com/java-threads-3rd/jthreads3-CHP-14-SECT-3.html
http://book.javanb.com/java-threads-3rd/jthreads3-CHP-14-SECT-3.html
http://book.javanb.com/java-threads-3rd/jthreads3-CHP-14-SECT-3.html
http://book.javanb.com/java-threads-3rd/jthreads3-CHP-14-SECT-3.html
http://book.javanb.com/java-threads-3rd/jthreads3-CHP-14-SECT-3.html
http://book.javanb.com/java-threads-3rd/jthreads3-CHP-14-SECT-3.html

 The presentation talks about the following things:
◦ General concurrency: what it means, how is it important
◦ Concurrency in C: with some code thrown in, we explore how it is to write

concurrent programs in C, and how it is complicated.
◦ Concurrency in Java: Based off previous, point describe the need for

abstracting all the concurrency related constructs from application
developers, thus a need for Java framework.

◦ Threads: How to create and start threads in efficient and scalable manner
◦ Synchronization:

Explore the need for Thread synchronization and different methods to do so

like synchronized methods, synchronized statements, atomic variables etc.

◦ Explore abstractions for thread creation and starting like Executor,
ExecutorService and ScheduledExecutorService

◦ Introduction to Thread Pools and usage
◦ Usage of ExecutorService and Thread Pools together explained using code

examples
◦ Explanation of Future interface with code
◦ More on Synchronizers like Semaphores and CyclicBarriers with code

examples
◦ Explanation of AbstractQueueSynchronizer class and the abstract

framework it provides based on which various Synchronizers mentioned
before are implemented, including code example

◦ Introduction to BlockingQueueInterfaces

