
© Kenneth M. Anderson, 2011

ADVANCED IOS
CSCI 4448/5448: OBJECT-ORIENTED ANALYSIS & DESIGN

LECTURE 20 — 03/17/2011

1

Wednesday, March 23, 2011

© Kenneth M. Anderson, 2011

Goals of the Lecture

Cover additional topics related to iOS programming

Additional Objective-C 2.0 techniques

Table and Navigation controller

Core Data

MapKit: MapView and Core Location

Retrieving Data from the Web

2

Wednesday, March 23, 2011

© Kenneth M. Anderson, 2011

Credit Where Credit Is Due

My examples are drawn from two books

The excellent “More iPhone 3 Development: Tackling
iPhone SDK 3” by Dave Mark and Jeff LaMarche

Don’t worry, the examples still work with iOS 4.x

“Beginning iOS 4 Application Development in Full
Color” by Wei-Meng Lee

Both are useful and highly recommended; I will not be
providing extensive coverage of the examples, just highlights

3

Wednesday, March 23, 2011

http://apress.com/book/view/9781430225058
http://apress.com/book/view/9781430225058
http://apress.com/book/view/9781430225058
http://apress.com/book/view/9781430225058
http://www.wiley.com/WileyCDA/WileyTitle/productCd-0470918020.html
http://www.wiley.com/WileyCDA/WileyTitle/productCd-0470918020.html
http://www.wiley.com/WileyCDA/WileyTitle/productCd-0470918020.html
http://www.wiley.com/WileyCDA/WileyTitle/productCd-0470918020.html

© Kenneth M. Anderson, 2011

More Objective-C 2.0 Techniques

Properties

Update on best practice surrounding properties

Categories

how to extend existing classes without subclassing
them

Protocols

Objective-C’s version of Java’s Interface

4

Wednesday, March 23, 2011

© Kenneth M. Anderson, 2011

Properties

Back in Lecture 13, I presented an example of specifying
properties for Objective-C classes

properties were used to auto-generate getter and
setter methods for publicly visible attributes

note: default visibility in Objective-C is protected,
you can use @private and @public to change that
default, if needed

But the example I gave had some duplication in it (and
developers hate duplication!)

5

Wednesday, March 23, 2011

© Kenneth M. Anderson, 2011

Example
#import <Foundation/Foundation.h>

@interface Greeter : NSObject {

 NSString *greetingText;

}

@property (nonatomic, retain) NSString *greetingText;

@end

The duplication lies with “NSString *greetingText”; why do we have to say
this twice?

6

Wednesday, March 23, 2011

© Kenneth M. Anderson, 2011

The Answer : We Don’t!
#import <Foundation/Foundation.h>

@interface Greeter : NSObject {

}

@property (nonatomic, retain) NSString *greetingText;

@end

Objective-C will auto-generate the attribute definition for us

 This feature has been available for some time but couldn’t be used in iOS
programming until recently due to a technical problem with the iOS
simulator

7

Wednesday, March 23, 2011

© Kenneth M. Anderson, 2011

Best Practice: property name ≠ att name
#import "Greeter.h"

@implementation Greeter

@synthesize greetingText=_greetingText;

@end

Furthermore, best practice dictates that when you synthesize the property,
you specify that the attribute name be different than the publicly available
property name

Now, external code only uses the property and internal code can
clearly indicate when it is using the property or the attribute

8

Wednesday, March 23, 2011

© Kenneth M. Anderson, 2011

Use of Property

When you have a property defined, you can access it using a
syntax similar to accessing attributes in Java

Greeter *g = [[Greeter alloc] init];

g.greetingText = @“Howdy”

NSLog(@”%@, Ken!”, g.greetingText);

In line 2, we are invoking the setter ; In line 3, we are invoking
the getter

Internal to the Greeter class, we can use the property via
self.greetingText or the attribute with _greetingText

9

Wednesday, March 23, 2011

© Kenneth M. Anderson, 2011

Objective-C Categories (I)

Have you ever been in a situation where you’re using a class
provided by a library and you say

“I wish this class had a method that did …”

In most languages, if you want to add a method to an existing
class, say java.lang.String, you would need to create a subclass:
“class MyString extends String”

Warning: Abandon All Hope, Ye Who Enter Here!

This approach is fraught with peril

In Objective-C, you don’t have to subclass: just use a category

10

Wednesday, March 23, 2011

© Kenneth M. Anderson, 2011

Objective-C Categories (II)

Objective-C Categories let you re-open a class definition
and add a new method!

The original class will then act as if it had that method
all along!

Your new method is often implemented using just the
publicly available methods of the original class and so
you don’t require any special knowledge of the original
class to add the new method

11

Wednesday, March 23, 2011

© Kenneth M. Anderson, 2011

Objective-C Categories (IV)

To create a category, you use the following syntax

@interface ExistingClass (NameOfCategory)

<method signatures>

@end

@implementation ExistingClass (NameOfCategory)

<method defs>

@end

12

Wednesday, March 23, 2011

© Kenneth M. Anderson, 2011

Objective-C Categories (V)

Example of extending built-in NSArray class

@interface NSArray (NestedArrays)

- (NSInteger) countOfNestedArray:(NSUInteger)pos;

@end

13

Wednesday, March 23, 2011

© Kenneth M. Anderson, 2011

Objective-C Categories (VI)

Example of extending built-in NSArray class

@implementation NSArray (NestedArrays)

- (NSInteger) countOfNestedArray:(NSUInteger)pos {

 NSArray *subArray = [self objectAtIndex:section];

 return [subArray count];

}

@end

14

Wednesday, March 23, 2011

© Kenneth M. Anderson, 2011

Objective-C Categories (VII)

Now, you simply include the category in new code and NSArray will act
as if it always had the method countOfNestedArray: (!!!)

#import "NSArray-NestedArrays.h"

NSArray *foo = <code to get an array>

NSInteger subarray_count =

 [foo countOfNestedArray:2];

NSLog(@“%d items in subarray”, subarray_count);

15

Wednesday, March 23, 2011

© Kenneth M. Anderson, 2011

Protocols (I)

Protocols are Objective-C’s version of Java’s Interfaces

They allow you to define a type that is guaranteed to
implement a particular set of methods

A class can be declared as “conforming” to a particular
protocol

You can then refer to all objects that conform to a
protocol in a uniform manner

Protocols are typically used to define the interface of a
delegate

16

Wednesday, March 23, 2011

© Kenneth M. Anderson, 2011

Protocols (II)
To define a protocol, you use the following syntax

@protocol ProtocolName

 <method signatures>

@end

To conform to a protocol, you use the following syntax

@interface MyClass <ProtocolName1, ProtocolName2>

 …

@end

17

The compiler will then make
sure that you implement the
methods of the protocol

Wednesday, March 23, 2011

© Kenneth M. Anderson, 2011

Protocols (III)

To declare a variable or parameter to only accept instances of a certain
protocol, you use the syntax

id <ProtocolName> foo = objectThatConformsToProtocolName;

You’ll see examples of this in today’s sample code

18

Wednesday, March 23, 2011

© Kenneth M. Anderson, 2011

View Controllers

As we learned last time, view controllers are a
fundamental concept in iOS programming

We looked at basic concepts concerning view
controllers last time

Now, we’ll look at some of the more advanced view
controllers that iOS provides

Tab Bar View Controller, Table View Controller and
Navigation View Controller

19

Wednesday, March 23, 2011

© Kenneth M. Anderson, 2011 20

Navigation Bar

Table

Tab Bar

The Navigation/TabBar/Table
View Controllers make it easy to
work with the navbar, table, and
tabbar widgets

Here we have a Navigation View
Controller that is managing all
three of these widgets at once

Wednesday, March 23, 2011

© Kenneth M. Anderson, 2011 21

Here we see that the table can be
put in and out of edit mode. The
buttons on the left and right are
known as accessories; there are
several different standard types
available plus the ability to create
your own

We see that the user can click on
different tabs and have the view
changed

Finally, the nav bar can have
various buttons added to it that
can handle both navigation
between multiple view controllers
as well as invoking commands

Wednesday, March 23, 2011

© Kenneth M. Anderson, 2011 22

Here we see what happens when a
view controller gets pushed onto
the stack; its view takes over the
screen (except for the navbar) and
the navigation controller takes care
of adding a button to the navbar
that will allow the user to return to
the previous view

We also see an instance of a
“grouped” table, a table with
sections, with each section allowed
to have a different number of rows

The arrow on the right of each view
is called a disclosure indicator and is
another example of a built-in
accessory for table cells

Wednesday, March 23, 2011

© Kenneth M. Anderson, 2011 23

Tab Bar Controller

An application that manages a set of view controllers
(typically one view controller per tab)

Seen this way, all the tab bar view controller does is
listen for clicks on the tab bar and swap in the
appropriate view controller for the selected tab

The tab bar view controller always stays on the
screen and is “in control”

The sub view controllers don’t know about the
tab bar and just focus on handling their view

Wednesday, March 23, 2011

© Kenneth M. Anderson, 2011 24

Table View Controller

Manages the display of a single-column, multi-section,
multi-row table

Typically plays the role of data source for a table view

responding to requests for number of sections,
number of rows, table cell requests, etc.

and plays the role of the delegate for a table view

responding to user interactions (selection, move,
edit, delete)

Wednesday, March 23, 2011

© Kenneth M. Anderson, 2011

Navigation View Controller

Operates a stack of view controllers to help display
hierarchical data structures

The navigation view controller presents the nav bar and
then provides the rest of the space to another view
controller

It starts by displaying a view controller that is designated
the root view controller

other view controllers can then be pushed onto the
stack and become visible or popped off the stack to
reveal the previous view controller

25

Wednesday, March 23, 2011

© Kenneth M. Anderson, 2011

Pushing onto the Stack

Here’s an example of the code that is required to push a
new view controller onto the stack

Typically, no code is needed to pop the top view
controller off the stack, that’s handled automatically by the
navcontroller ; if you do need to do it programmatically, the
code looks like this:

26

Wednesday, March 23, 2011

© Kenneth M. Anderson, 2011

The SuperDB Example (I)

The SuperDB example shows off ways to best use a
navigation controller in the presence of hierarchical data

It adopts a strategy of storing nested arrays in paired
or linked arrays

paired arrays have the same number of elements in
them but contain different but related content

Thus, if first_names and last_names were paired
arrays, element 0 would represent one person,
element 1 would represent another person, etc.

27

Wednesday, March 23, 2011

© Kenneth M. Anderson, 2011

The SuperDB Example (II)

The SuperDB example also demonstrates

dynamic class loading in Objective-C

creating objective-c categories and protocols

a new approach to Objective-C 2.0 properties

selection lists and date pickers

the use of navbars and navigation button items

the use of a simple Core Data data model

28

Wednesday, March 23, 2011

© Kenneth M. Anderson, 2011

Core Data

Core Data is Apple’s object-relational mapping framework

It allows developers to specify the data model of their
application using a graphical editor ; one to many and one
to one relationships can be defined between entities

It then makes it easy to

generate an SQLite database, in-memory database, or
flat binary file to store that data model

create, read, update and destroy objects defined by
the data model

29

Wednesday, March 23, 2011

© Kenneth M. Anderson, 2011

Example Data Model

30

Wednesday, March 23, 2011

© Kenneth M. Anderson, 2011

Key Concepts (I)

Data Model: Defines schema of persistent store

Persistent Store: a database or flat binary file

Persistent Store Coordinator: Manages access to
a persistent store; ensures that requests are serialized

31

Wednesday, March 23, 2011

© Kenneth M. Anderson, 2011

Key Concepts (I)

Managed Objects Context: a context that uses the
persistent store coordinator to access, update, or create
new objects in the persistent store

Managed Objects: run-time instances of the objects
defined by the data model

These function as hash tables based on attribute names

Fetch Request: applies predicates to the managed
objects of a managed objects context and returns the
ones that match

32

Wednesday, March 23, 2011

© Kenneth M. Anderson, 2011

Life Cycle

The default Core Data template

creates a persistent store in your app’s document directory

creates a persistent store coordinator to access information from
the persistent store

creates a managed object context to load objects from the
persistent store into the application

creates a FetchedResultsController to make it straightforward to
place managed objects into a UITableView; you configure this
controller with query details and sort orders and then tell it to go

33

Wednesday, March 23, 2011

© Kenneth M. Anderson, 2011

Core Data Life Cycle Architecture

34

PersistentStore
PersistentStore

Coordinator

Managed Object Context

Managed
Object

Managed
Object

Managed
Object

FetchedResultsController

Predicate SortDescriptor TableViewTableViewController

Wednesday, March 23, 2011

© Kenneth M. Anderson, 2011

Understanding the default template

The code in the default template related to the fetched results
controller is complex but this is due to the fact that it

tries to handle all the possible ways in which managed objects can
change thus forcing the associated table to update

You can vastly simplify the code by simply reloading all of the table
data whenever the fetched results controller tells you that a change
has occurred

Let’s look at some code

35

Wednesday, March 23, 2011

© Kenneth M. Anderson, 2011

Dealing with Change: Migrations

Core Data has the power to deal with changes to a data
model over time

This is an important issue in that if you have previously
distributed an application to users, you can’t change the
data model on them as the new version of the
software won’t support the databases or flat files
created by the original version of the application

But, with migrations, you can change the data model and
support “migrating” their existing data to the new version

36

Wednesday, March 23, 2011

© Kenneth M. Anderson, 2011

Migrations (I)

In order to add support for migrations, you first select
your existing data model and invoke the “Add Model
Version” menu item located in the Editor menu (for
XCode 4)

This creates a new copy of the data model and
renames the old version by appending a version
number to it

You can then safely change the data model knowing that
the original data model has been saved

37

Wednesday, March 23, 2011

© Kenneth M. Anderson, 2011

Migrations (II)
Core Data supports two types of migrations

Lightweight migrations and Standard migrations

A lightweight migration is where having made simple changes to your data model

added a new entity or deleted an existing one;

added or deleted an attribute

you have Core Data automatically infer the change and do the migration by
itself!

Standard migrations are for when significant changes to the data model; these
require the developer to specify explicitly how to perform the migration

38

Wednesday, March 23, 2011

© Kenneth M. Anderson, 2011

Migrations (III)

Adding support for lightweight migrations is straightforward

In the code that instantiates a persistent store coordinator, you ask
it to turn on two options

NSMigratePersistentStoresAutomaticallyOption

NSInferMappingModelAutomaticallyOption

when it then opens an existing store, it will detect if that store uses
an old version of the data model and if so attempt to automatically
migrate it to the new version (otherwise it throws an exception)

39

Wednesday, March 23, 2011

© Kenneth M. Anderson, 2011

Core Data Wrap-Up

Core Data is a very powerful framework

the examples here just scratch the surface

Fortunately, there are plenty of books coming out on Core
Data and Apple’s extensive documentation of the framework
to allow you to move forward

Features we didn’t look at include

custom managed objects and relationships between entities

queries that fetch entities across those relationships

40

Wednesday, March 23, 2011

© Kenneth M. Anderson, 2011

MapKit and Location Based Services

MapKit provides

a MapView that displays Google Maps

the ability to add annotations to a map view

think “push pins” on a Google map

the ability to display a callout when an annotation is
selected

the ability to take lat/long and return street, city, state
names (called reverse geocoding)

41

Wednesday, March 23, 2011

© Kenneth M. Anderson, 2011

Working with a MapView

In order to specify what a MapView displays, you need to
create a MKCoordinateRegion, a struct of structs

its first struct, called center, is CLLocationCoordinate2D
which contains lat/long info

its second struct, called span, is a MKCoordinateSpan,
which contains a latitude and longitude deltas

The span specifies how much around the center you want to
reveal; the framework provides a handy function called
regionThatFits which will reshape a MapView to fit within a
view or window

42

Wednesday, March 23, 2011

© Kenneth M. Anderson, 2011

Core Location

Both MapViews and Geocoders can look up your current
location

They both do this asynchronously

You write code that sets a class to be a delegate of
the map view or geocoder

You then tell them to start searching

You then wait for your delegate methods to be called
with the results, allowing you to update the MapView
to the discovered location

43

Demo

Wednesday, March 23, 2011

© Kenneth M. Anderson, 2011

Working with Web Data

Example program demonstrates various ways of retrieving
data over the Web

synchronously via convenience methods on various
classes or NSURLConnection

or asynchronously via NSURLConnection

in this case, the request happens in a separate thread

delegate methods are then invoked to track the
progress of downloading a resource

44

Demo

Wednesday, March 23, 2011

© Kenneth M. Anderson, 2011

Wrapping Up

Reviewed additional iOS topics

Additional Objective-C 2.0 techniques

properties, categories, protocols

Table and Navigation controller

Core Data

MapKit: MapView and Core Location

Retrieving Data from the Web

45

Wednesday, March 23, 2011

© Kenneth M. Anderson, 2011

Coming Up Next

SPRING BREAK!!!!

46

Wednesday, March 23, 2011

