Java Concurrency
Framework

-Aditya Bhave

CSCI-5448 Graduate Presentation
04-01-2011

About Me...

» MSEE at CU finishing up in Summer 11
» Work full time at Alticast Inc
» Background in Embedded Systems

- Media Processing

- Middleware

> Cable TV industry

Agenda

» Concurrency in C and Java
» Need for a framework
» Threads

> Creation and Starting
» Synchronization
» Executor Interfaces
» Thread Pools
» Future Interface
» More Synchronizers
» AbstractQueueSynchronizer framework
» BlockingQueuelnterfaces
» References

Concurrency in general

» Sequential programs: execute a single stream of
operations

» Concurrent program: several streams of operations
may execute concurrently

(o]

(0]

o

Streams can communicate and interfere with one another
Each such sequence of instructions is called a thread

Operations in threads are interleaved in an unpredictable
order. Operations within a thread are strictly ordered
Different than parallel execution

Difficult to design, test, write, reason about, debug and
tune

Concurrency contd ...

» Things to worry about:

- Shared data

- Locking

- Visibility

- Atomicity
- Coordination

- Communication between Threads
- Performance

- Deadlock

- Spin wait

- Lock Contention

Concurrency in C
» Locking in C:

> Initialize mutex
> Explicitly guard shared data “shared™:
- pthread_mutex_lock(m1);
shared++; // This operation should be atomic
pthread_mutex_unlock(m1);

» Increased development overhead
> Explicitly create threads, remember thread id’s
> Explicit locking and unlocking
- Remembering which thread holds which locks
> Can break modularity completely
» Need for abstracting the internals of
synchronization and atomicity from developers

Java Concurrency framework

» Package java.util.concurrent to the rescue

» Important aspects
> Defining and starting threads
Synchronization
Liveness
Immutable objects
High Level Concurrency
- Lock Objects
- Executors
- Thread Pools
- Atomic Variables

o

(¢]

(¢]

(e]

Threads

» Method |: Imlementing Runnable
> public class PrimeRun implements Runnable {
long minPrime;
public PrimeRun(long minPrime) {
this.minPrime= minPrime;
}
public void run() {
// Compute prime larger than minPrime
}
public static void main(String[] args) {
PrimeRun pr= new PrimeRun(7);
new Thread(pr).start();

Threads

» Method Il: Extending Thread

- public class PrimeThread extends Thread {

long minPrime;

public PrimeThread(long minPrime) {
this.minPrime= minPrime;

}

public void run() {
// Compute prime larger than minPrime

}

public static void main(String[] args) {
PrimeThread pt= new PrimeThread(7);
pt.start();

5
}

- Thread class itself implements Runnable

Threads

» Method | better:

> more general, because the Runnable object can subclass a
class other than Thread

- more flexible
> applicable to the high-level thread management APIs

» Invoke start method to start the thread

» Run method of thread object can be invoked by
current thread without starting new thread. (Error
Prone)

Synchronization

» Memory Consistency Errors

» Ex: Threads A and B increment shared variable “ct”
> Race condition !!!

- A fetchesct =0

- B fetchesct=0

- A computes the value ct++ =1

- A stores the value 1 in ct

- B computes new value ct++ = 1

- B stores the value 1 in ct

- Make “ct” atomic. i.e. All threads should have same view of
“ct” and access it in a synchronized manner

Synchronization

» Thread Interference

> when two operations, running in different threads, but
acting on the same data, interleave

> Ex: Thread A and B share variable int c;
- Thread A: Retrieve c.
- Thread B: Retrieve c.
- Thread A: Increment retrieved value; resultis 1.
- Thread B: Decrement retrieved value; result is -1.
- Thread A: Store result in c; cis now 1.
- Thread B: Store result in c; cis now -1.

Synchronization

» Synchronized Methods
> public synchronized void increment() { c++; }
> public synchronized void decrement() { c—-; }

> |t is not possible for two invocations of synchronized
methods on the same object to interleave

- Automatically establishes a happens-before relationship
with any subsequent invocation of a synchronized method
for the same object

> Thread invoking synchronized method automatically
acquires the intrinsic lock for that method's object and
releases it when the method returns

Synchronization

» Synchronized Statements

> public class MsLunch {
private long c1 = 0;
private long c2 = 0;
private Object lockl = new Object();
private Object lock2 = new Object();
public void inc1()
{ synchronized(lock1) { c1++; }}
public void inc2()
{ synchronized(lock2) { c2++; }}

}
» To make update of c1 independent of update of c2,
but still keep both updates synchronized.

» Fine grained synchronization

Atomic Variables

java.util.concurrent.atomic provides classes
methods to have atomic variables

Ex: in previous example, replace int c with atomic
Integer cC:

private Atomiclnteger ¢ = new Atomiclnteger(0);

Replace “c++" by c. incrementAndGet()

Replace “c--" by c.decrementAndGet();

You can obtain value of c by c.get();

Has performance advantages.

Neatly encapsulate operations; prevent inadvertent
access to data from unsynchronized code

Implemented using the fastest native construct
available on the platform (compare-and-swap etc.)

Executors

» Separate the thread management and creation from
the rest of the application

» Objects that encapsulate these functions are known
as executors

» Three interfaces:
> Executor
- ExecutorService
> ScheduledExecutorSercice

Executor Interface
» Simple interface that supports launching new tasks

Provides a single method, execute

v

Runnable object “r’ and Executor object “e” then,
> (new Thread(r)).start(); =>» e.execute(r);

v

Can create a new thread and launch it immediately

4

More likely to use an existing worker thread to

v

run r

ExecutorService

» Supplements executor with more versatile submit
method

- submit accepts Runnable objects, but also
accepts Callable objects, which are similar to Runnable but
allow the task to return a value

- submit returns a Future object

- used to retrieve the Callable return value and to manage the
status of both Callable and Runnable tasks

» ExecutorService provides methods for submitting
large collections of Callable objects

» It provides methods for managing the shutdown of
the executor

ScheduledExecutorService

» Supplements the methods of its parent
ExecutorService with schedule method

- schedule executes a Runnable or Callable task after a
specified delay

» Defines scheduleAtFixedRate and scheduleWithFixe
dDelay

- To execute specified tasks repeatedly, at defined intervals

Thread Pools

Thread pools consist of worker threads
Minimize the overhead due to thread creation

Avoid allocating and de-allocating many thread
objects. Reduce significant memory management
overhead

Fixed thread poo/

Always has a specified number of threads running

If a thread is somehow terminated while it is still in use, it
is automatically replaced with a new thread.

Tasks are submitted to the pool via an internal queue

Queue holds extra tasks whenever there are more active
tasks than threads

Thread Pools

» Create an executor that uses a fixed thread pool

> invoke the newFixedThreadPool factory method in
java.util.concurrent.Executors

» Additional Methods:

- newCachedThreadPool method creates an executor with an
expandable thread pool, suitable for applications that
launch many short-lived tasks

- newSingleThreadExecutor method creates an executor that
executes a single task at a time

» FactoryMethod design pattern in practice

Putting it all together ... in code

» public class RunnableTester {
public static void main(String[] args) {
/| create and name each runnable
SomeTask taskl = new SomeTask("thread1");
SomeTask task2 = new SomeTask("thread2");
/| create ExecutorService to manage threads
ExecutorService threadExecutor = Executors.newFixedThreadPool(2);

/| start threads and place in runnable state
threadExecutor.execute(task1); // start task]l
threadExecutor.execute(task?); // start task?2

/| shutdown worker threads
threadExecutor.shutdown();
System.out.println("Threads started, main ends\n"); }
} // end class RunnableTester
» public SomeTask implements Runnable{
// do something here

Putting it all together ... in code

4

public class MyScheduledExecutorService {
ScheduledExecutorService scheduler= Executors.newScheduledThreadPool(1);
public void beepForAnHour() {
final Runnable beeper = new Runnable() {
public void run() { System.out.println("beep");

I3
ScheduledFuture<?> beeperHandle = scheduler.scheduleAtFixedRate(beeper, 1, 5,
SECONDS);

/| Schedule to beep every five seconds

scheduler.schedule(new Runnable() {
public void run() { beeperHandle.cancel(true); }
}, 60 * 60, SECONDS);

}

public static void main(String argsl]) {

MyScheduledExecutorService mses = new MyScheduledExecutorService();
mses.beepForAnHour();

Future Interface

4

Future represents the result of an asynchronous
computation

Methods are provided to check if the computation
is complete, to wait for its completion, and to
retrieve the result of the computation

The result can only be retrieved using
method get when the computation has completed

Cancellation is performed by the cancel method

Future Interface

» interface ArchiveSearcher {
String search(String target); }
class App {
ExecutorService executor = ...
ArchiveSearcher searcher = ...

void showSearch(final String target) throws
InterruptedException { Future<String>
future = executor.submit(new
Callable<String>() {
public String call() {
return searcher.search(target); }

}
);
displayOtherThings(); // do other things while searching try {
displayText(future.get()); // use future }

catch (ExecutionException ex) { cleanup(); return; } }

}

» The ScheduledFuture<?> in the previous code states that you would like
to use a ScheduledFuture for the sake of cancellability but not provide a
usable result. It is return value of ScheduledExecutorService methods.

More Synchronizers...

Semaphores
Semaphore maintains a set of permits.

acquire() blocks if necessary until a permit is available, and
then takes it

release() adds a permit, potentially releasing a blocking
acquirer

Used to restrict the number of threads than can access
some (physical or logical) resource

Semaphore encapsulates the synchronization needed to
restrict access to the resource pool, separately from any
synchronization needed to maintain the consistency of the
pool itself

Methods provided to ensure fairness, checking for permits,
acquire in non-blocking manner and get number of threads
queued to acquire that semaphore object

More Synchronizers...

» Cyclic Barrier

> A synchronization aid that allows a set of threads to all wait
for each other to reach a common barrier point

- barrier is called cyc/ic because it can be re-used after the
waiting threads are released
> await()
- Waits until all parties have invoked await on this barrier
- |If the current thread is not the last to arrive then it is disabled
for thread scheduling purposes and lies dormant until:
- The last thread arrives
- Some other thread interrupts the current thread
- Some other thread interrupts one of the other waiting threads
- Some other thread times out while waiting for barrier
- Some other thread invokes reset() on this barrier

More Synchronizers...

» Thread starting code in some class:
> barrier = new CyclicBarrier (N, new Runnable()
{ public void run()
{ some_random_function(...); }
D;
for (inti=0;i < N; ++i) {
; new Thread(new some_random_class(i)).start();
» Code for threads to wait on cyclic barrier
> class some_random_class implements Runnable {
public void run() {
while (Idone()) {
functionl(argl);
try { barrier.await();
} catch (InterruptedException ex) { return; }
catch (BrokenBarrierException ex) { return; }

}

}
» some_random_function() is executed each time a barrier is encountered
and tripped by a thread

AbstractQueueSynchronizer class

4

Provides a framework for implementing blocking locks and
related synchronizers (semaphores etc. that rely on first-in-
first—-out (FIFO) wait queues

Nearly any synchronizer can be used to implement nearly any
other
> it is possible to build semaphores from reentrant locks, and vice versa

But...
- Doing so often entails enough complexity, overhead, and inflexibility

> It is conceptually unattractive. If none of these constructs are intrinsically
more primitive than the others, developers should not be compelled to
arbitrarily choose one of them as a basis for building others.

Instead, JSR166 establishes a small framework

- centered on class AbstractQueuedSynchronizer

> Provides common mechanics that are used by most of the provided
synchronizers in the package

AbstractQueueSynchronizer class

v

Generic Synchronizers have acquire() and release() methods in

some form
> Eg: methods Lock.lock, Semaphore.acquire, CountDownlLatch.await,
and FutureTask.get all map to acquire operations in the framework

Support for these operations requires the coordination of

three basic components:

> Atomically managing synchronization state
> Blocking and unblocking threads

° Maintaining queues

Synchronizer framework has a concrete implementation of
each of these three components, while still permitting a wide
range of options in how they are used.

This intentionally limits the range of applicability, but
provides efficient enough support that there is practically
never a reason not to use the framework (and instead build

synchronizers from scratch)

AbstractQueueSynchronizer code

» Implementation of Mutex class using the framework

» Mutex class, that uses synchronization state zero to mean
unlocked, and one to mean locked

» class Mutex {
class Sync extends AbstractQueuedSynchronizer {
public boolean tryAcquire(int ignore) {
return compareAndSetState(0, 1);
}
public boolean tryRelease(int ignore) {
setState(0); return true;

}
}

private final Sync sync = new Sync();
public void lock() { sync.acquire(0); }
public void unlock() { sync.release(0); }

BlockingQueuelnterface

» ArrayBlockingQueue
> A bounded blocking queue backed by an array

> This queue orders elements FIFO (first-in-first-out)
- Head: element that has been on the queue the longest time
- Tail: element that has been on the queue the shortest time

- New elements are inserted at the tail of the queue, and the queue
retrieval operations obtain elements at the head of the queue

> It is classic Bounded Buffer: Fixed-sized array holds elements inserted
by producers and extracted by consumers

- Attempts to put an element to a full queue will result in the put
operation blocking; attempts to retrieve an element from an empty
queue will similarly block

BlockingQueuelnterface

» ArrayBlockingQueue code
- private ArrayBlockingQueue messageQ = new ArrayBlockingQueue
<String> (10);
Logger logger = new Logger(messageQ);
public void run () {
String someMsg;
try {
while (true){
// do something
/| blocks if no space available
messageQ.put(someMsg);

}
} catch (InterruptedException IE) { ... }

}

BlockingQueuelnterface

» LinkedBlockingQueues
> Not hard bounded as ArrayBlockingQueues

- Same features as ArrayBlockingQueues, but based on linked
nodes

> Linked queues typically have higher throughput than array-
based queues but less predictable performance in most
concurrent applications

> The optional capacity bound constructor argument serves
as a way to prevent excessive queue expansion

> Linked nodes are dynamically created upon each insertion
unless this would bring the queue above capacity

BlockingQueuelnterface
P

>

riorityBlockingQueue

An unbounded blocking queue that uses the same ordering rules
as class PriorityQueue and supplies blocking retrieval operations

While this queue is logically unbounded, attempted additions may
fail due to resource exhaustion (causing OutOfMemoryError)

A priority queue relying on natural ordering also does not permit
insertion of non-comparable objects (doing so results in
ClassCastException)

This class and its iterator implement all of the optional methods
of the Collection and Iterator interfaces

The Iterator provided in method iterator() is not guaranteed to
traverse the elements of the PriorityBlockingQueue in any
particular order

If you need ordered traversal, consider using
Arrays.sort(pg.toArray())

References

» http://gee.cs.osweqgo.edu/dl/papers/ags.pdf
» http://download.oracle.com/javase/1.5.0/docs/api

/java/util/concurrent/package-summary.htmi

» http://www.wizig.com/tutorial/183-Concurrency-
In—Java

» http://www.slideshare.net/alexmiller/java-
concurrency—gotchas

» http://book.javanb.com/java-threads-
3rd/jthreads3-CHP-14-SECT-3.html

g

http://gee.cs.oswego.edu/dl/papers/aqs.pdf
http://download.oracle.com/javase/1.5.0/docs/api/java/util/concurrent/package-summary.html
http://download.oracle.com/javase/1.5.0/docs/api/java/util/concurrent/package-summary.html
http://download.oracle.com/javase/1.5.0/docs/api/java/util/concurrent/package-summary.html
http://download.oracle.com/javase/1.5.0/docs/api/java/util/concurrent/package-summary.html
http://www.wiziq.com/tutorial/183-Concurrency-in-Java
http://www.wiziq.com/tutorial/183-Concurrency-in-Java
http://www.wiziq.com/tutorial/183-Concurrency-in-Java
http://www.wiziq.com/tutorial/183-Concurrency-in-Java
http://www.wiziq.com/tutorial/183-Concurrency-in-Java
http://www.wiziq.com/tutorial/183-Concurrency-in-Java
http://www.wiziq.com/tutorial/183-Concurrency-in-Java
http://www.wiziq.com/tutorial/183-Concurrency-in-Java
http://www.slideshare.net/alexmiller/java-concurrency-gotchas
http://www.slideshare.net/alexmiller/java-concurrency-gotchas
http://www.slideshare.net/alexmiller/java-concurrency-gotchas
http://www.slideshare.net/alexmiller/java-concurrency-gotchas
http://www.slideshare.net/alexmiller/java-concurrency-gotchas
http://book.javanb.com/java-threads-3rd/jthreads3-CHP-14-SECT-3.html
http://book.javanb.com/java-threads-3rd/jthreads3-CHP-14-SECT-3.html
http://book.javanb.com/java-threads-3rd/jthreads3-CHP-14-SECT-3.html
http://book.javanb.com/java-threads-3rd/jthreads3-CHP-14-SECT-3.html
http://book.javanb.com/java-threads-3rd/jthreads3-CHP-14-SECT-3.html
http://book.javanb.com/java-threads-3rd/jthreads3-CHP-14-SECT-3.html
http://book.javanb.com/java-threads-3rd/jthreads3-CHP-14-SECT-3.html
http://book.javanb.com/java-threads-3rd/jthreads3-CHP-14-SECT-3.html
http://book.javanb.com/java-threads-3rd/jthreads3-CHP-14-SECT-3.html
http://book.javanb.com/java-threads-3rd/jthreads3-CHP-14-SECT-3.html
http://book.javanb.com/java-threads-3rd/jthreads3-CHP-14-SECT-3.html
http://book.javanb.com/java-threads-3rd/jthreads3-CHP-14-SECT-3.html
http://book.javanb.com/java-threads-3rd/jthreads3-CHP-14-SECT-3.html

Thank You!

Executive Summary

The presentation talks about the following things:
General concurrency: what it means, how is it important

Concurrency in C: with some code thrown in, we explore how it is to write
concurrent programs in C, and how it is complicated.

Concurrency in Java: Based off previous, point describe the need for
abstracting all the concurrency related constructs from application
developers, thus a need for Java framework.

Threads: How to create and start threads in efficient and scalable manner
Synchronization:

Explore the need for Thread synchronization and different methods to do so

like synchronized methods, synchronized statements, atomic variables etc.

Explore abstractions for thread creation and starting like Executor,
ExecutorService and ScheduledExecutorService

Introduction to Thread Pools and usage

Usage of ExecutorService and Thread Pools together explained using code
examples

Explanation of Future interface with code

More on Synchronizers like Semaphores and CyclicBarriers with code
examples

Explanation of AbstractQueueSynchronizer class and the abstract
framework it provides based on which various Synchronizers mentioned
before are implemented, including code example

Introduction to BlockingQueuelnterfaces

