
© Kenneth M. Anderson, 2011

HOW DO EXPERTS DESIGN?
CSCI 4448/5448: OBJECT-ORIENTED ANALYSIS & DESIGN

LECTURE 21 — 03/29/2011

1

Wednesday, March 30, 2011

© Kenneth M. Anderson, 2011

Goals of the Lecture

Cover the material in Chapters 12 & 13 of our textbook

How do experts design?

Solving the CAD/CAM Problem

But first…

2

Wednesday, March 30, 2011

© Kenneth M. Anderson, 2011

Objective-C 2.0 Class Extensions

Interesting encapsulation mechanism

Allows the header file of a class to include only details
about the class’s public interface

Allows everything that should be private to remain
unseen by the developers who make use of your class

3

Wednesday, March 30, 2011

© Kenneth M. Anderson, 2011

Example: Set-Up
@interface Roster : NSObject {

@private

 NSMutableArray *roster;

}

- (void) appendPlayer: (Player *)p;

- (Player *) playerAtIndex:(NSUInteger) index;

@private

- (void) updatePlayerAtIndex:...

@end

4

Wednesday, March 30, 2011

© Kenneth M. Anderson, 2011

Discussion (I)

The Roster class using Objective-C 1.x techniques tells
developers that it is using an array internally to store the
players of a team

The array is declared private, but Objective-C is a
dynamic language and its possible to get around these
restrictions if you really want to

As a result, some developers could violate the
abstraction of “Roster of Players” and instead come to
depend on the implementation “Array of Players”

5

Wednesday, March 30, 2011

© Kenneth M. Anderson, 2011

Example: Properties Don’t Help

@interface Roster : NSObject {

}

@property (retain) NSMutableArray *roster;

- (void) appendPlayer: (Player *)p;

- (Player *) playerAtIndex:(NSUInteger) index;

@private

- (void) updatePlayerAtIndex:...

@end

6

Wednesday, March 30, 2011

© Kenneth M. Anderson, 2011

Discussion (II)

Not declaring the instance variable and just declaring a
property won’t help

in fact, it’s worse

In the previous example, it was a bit more work to access
the array… with a property we are making it easy to access
the array

Indeed, properties should only be used to declare
attributes that are part of the public interface

data that you WANT to share with clients

7

Wednesday, March 30, 2011

© Kenneth M. Anderson, 2011

Discussion (III)

However, it WOULD be nice to have a property defined for
the internal array

So, in our own internal code we can write things like

self.roster = …

and have getters and setters invoked automatically for us
without making those properties publicly available

In addition, it would be nice to declare private helper methods
that can be used anywhere in the implementation section of a
class but, again, hide these from external users of the class

8

Wednesday, March 30, 2011

© Kenneth M. Anderson, 2011

Class Extensions

Objective-C 2.0 class extensions allow you to do all of this

It builds off the category mechanism I discussed in Lecture 20

categories: ability to add methods to existing classes

A class extension occurs at the top of a class’s .m file just after
the inclusion of the class’s .h file

@interface Roster ()

<internal properties and method defs>

@end

9

Note: category
name is left
blank

Wednesday, March 30, 2011

© Kenneth M. Anderson, 2011

Example: Public Interface becomes…

@interface Roster : NSObject {

}

- (void) appendPlayer: (Player *)p;

- (Player *) playerAtIndex:(NSUInteger) index;

@end

10

Wednesday, March 30, 2011

© Kenneth M. Anderson, 2011

Example: Class extension is…

@interface Roster ()

@property (retain) NSMutableArray *roster;

- (void) updatePlayerAtIndex:...

@end

@implementation Roster

@end

11

No need to declare anything
private this is all in the .m
file and available only to the
class implementation below

Wednesday, March 30, 2011

© Kenneth M. Anderson, 2011

From OO A&D perspective…

Interesting encapsulation mechanism that

allows public interface to be expressed without clutter

allows developers to specify internal interface cleanly

including specifying additional instance variables that
are hidden from external users

If you distribute just a .h file and a framework, external
developers are much less likely to become dependent on
the implementation of your class

12

Wednesday, March 30, 2011

© Kenneth M. Anderson, 2011

Back to the Book: Overview

Chapter 12 talks about applying the lessons that
Christopher Alexander developed for designing cities—
architectural design patterns—to software engineering and
to the design of software systems

there is not a one-to-one mapping

but there are important lessons to learn

It was NOT enough for Alexander to specify individual
design patterns… it was about using design patterns to
transform the nature of the design process

13

Wednesday, March 30, 2011

© Kenneth M. Anderson, 2011

Important for all designers

Alexander’s approach has had such impact on the software design
community because his work describes an approach to design that is
valid to ANY designer

There are several aspects to his work that are not intuitive; indeed, it
is our intuitive notion of design that can often lead us into trouble by
oversimplifying

Analysis: What’s the Problem?

Design: What’s the Solution?

Both of these are oversimplifications of really complex tasks

14

Wednesday, March 30, 2011

© Kenneth M. Anderson, 2011

Intuitive Notion of Design

Build by fitting things together : “build from pieces”

Indeed, this is the whole point of functional
decomposition

decompose the problem into small pieces and then
build up from there

And OO follows this with classes and objects

But Alexander indicates that this is NOT a good way to
design

15

Wednesday, March 30, 2011

© Kenneth M. Anderson, 2011

The Set-Up

Alexander says:

Design is often thought of as a process of synthesis, a
process of putting together things, a process of
combination. According to this view, a whole is created
by putting together parts. The parts come first: and the
form of the whole comes second.

16

Wednesday, March 30, 2011

© Kenneth M. Anderson, 2011

The Problem

Alexander continues

When parts are modular and made before the whole, by
definition then, they are identical, and it is impossible for
every part to be unique, according to its position in the
whole. Even more important, it simply is not possible for
any combination of modular parts to contain the number
of patterns which must be present simultaneously in a
place which is alive.

“Cookie cutter” designs do not produce high quality results

Think european city center vs. southern california suburb

17

Wednesday, March 30, 2011

© Kenneth M. Anderson, 2011

Possible Confusions (I)

In software engineering, we talk about producing modular,
generic classes that are reusable across multiple contexts

Now Alexander is seemingly telling us not to do this!

but remember : he was talking about architecture…

Alexander’s “modular” refers to identical parts that can be
snapped together to produce a structure that was designed
independent of its final location

Software Engineering’s “modular” refers to separation of
concerns: “I deal with persistence in this module.”

18

Wednesday, March 30, 2011

© Kenneth M. Anderson, 2011

Possible Confusions (II)

Alexander talks about a “place which is alive”

What does that mean for software systems?

Alexander says

“It is only possible to make a place which is alive by a
process in which each part is modified by its position in
the whole.”

The context of a part influences the design and
characteristics of that part…

19

Wednesday, March 30, 2011

© Kenneth M. Anderson, 2011

Possible Confusions (III)

Our authors indicate that the counterpart to

“a place which is alive” in software design is

robust and flexible software systems

systems whose parts have been tweaked by context to
reach a state in which the system is

extensible, maintainable, flexible, etc.

i.e. resilient or lifelike

20

Wednesday, March 30, 2011

© Kenneth M. Anderson, 2011

The Goal

So, interpreting what we’ve seen so far, the goal of design
becomes

Design pieces—classes and objects—within the context in
which they must live in order to create robust and flexible
systems

How?

Alexander’s answer is a bit mystifying at first

 ☺

21

Wednesday, March 30, 2011

© Kenneth M. Anderson, 2011

Alexander’s Answer : “Complexification”

In short, each part is given its specific form by its existence in
the context of the larger whole.

This is a differentiating process. It views design as a sequence
of acts of complexification; structure is injected into the whole
by operating on the whole and crinkling it, not by adding little
parts to one another.

In the process of differentiation, the whole gives birth to its
parts: The form of the whole, and its parts, come into being
simultaneously. The image of the differentiating process is the
growth of an embryo.

22

Wednesday, March 30, 2011

© Kenneth M. Anderson, 2011

Translation

Design is a process that starts by looking at a problem in
its simplest term, giving a unified whole

it is refined by making decisions, adding information
(and thus, complexity), making distinctions between
elements in the design where none existed before

but the distinctions are made within a larger
context, guided by the whole, and the elements
added to the domain by the decision can be guided
by patterns

23

Wednesday, March 30, 2011

© Kenneth M. Anderson, 2011

Example

Think about a planning (designing) an academic conference

Multi-day event held at a hotel with sessions and a
reception organized by a set of people

sessions: workshops, keynotes, papers, posters, etc.

people: conference chair, program chair, program
committee, conference committee

conference committee: publicity chair, proceedings
chair, local events chair, etc.

24

Wednesday, March 30, 2011

© Kenneth M. Anderson, 2011

Alexander : The Role of Patterns

Each pattern is an operator that differentiates space: that
is, it creates distinctions where no distinction was before.

… the operations are arranged in sequence: so that, as
they are done, one after the other, gradually a complete
thing is born, general in the sense that it shared its
patterns with other comparable things; specific in the
sense that it is unique, according to its circumstances

… each [pattern] further differentiates the [whole], which
is the product of previous differentiations.

25

Wednesday, March 30, 2011

© Kenneth M. Anderson, 2011

Design for Everyone

The interesting thing about this stance is that design is
something that can be learned by anyone

A design that follows well-established patterns will produce
good, solid results; it should not be surprising that quality
solutions for similar problems appear very much alike

For instance, following Model-View-Controller brings
benefits to even the most novice of designers…

Creativity comes in understanding how to adapt the patterns
to the context you find yourself in

26

Wednesday, March 30, 2011

© Kenneth M. Anderson, 2011

The Steps

Within the context of a design

Identify patterns that can add information to the design

ones that define useful relationships between entities
of the design (or suggest entities and relationships
not currently present that would benefit the design)

Add them to the design, thus updating the context

Repeat, until no more entities and relationships are
needed to solve the problem

27

Wednesday, March 30, 2011

© Kenneth M. Anderson, 2011

Example

Design a system that aids a geologist in assigning ages to rock
samples collected from the field

Context Pattern: Desktop Application

Leads to: Model-View-Controller

Model Leads to: Database of Rock Samples

View Leads to: Collection Browser and Operations

Controller : Set of “glue” objects that invoke operations
on selected samples, updates database, displays results

28

Wednesday, March 30, 2011

© Kenneth M. Anderson, 2011

Limitations

The authors of our book caution that Alexander’s approach
does not directly translate to software design

Well-defined patterns do not exist for all problem
domains

Context to Pattern to New Context to Pattern chains
may not be that deep

How to customize a pattern to a particular context may
be non-obvious

The principles behind Alexander’s techniques ARE important

29

Wednesday, March 30, 2011

© Kenneth M. Anderson, 2011

Review of CAD/CAM Problem

30

Slots

Cutouts

Holes

Special

Irregular

Design software that translates CAD designs that use
the parts above into instructions for a machine that
punches the actual part out of sheet metal

Wednesday, March 30, 2011

© Kenneth M. Anderson, 2011 31

♫

Confident
Engineer

CAD/CAM
System

Expert
System

Cutter
Slots

Cutouts

Holes

Special

Irregular

Slots

Cutouts

Holes

Special

Irregular

Slots

Cutouts

Holes

Special

Irregular

Slots

Cutouts

Holes

Special

Irregular

Parts

Controls

Produces

Our
Software

Retrieves
Info

Produces
Model

System Overview

Wednesday, March 30, 2011

© Kenneth M. Anderson, 2011 32

CAD/CAM
Version 1

Expert
System

Our
Software

Retrieves
Info

Produces
Model

CAD/CAM
Version 2

CAD/CAM
Version N

•••

Here's the Problem

We are being asked to make
the overall system resilient to
changes in the CAD/CAM
system

Example of encapsulation via software architecture…

Wednesday, March 30, 2011

© Kenneth M. Anderson, 2011

The Original Solution (I)

33

Slot

V1Slot V2Slot

V1System V2SystemSlot

For each Feature class, the version 1
variation will have attributes that link to
the version 1 model id and the feature
id; it will then call the V1 library routines
directly

The version 2 variation will simply wrap
the Feature class that comes from the
CAD system

The arrow with dashed line means “uses”

Wednesday, March 30, 2011

© Kenneth M. Anderson, 2011

The Original Solution (II)

34

Feature

Slot Special

Model

Hole •••

V1Slot V2Slot ••• V1Special V2Special

One subclass
per CAD system
plus the high
level classes =
17 classes

Wednesday, March 30, 2011

© Kenneth M. Anderson, 2011

WWAD? (What Would Alexander
Do?)

35

To develop a better solution to this problem, let’s think in
terms of patterns

What are the essential concepts of the problem
domain and what relationships exist between them?

This can help us identify patterns that can be applied

This doesn’t always work (design is hard) but patterns
can often get you started moving in a particular
direction

Wednesday, March 30, 2011

© Kenneth M. Anderson, 2011

Thinking in Patterns (big picture view)

Step 1: Identify the Patterns

Step 2: Analyze and apply the patterns

2a. Order the patterns by context creation

2b. Select pattern and expand design

2c. Identify additional patterns, add them to the set

2d. Repeat

Step 3: Add detail

36

Wednesday, March 30, 2011

© Kenneth M. Anderson, 2011

Step 1: Identify the Patterns

For the CAD/CAM Domain, the authors identified

Abstract Factory: Create parts for a particular CAD system

Adapter : Adapt new CAD systems to the target interface

Bridge: Implement the abstractions of the domain by
“bridging” to a particular CAD system

Facade: keep the complexities of the CAD system hidden
from the expert system

37

Wednesday, March 30, 2011

© Kenneth M. Anderson, 2011

Step 2a: Which pattern provides
context for the others?

Look through all possible parings of the identified patterns

Does x provide context for y?

Does abstract factory provide a context for bridge?

Look back at our Pizza shop example for inspiration

To help with these decisions look at the patterns
conceptually…

38

Wednesday, March 30, 2011

© Kenneth M. Anderson, 2011

Step 2a (II)

Abstract factory creates sets of related objects

Adapter adapts existing class A to the interface needed by
a client class B

Bridge allows for different implementations to be used by
a set of related client objects

Facade simplifies an existing system A for a client class B

39

Wednesday, March 30, 2011

© Kenneth M. Anderson, 2011

Step 2a (III)

Abstract factory’s context is the structure of the objects its creating

Pizza is made of dough, sauce, toppings, etc.

It does not provide context for other patterns

This is true of most “creational patterns”

So, scratch it off the list

This leaves

Adapter ↔ Bridge; Bridge ↔ Facade; Facade ↔ Adapter

40

Wednesday, March 30, 2011

© Kenneth M. Anderson, 2011

Step 2a (IV)

Bridge ↔ Adapter

Adapter will allow the expert system to access the
OO interface of the new CAD system by making it
conform to Feature and its subclasses

Bridge will ensure that Feature and its subclasses can
access version 1 and 2 of the CAD system

Bridge provides context for Adapter

41

Wednesday, March 30, 2011

© Kenneth M. Anderson, 2011

Step 2a (V)

Bridge ↔ Facade

Facade will simplify the complex interface of the first
CAD system

Bridge will ensure that Feature and its subclasses can
access version 1 and 2 of the CAD system

which means making use of the Facade

Bridge provides context for Facade (in this system)

Since Bridge “wins” twice, its the outermost pattern

42

Wednesday, March 30, 2011

© Kenneth M. Anderson, 2011

Step 2b: Select Pattern and Expand Design

How does Bridge fit into the conceptual whole of the design?

What, exactly, provides a context for the Bridge pattern?

The elements of the problem domain!

Expert System uses Model

Model aggregates Features (abstractions)

Different CAD systems provide different types of
features (implementations)

Bingo! The Bridge pattern

43

Wednesday, March 30, 2011

© Kenneth M. Anderson, 2011

Bridge Structure Diagram

44

+operationImpl()
Implementor

+operationImpl()
ConcreteImplementorA

+operationImpl()
ConcreteImplementorB

+operation()
Abstraction

+operation()
Variation

imp.operationImpl()

Wednesday, March 30, 2011

© Kenneth M. Anderson, 2011

Bridge in Context

45

Feature

Slot Special

Model

Hole •••

FeatureImpl

V1Impl V2Impl

Assumes that Feature has a public interface that
provides all of the information needed by expert system

Wednesday, March 30, 2011

© Kenneth M. Anderson, 2011

2c: Identify additional patterns

46

All that is left in this particular system is to attach the V1
and V2 systems to the design

Adapter and Facade will do that for us, so no additional
patterns are needed

Looping back, we know that Adapter and Facade are
independent of each other in this design

They can be applied in any order

Wednesday, March 30, 2011

© Kenneth M. Anderson, 2011

Context for Facade

47

Feature

Slot Special

Model

Hole •••

FeatureImpl

V1Impl V2Impl

V1Facade

V1 C API

Wednesday, March 30, 2011

© Kenneth M. Anderson, 2011

Context for Adapter (& Final Design)

48

Feature

Slot Special

Model

Hole •••

FeatureImpl

V1Impl V2Impl

V1Facade

V1 C API

OOGFeature

•••

Wednesday, March 30, 2011

© Kenneth M. Anderson, 2011

Step 3: Add Detail

49

At this point, we would start to add detail

What exactly is the public interface of Feature and
FeatureImpl

How will each subclass of Feature implement that
public interface by calling operations on FeatureImpl?

Wednesday, March 30, 2011

© Kenneth M. Anderson, 2011

Is it better?

Is the new design better?

The book suggests talking through each design

“Read the UML diagram”

The new design sounds simpler (especially because it
can be explained using design patterns)

Now consider, what happens when V3 of the CAD system
comes along…

6 new subclasses in 1st design; 2 new classes in the 2nd

50

Wednesday, March 30, 2011

© Kenneth M. Anderson, 2011

Class Focus vs. Pattern Focus

In the first design, we got to a state that works but it
wasn’t that maintainable

it had a class-based focus that stuck parts together
from the bottom up, creating a whole

In the second design, we started with the big picture,
found the most suitable pattern and worked down, adding
patterns that worked with the first one

the patterns then deliver on good software qualities
because that’s what they are all about!

51

Wednesday, March 30, 2011

© Kenneth M. Anderson, 2011

Wrapping Up

Went deeper into the pattern-based approach to software
design by looking at Christopher Alexander’s work more
closely

Start with a conceptual understanding of a problem
domain; identify patterns that highlight coarse-grained
elements and relationships in the domain; use those
patterns as context to implement additional more-
refined patterns; repeat until problem is solved

Saw an example of this approach applied to the CAD/
CAM problem discussed earlier this semester

52

Wednesday, March 30, 2011

© Kenneth M. Anderson, 2011

Coming Up Next

Lecture 22: Advanced Design (chapters 14-16)

Homework 6 due on Friday

Homework 7 assigned on Friday

Lecture 23: Decorator, Observer, Template Method

53

Wednesday, March 30, 2011

