
Test-Driven Development

Kenneth M. Anderson
University of Colorado, Boulder

CSCI 4448/5448 — Lecture 28 — 04/21/11

© University of Colorado, 2011

Wednesday, April 20, 2011

2

Credit where Credit is Due

• Some of the material for this lecture is taken from “Test-Driven Development”
by Kent Beck

• as such some of this material is copyright © Addison Wesley, 2003

• In addition, some material for this lecture is taken from “Agile Software
Development: Principles, Patterns, and Practices” by Robert C. Martin

• as such some materials is copyright © Pearson Education, Inc., 2003

• Finally, one of the examples is inspired by the Roman Numerals example that
is featured in Dive into Python 3 <http://diveintopython3.org/> by Mark
Pilgrim. The slides devoted to that example are thus distributed using the
following license: <http://creativecommons.org/licenses/by-sa/3.0/>.

Wednesday, April 20, 2011

http://diveintopython3.org
http://diveintopython3.org
http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/3.0/

3

Goals for this lecture

• Introduce the concept of Test-Driven Development (TDD)

• Present several examples

• More executive summaries!

Wednesday, April 20, 2011

4

Test-Driven Development

• The idea is simple

• No production code is written except to make a failing test pass

• Implication

• You have to write test cases before you write code

• Note: use of the word “production”

• which refers to code that is going to be deployed to and used by real users

• It does not say: “No code is written except…”

Wednesday, April 20, 2011

5

Test-Driven Design in One Slide or Less

• This means that when you first write a test case, you may be testing code
that does not exist

• And since that means the test case will not compile, obviously the test
case “fails”

• After you write the skeleton code for the objects referenced in the test
case, it will now compile, but also may not pass

• So, then you write the simplest code that will make the test case pass

Wednesday, April 20, 2011

Example (I)

• Consider writing a program to score the game of bowling

• You might start with the following test

public class TestGame extends TestCase {

public void testOneThrow() {

Game g = new Game();

g.addThrow(5);

assertEquals(5, g.getScore());

}
}

• When you compile this program, the test “fails” because the Game class
does not yet exist. But:

• You have defined two methods on the class that you want to use

• You are designing this class from a client’s perspective

6

Wednesday, April 20, 2011

Example (II)

• You would now write the Game class

public class Game {

public void addThrow(int pins) {

}

public int getScore() {

return 0;

}

}

• The code now compiles but the test will still fail: getScore() returns 0 not 5

• In Test-Driven Design, Beck recommends taking small, simple steps

• So, we get the test case to compile before we get it to pass

7

Wednesday, April 20, 2011

Example (III)

• Once we confirm that the test still fails, we would then write the simplest code
to make the test case pass; that would be

public class Game {

public void addThrow(int pins) {

}

public int getScore() {

return 5;

}

}

• The test case now passes!

8

Wednesday, April 20, 2011

Example (IV)

• But, this code is not very useful!

• Lets add a new test case to enable progress
public class TestGame extends TestCase {

public void testOneThrow() {
Game g = new Game();
g.addThrow(5);
assertEquals(5, g.getScore());

}
public void testTwoThrows() {

Game g = new Game()
g.addThrow(5)
g.addThrow(4)
assertEquals(9, g.getScore());

}
}

• The first test passes, but the second case fails (since 9 ≠ 5)

• This code is written using JUnit; it uses reflection to invoke tests
automatically

9

Wednesday, April 20, 2011

Example (V)

• We have duplication of information between the first test and the Game class

• In particular, the number 5 appears in both places

• This duplication occurred because we were writing the simplest code to
make the test pass

• Now, in the presence of the second test case, this duplication does more
harm than good

• So, we must now refactor the code to remove this duplication

10

Wednesday, April 20, 2011

Example (VI)

public class Game {

private int score = 0;

public void addThrow(int pins) {

score += pins;

}

public int getScore() {

return score;

}

}

11
Both tests now pass. Progress!

Wednesday, April 20, 2011

Example (VII)

• But now, to make additional progress, we add another test case to the
TestGame class
…

public void testSimpleSpare() {

Game g = new Game()

g.addThrow(3); g.addThrow(7); g.addThrow(3);

assertEquals(13, g.scoreForFrame(1));

assertEquals(16, g.getScore());

}

…

• We’re back to the code not compiling due to scoreForFrame()

• We’ll need to add a method body for this method and give it the simplest
implementation that will make all three of our tests cases pass

12

Wednesday, April 20, 2011

13

TDD Life Cycle

• The life cycle of test-driven development is

• Quickly add a test

• Run all tests and see the new one fail

• Make a simple change

• Run all tests and see them all pass

• Refactor to remove duplication

• This cycle is followed until you have met your goal;

• note that this cycle simply adds testing to the “add functionality; refactor”
loop covered in the our two lectures on refactoring

Wednesday, April 20, 2011

14

TDD Life Cycle, continued

• Kent Beck likes to perform TDD using
a testing framework, such as JUnit.

• Within such frameworks

• failing tests are indicated with a
“red bar”

• passing tests are shown with a
“green bar”

• As such, the TDD life cycle is
sometimes described as

• “red bar/green bar/refactor”

Wednesday, April 20, 2011

JUnit: Red Bar...

• When a test fails:

• You see a red bar

• Failures/Errors are listed

• Clicking on a failure displays more
detailed information about what
went wrong

15

Wednesday, April 20, 2011

16

Example Background:
Multi-Currency Money

• Lets design a system that will allow us to perform financial transactions with
money that may be in different currencies

• e.g. if we know that the exchange rate from Swiss Francs to U.S. Dollars is
2 to 1 then we can calculate expressions like

• 5 USD + 10 CHF = 10 USD

• or

• 5 USD + 10 CHF = 20 CHF

Wednesday, April 20, 2011

17

Starting From Scratch

• Lets start developing such an example

• How do we start?

• TDD recommends writing a list of things we want to test

• This list can take any format, just keep it simple

• Example

• $5 + 10 CHF = $10 if rate is 2:1

• $5 * 2 = $10

Wednesday, April 20, 2011

18

First Test

• The first test case looks a bit complex, lets start with the second

• 5 USD * 2 = 10 USD

• First, we write a test case

public void testMultiplication() {

Dollar five = new Dollar(5);

five.times(2);

assertEquals(10, five.amount)

}

Wednesday, April 20, 2011

19

Discussion on Test Case

public void testMultiplication() {

Dollar five = new Dollar(5);

five.times(2);

assertEquals(10, five.amount)

}

• What benefits does this provide?

• target class plus some of its interface

• we are designing the interface of the Dollar class by thinking about how
we would want to use it

• We have made a testable assertion about the state of that class after we
perform a particular sequence of operations

Wednesday, April 20, 2011

20

What’s Next?

• We need to update our test list

• The test case revealed some things about Dollar that we will want to
address

• We are representing the amount as an integer, which will make it
difficult to represent values like 1.5 USD; how will we handle rounding
of factional amounts?

• Dollar.amount is public; violates encapsulation

• What about side effects?; we first declared our variable as “five” but
after we performed the multiplication it now equals “ten”

Wednesday, April 20, 2011

21

Update Testing List

• The New List

• 5 USD + 10 CHF = 10 USD

• $5 * 2 = $10

• make “amount” private

• Dollar side-effects?

• Money rounding?

• Now, we need to fix the compile errors

• no class Dollar, no constructor, no method: times(), no field: amount

Wednesday, April 20, 2011

22

First version of Dollar Class

public class Dollar {

public Dollar(int amount) {

}

public void times(int multiplier) {

}

public int amount;

}

• Now our test compiles and fails!

Wednesday, April 20, 2011

23

Too Slow?

• Note: we did the simplest thing to make the test compile;

• now, we are going to do the simplest thing to make the test pass

• Is this process too slow?

• YES, as you get familiar with the TDD life cycle you will gain confidence
and make bigger steps

• NO, taking small simple steps avoids mistakes;

• beginning programmers try to code too much before invoking the
compiler;

• they then spend the rest of their time debugging!

Wednesday, April 20, 2011

24

How do we make the test pass?

• Here’s one way

public void times(int multiplier) {

amount = 5 * 2;

}

• The test now passes, we received a “green bar”!

• Now, we need to “refactor to remove duplication”

• But where is the duplication?

Wednesday, April 20, 2011

25

Refactoring

• To remove the duplication of the test data and the hard-wired code of the
times method, we think the following

• “We are trying to get a 10 at the end of our test case and we’ve been given a
5 in the constructor and a 2 was passed as a parameter to the times method”

• So, lets connect the dots…

Wednesday, April 20, 2011

26

First version of Dollar Class

public class Dollar {

public Dollar(int amount) {

! this.amount = amount;

}

public void times(int multiplier) {

! amount = amount * multiplier;

}

public int amount;

}

• Now our test compiles and passes, and we didn’t have to cheat!

Wednesday, April 20, 2011

27

One loop complete!

• Before writing the next test case, we update our testing list

• 5 USD + 10 CHF = 10 USD

• $5 * 2 = $10

• make “amount” private

• Dollar side-effects?

• Money rounding?

Wednesday, April 20, 2011

28

One more example

• Lets address the “Dollar Side-Effects” item and then move on to another
example

• Lets write the next test case

• When we called the times operation our variable “five” was pointing at an
object whose amount equaled “ten”; not good

• the times operation had a side effect which was to change the value of
a previously created “value object”

• Think about it, as much as you might like to, you can’t change a 5 dollar
bill into a 500 dollar bill; the 5 dollar bill remains the same throughout
multiple financial transactions

Wednesday, April 20, 2011

29

Next test case

• The behavior we want is

public void testMultiplication() {

Dollar five = new Dollar(5);

Dollar product = five.times(2);

assertEquals(10, product.amount);

product = five.times(3);

assertEquals(15, product.amount);

assertEquals(5, five.amount);

}

Wednesday, April 20, 2011

30

Test fails

• The test fails because it won’t compile;

• We need to change the signature of the times method; previously it returned
void and now it needs to return Dollar

public Dollar times(int multiplier) {

amount = amount * multiplier;

return null;

}

• The test compiles but still fails; as Kent Beck likes to say “Progress!”

Wednesday, April 20, 2011

31

Test Passes

• To make the test pass, we need to return a new Dollar object whose amount
equals the result of the multiplication

public Dollar times(int multiplier) {

return new Dollar(amount * multiplier);

}

• Test Passes;

• Cross “Dollar Side Effects?” off the testing list; second loop complete!

• There was no need to refactor in this situation

Wednesday, April 20, 2011

32

Discussion of the Example

• There is still a long way to go

• only scratched the surface

• But

• we saw the life cycle performed twice

• we saw the advantage of writing tests first

• we saw the advantage of keeping things simple

• we saw the advantage of keeping a testing list to keep track of our
progress

• Plus, as we write new code, we will know if we are breaking things because
our old test cases will fail if we do;

• if the old tests stay green, we can proceed with confidence

Wednesday, April 20, 2011

Roman Numerals (I)

• Let’s develop a class that can manipulate roman numerals

• Roman numerals can express integers from 1 to 3999

• They do this using the following set of symbols that map to the following
values

• I = 1, V = 5, X = 10, L = 50, C = 100, D = 500, M = 1000

• There are rules concerning how these characters can be combined

• For instance, the 10s characters (X,C,M) can be repeated up to three times

• The 5s characters (V, L, D) cannot be repeated

• Character sequences can be additive (III = 3) or subtractive (IX = 9)

• Can be complex 99 is written as XCIX (100-10 + 10-1)

33

Wednesday, April 20, 2011

Roman Numerals (II)

• We start by developing a testing list

• able to convert legal roman numerals to integers

• able to convert integers in the range 1 to 3999 into roman numerals

• able to add two roman numerals, checking for boundary conditions

• able to subtract two roman numerals, checking for boundary conditions

• We will not complete the example but we’ll make progress on a few of these

34

Wednesday, April 20, 2011

Test Case: Create a Roman Numeral, Get Its Value

• Let’s use Python’s Unit Test framework

• We write the test case as if all the code we need is available

35

import roman1
import unittest2

3
class TestRomanNumerals(unittest.TestCase):4

5
 def testCreateAndGetValue(self):6
 thousand = roman.RomanNumeral("M")7
 self.assertEqual(thousand.value(), 1000)8

9
if __name__ == "__main__":10
 unittest.main()11

12

Wednesday, April 20, 2011

Several Failures on the Path to Green

• module import fail: no file named roman.py ➟ create one

• no class called RomanNumeral ➟ create one

• wrong number of arguments for constructor ➟ add self and value arguments

• no method called value() ➟ create a “blank” one

• test now runs and reports failure!! ➟ write simplest code to make it work

• test passes but contains duplication ➟ add another test case to make it fail

• end of step 2, onto step 3 directory

• original test passes, but new test fails ➟ write simplest code to make it work

• note, because of the tests, this is no longer trivial code to write

36

Wednesday, April 20, 2011

Making Progress; But Long way to go

• We now have a class that can successfully handle Roman Numerals that
consist only of “M” characters

• And, we haven’t fully completed any of the items on our test list

• We have lots of different directions we could go in

• Add tests to check that we handle bad input

• Add tests to add support for other roman numeral characters

• Add tests to add basic support for addition or subtraction

• etc.

• Let’s focus on bad input to see the test-code-refactor loop one more time

37

Wednesday, April 20, 2011

Test Case: Handle Bad Input

• Let’s add test cases that handle (step 4 directory in sample code)

• wrong input types (being handed a number or array rather than a string)

• wrong values (producing a value that is outside the legal set of values)

• Then, we’ll add a test case that can handle basic addition

• Note: all of the previous test cases remain

• Once we get a test to pass, we never allow them to fail again

38

Wednesday, April 20, 2011

Several Failures on the Path to Green (Again)

• add test case to handle non-string args to the constructor

• Here we want to give it bad input and see if it raises an exception

• All such tests will currently fail since the constructor just accepts
whatever it is given

• Start by passing a number, check to see if it raises an exception ➟ fail

• Add code to check for int ➟ pass; now pass collection ➟ fail

• Make it pass but then erase code written so far and now write code to
raise exception whenever a non-string is passed

• This is the refactor step, as we were adding duplication based on the
types of the parameters passed in between code and test case

• End of step 4; now make sure that we test the contents of the string

• accept “M”, “MM”, and “MMM” for now, all else should fail

39

Wednesday, April 20, 2011

Test Case: Handle Addition

• All we’ll be able to do is handle 1000 + 1000 and 1000 + 2000

• but this will ensure that we’ve got the basics in place

• can handle correct additions

• can flag additions that produce numbers outside the legal range

• Getting to Green

• Add a sum method that follows the “value” pattern seen above

• Generates ValueError if the value goes outside of the legal range

• First a test case to handle an illegal addition

• Then a test case to handle a legal addition

• We’ll encounter familiar steps

• fails because there is no sum method

• fails because it doesn’t throw an exception

• etc.

40

Wednesday, April 20, 2011

End of Example

• Still a long way to go, but you should now have the feel of what test-driven
development is like

• Start with a system that needs a new feature

• Write a test that documents what the expected results of the feature are

• Add simplest code to make test pass

• Make test more complicated, or add new test to reveal duplication

• Once duplication is found, refactor to produce general code

• Loop until feature is implemented and all tests pass

41

Wednesday, April 20, 2011

42

Principles of TDD

• Testing List

• keep a record of where you want to go;

• Beck keeps two lists, one for his current coding session and one for
“later”; You won’t necessarily finish everything in one go!

• Test First

• Write tests before code, because you probably won’t do it after

• Writing test cases gets you thinking about the design of your
implementation;

• does this code structure make sense?

• what should the signature of this method be?

Wednesday, April 20, 2011

43

Principles of TDD, continued

• Assert First

• How do you write a test case?

• By writing its assertions first!

• Suppose you are writing a client/server system and you want to test an
interaction between the server and the client

• Suppose that for each transaction

• some string has to have been read from the server, and

• the socket used to talk to the server should be closed after the
transaction

• Lets write the test case

Wednesday, April 20, 2011

44

Assert First

public void testCompleteTransaction {

…

assertTrue(reader.isClosed());

assertEquals(“abc”, reply.contents());

}

• Now write the code that will make these asserts possible

Wednesday, April 20, 2011

45

Assert First, continued

public void testCompleteTransaction {

Server writer = Server(defaultPort(), “abc”)

Socket reader = Socket(“localhost”, defaultPort());

Buffer reply = reader.contents();

assertTrue(reader.isClosed());

assertEquals(“abc”, reply.contents());

}

• Now you have a test case that can drive development

• if you don’t like the interface above for server and socket, then write a
different test case

• or refactor the test case, after you get the above test to pass

Wednesday, April 20, 2011

46

Principles of TDD, continued

• Evident Data

• How do you represent the intent of your test data

• Even in test cases, we’d like to avoid magic numbers; consider this rewrite
of our second “times” test case

public void testMultiplication() {

Dollar five = new Dollar(5);

Dollar product = five.times(2);

assertEquals(5 * 2, product.amount);

product = five.times(3);

assertEquals(5 * 3, product.amount);

}

• Replace the “magic numbers” with expressions

Wednesday, April 20, 2011

47

Summary

• Test-Driven Design is a “mini” software development life cycle that helps to
organize coding sessions and make them more productive

• Write a failing test case

• Make the simplest change to make it pass

• Refactor to remove duplication

• Repeat!

Wednesday, April 20, 2011

48

Reflections

• Test-Driven Design builds on the practices of Agile Design Methods

• If you decide to adopt it, not only do you “write code only to make failing
tests pass” but you also get

• an easy way to integrate refactoring into your daily coding practices

• an easy way to introduce “integration testing/building your system
every day” into your work environment

• because you need to run all your tests to make sure that your new
code didn’t break anything; this has the side effect of making
refactoring safe

• courage to try new things, such as unfamiliar design pattern, because
now you have a safety net

Wednesday, April 20, 2011

But how does it integrate with life cycles?

• With traditional software life cycles, TDD can be “test-driven development”

• You’ll do requirements, use cases, class diagrams, etc. ➟ top down

• Then TDD, coding from scratch to test your design ➟ bottom up

• With agile life cycles, TDD can be “test-driven design”

• You create a new user story and use TDD to “discover” the classes that
will help you implement that feature ➟ bottom up

49

Wednesday, April 20, 2011

Testing Frameworks

• JUnit Tutorial: <http://clarkware.com/articles/JUnitPrimer.html>

• PyUnit: <http://wiki.python.org/moin/PyUnit>

• Unit testing in Objective-C and Xcode:

• <http://developer.apple.com/mac/articles/tools/
unittestingwithxcode3.html>

• Unit testing with C#: <http://www.csunit.org/tutorials/tutorial7/>

• Unit testing for Ruby:

• <http://www.ruby-doc.org/stdlib/libdoc/test/unit/rdoc/classes/Test/
Unit.html>

50

Wednesday, April 20, 2011

http://clarkware.com/articles/JUnitPrimer.html
http://clarkware.com/articles/JUnitPrimer.html
http://wiki.python.org/moin/PyUnit
http://wiki.python.org/moin/PyUnit
http://developer.apple.com/mac/articles/tools/unittestingwithxcode3.html
http://developer.apple.com/mac/articles/tools/unittestingwithxcode3.html
http://developer.apple.com/mac/articles/tools/unittestingwithxcode3.html
http://developer.apple.com/mac/articles/tools/unittestingwithxcode3.html
http://www.csunit.org/tutorials/tutorial7/
http://www.csunit.org/tutorials/tutorial7/
http://www.ruby-doc.org/stdlib/libdoc/test/unit/rdoc/classes/Test/Unit.html
http://www.ruby-doc.org/stdlib/libdoc/test/unit/rdoc/classes/Test/Unit.html
http://www.ruby-doc.org/stdlib/libdoc/test/unit/rdoc/classes/Test/Unit.html
http://www.ruby-doc.org/stdlib/libdoc/test/unit/rdoc/classes/Test/Unit.html

51
!"#$%&'(&)*+",-!"#$%&'(&)*+",-!"#$%&'(&)*+",-!"#$%&'(&)*+",-

!" #$%&'# (%)# *+# ,%# -'./,.# %'# 0/1/2.# 3.)# /445*-/,*%1+# ,6/,# -/4,&'.# /17# 0/1*4&5/,.#
'.5/,*%1/5# 7/,/)/+.# "'%0# /# 3.)8)/+.7# &+.'# *1,.'"/-.9# ,6.1# :&)$# %1# :/*5+ #0/$#).# ,6.#
+%5&,*%1#$%&;<.#)..1#5%%=*12#"%'#,%#0/=.#$%&'#3.)#7.<.5%40.1,#5*".#./+*.'>

?6.#'.+&5,#*+#/1#./+$#,%#&+.#/17#-%6.+*<.#"'/0.3%'=#,6/,@+#'*-6#*1#"&1-,*%1/5*,$>

!"#$%&'$(!"#$%
"&'())*+",'$(

!"#$%&'%!()*+!"#$%&'%!()*+

!"#$%&'%(%)"*+%,#-+./0,*&+1/+2%'.*&)/+2%)*,3*(44&13%5(13"(3+%6&/7%
(%'")+*%.5+(1%'$1/(8%/7(/%4(9+'%)*,3*(44&13%+5+3(1/%(12%:"1;!

!(&5'%&'%(1%,)+1%',"*.+%!"#$%:*(4+6,*9%:,*%2+<+5,)&13%2(/(#('+0
#(.9+2%6+#%())5&.(/&,1';%

!"#$%,1%!(&5'%)*,<&2+'
=&37%>*,2"./&<&/$%%
!+2".+2%?+<+5,)4+1/%@&4+
A('$%/,%4(&1/(&1%(12%")3*(2+
B"&5/0&1%/+'/&13
C*&+125$%"'+*%.,44"1&/$

!"#"$%&"'()*%!+$),-%./00
1,)23$4)56%78%97:7$";7%"5%<7=:;3$

!!"#$%"&'()$*$+,-.//

!

Wednesday, April 20, 2011

52

� �

����������	
����
����
������������������

��	
���������������	�����������������	
�����	�
����
������	��
�������
�����	��������	�����	����� 	��	
������� �
	�	!����
"����#�$%%#��
������% ���&��	���������� ���	
���	����������
�	���������	������	������
!��� 	�������'����������
����	
������
�	�������������	��������	���������������	����	
���#�����
������
(�)*�� ������#���	����������	���� 	��� ����#��
��!��������	���
�+�����	���
�����,����% ������������������ 	���������������

������	����
�	��
�(
��	������ ���	
'

Wednesday, April 20, 2011

53

Processing	 Visualization	 Language	
By	 Rutvi	 Joshi	

A Graphical Sketch Book and Environment, to graphically teach the fundamentals of
computer science

But it has evolved into something much bigger

Being a Free and Open Source software tool, has made it accessible and thus very
popular

The Language is strictly typed and very similar to Java but it does not include the
advanced features of Java, it integrates them, making it easier to learn

Sketches run as Java Applets. Thus, they can be put in Web pages and can be Exported
as software application on Windows, Linux and MAC

Processing.js is a recent addition to this family which makes your application that you
developed run using web standards without any plug ins!

The presentation is a quick tutorial to familiarize yourself with the language and the
various options that can be explored

Wednesday, April 20, 2011

54

Electronic Nursing Record System:
An Object-Oriented approach

using Object Oriented techniques in ENRS:

Shows how to overcome the problems in the implementation phase by
using of OOAD, UML, and RUP) in the implementation phase.

How it will be easy to exchange the information with third parties.

How to protect information internally and eternally by using encapsulation.

The Topic shows:

Importance of create standard terminology in the implementation of an
electronic nursing record system.

Nursing data are traditionally recorded in both structured and free-text
formats, which make it difficult to implement an ICNP-based ENRS.

by Faris Kateb
Wednesday, April 20, 2011

55

Wednesday, April 20, 2011

56

���������	
�����																

� ���������	��	�	����	�����������	����������	�������	���	
���	����	�������	��	����� ����	����������	���	��������� ���

� ���������	���	�	 ���	����	��	��� ����	���	����������	
 ������	����	������	���	��������� ���	����	������	������	������	
��������������	�� �	�!��	����	���	�������	���� ������	��������	
"��	���	���

� ���������	�������	� 	����� ���	��#���	�������	�����������	���	
������$����	��	�� 	��	� �����	���	��	�������	���	������	
����	 ������	������	���������	���� �

� ���������	���	� ��	��	����	��	�� ����	�����	���	��� ������	
� ����	�	��	��������	���	%��	���������	 ������	����	�� ����	

by Ben Leduc-Mills

Wednesday, April 20, 2011

57

Topics Discussed

History of Struts
Basic features of struts 2.0
Struts2 vs struts1.1
Architecture of struts2.0
MVC 2 Model Architecture and Overview
Basic flow of struts2.0
Core Components
Pros and Cons

2

Struts 2 by Ming Lian
Wednesday, April 20, 2011

58

Keynote: Domain Driven Design

The Participants
What is Domain Driven Design?
Modeling a domain
Ingredients of Effective Modeling
Knowledge crunching & Knowledge-‐
Rich Design
Fractured Language Problem
Solution Ubiquitous language
Confluence of Terminologies
Fine tune a model using U Language
Isolating the domain (Layered
Architecture)
Layer Policies
Communication with higher layers
Model expressed in software
Entities

Designing Entities
Value Object
Services
Modules
Non-‐Objects in an Object World
Life Cycle of a Domain object
Aggregates
Factories
Where the Factory should be
positioned?
Factories vs. Constructors
Repositories
Advantages of Repository
Putting it all together :The Cargo
tracking example

by Vivek Madhavan
Wednesday, April 20, 2011

59

!"#$$%&'"%()#*+),&&
-*.."/0&"1#&2$1+3*45$1&

•   !"#$$%&'"%()#*+)&54&"&3"/6)&4+"3)7&$%)1&4$*/+)&4$89"/)&
:/".)9$/;&#)#5+"<)#&<$&4+"3"=3)76</5=*<)#7&#"<">51<)145?)&
+$.%*@16&

•   AB)&:/".)9$/;&=/)";4&*%&3"/6)&#"<"&51<$&4."33)/&%"/"33)35C"=3)&
+B*1;4&"1#&B"1#3)4&4+B)#*3516&
–   '"%4&)"+B&%5)+)&<$&"1&51<)/.)#5"<)&?"3*)&
–   ()#*+)4&51<)/.)#5"<)&?"3*)4&<$&"&4$3*@$1&
–   D4)/>4%)+5E)#&%"/@@$1&"1#&+$.=51)/&$%@$14&

•   F"*3<&<$3)/"1<7&/)35"=3)7&"1#&4*%%$/<4&<B$*4"1#4&$:&1$#)4&"1#&
%)<"=0<)4&$:&#"<"&

•   G:&0$*&+"1&/)9/5<)&"36$/5<B.4&51<$&'"%4&"1#&()#*+)47&"1#&0$*/&
%/$=3).&+"1&=)&=/$;)1&*%&51<$&4."33&%5)+)4&4$3?"=3)&51&%"/"33)37&
<B)1&!"#$$%H4&'"%()#*+)&54&<B)&9"0&<$&6$&:$/&"6</5=*<)#&
%/$=3).&4$3?516&"%%/$"+B&<$&3"/6)&#"<"4)<4&

•   A/5)#&"1#&<)4<)#&51&%/$#*+@$1&
•   '"10&5.%3).)1<"@$1&$%@$14&

by Casey McTaggart
Wednesday, April 20, 2011

60

Summary

JPA is a specification that a developer can code to in
order to easily leverage ORM technologies

There are a wide variety of vendors that implement
the specification

Coding to the spec allows the developer to be
flexible in their choice of vendor implementations
with limited ripple throughout the codebase

JPA greatly simplifies persistence of Objects through
a small set of easily utilized annotations

Thursday, March 31, 2011

JPA by Aaron Schram

Wednesday, April 20, 2011

Coming Up Next

• Lecture 29: ORM and Hibernate

• Lecture 30: Dependency Injection and Spring; Semester Wrap Up

61

Wednesday, April 20, 2011

