
© Kenneth M. Anderson, 2011

INTERMEDIATE IOS
CSCI 4448/5448: OBJECT-ORIENTED ANALYSIS & DESIGN

LECTURE 17 — 03/08/2011

1

Tuesday, March 8, 2011



© Kenneth M. Anderson, 2011

Goals of the Lecture

Learn more about iOS

In particular, focusing on the concept of views and their 
associated view controllers

But also covering: autorelease, @selector, the use of 
Instruments to track allocations, gesture recognizers, 
animation, split view controllers & table view 
controllers!

2

Tuesday, March 8, 2011



© Kenneth M. Anderson, 2011

iOS Fundamentals (I)

Each iOS application has

one application delegate

one window

one or more view controllers

each view controller has one view that typically has 
many sub-views arranged in a tree structure

e.g. views contain panels contain lists contain items… 

3

Tuesday, March 8, 2011



© Kenneth M. Anderson, 2011

iOS Application Architecture

4

sharedApplication()
UIApplication

delegate
UIApplicationDelegate

UIWindow
window

UIViewController
rootViewController

UIView

subviews

*

Data structures 
and resources 
not shown

Tuesday, March 8, 2011



© Kenneth M. Anderson, 2011

iOS Fundamentals (II)
A window will have a “root” view controller

Some view controllers allow us to “push” a new view controller 
onto a stack (similar to Android’s activity stack)

the new view controller’s view is then displayed

When we “pop” that view controller off the stack, we 
return to the view of the previous view controller

At other times, we may switch the “root” view controller entirely

the new view is displayed and the previous view controller 
(and its view) is deallocated

5

Tuesday, March 8, 2011



© Kenneth M. Anderson, 2011

iOS Fundamentals (III)

View controllers can be instantiated and activated via the 
use of .xib files (as we saw last time) or they can be 
created programmatically

They, in turn, can create their view through the use of 
a .xib file or create their view programmatically

We’ll see examples of both in this lecture

6

Tuesday, March 8, 2011



© Kenneth M. Anderson, 2011

iOS Fundamentals (IV)

View controllers are very powerful

they handle the creation of views

they handle navigation among views and other view 
controllers

they help free up memory when a view is no longer 
being displayed

they handle the rotation of views when a device’s 
orientation changes

7

Tuesday, March 8, 2011



© Kenneth M. Anderson, 2011

With respect to orientation

Back in lecture 13, I had a problem in which my view would 
not change orientation when I rotated the iPhone simulator

I blame myself for not appeasing the demo gods AND 
(more importantly) I forgot to edit a method in my view 
controller

Each view controller can override the following method

shouldAutorotateToInterfaceOrientation:

Its default code keeps views in a portrait orientation

8

Tuesday, March 8, 2011



© Kenneth M. Anderson, 2011

Default Code

The default code is commented out in the view controller 
template; this shows you the default behavior

this code will only return YES (true) for 
UIInterfaceOrientationPortrait

and thus the view stays in Portrait orientation

9

DEMO

Tuesday, March 8, 2011



© Kenneth M. Anderson, 2011

Say “yes” to changes in orientation

In order to rotate to any orientation, we override the 
default behavior and return YES to any request

This is an example of delegation. When we rotate the 
device, the application asks the current view controller 
“SHOULD we autorotate to this new orientation”

Our change above says “YES!”

For most apps, the autorotation will work just fine

10

DEMO

Tuesday, March 8, 2011



© Kenneth M. Anderson, 2011

Simple View-Based Application

Image Switcher

View-Based Application Template

Two image views

One page controller

The two image views will work with the page 
controller to make it look like multiple images are 
available to display

11

Tuesday, March 8, 2011



© Kenneth M. Anderson, 2011

Step 1: Add Images

You can do this via Drag and Drop or
Project ⇒ Add to Project…

Tell XCode to copy the files

You want the images to end up in the 
Resources folder of the project view

12

Tuesday, March 8, 2011



© Kenneth M. Anderson, 2011

Step 2: Edit View Controller’s XIB File

Edit ImageSwitcherViewController.xib in Interface Builder

Change the view’s background to black

Add two image views and one page controller

one image view directly on top of the other

the page controller should be “on top” of the two image 
views; it should be configured to have 5 pages

tag the image views as “0” and “1”

Use the outline view of IB’s window to select the views

13

Tuesday, March 8, 2011



© Kenneth M. Anderson, 2011

Step 3: Add Outlets in .h file

We need to add outlets and properties for the controls, 
plus add two variables that will help us manage the views

14

Tuesday, March 8, 2011



© Kenneth M. Anderson, 2011

Step 4: Wire up the controls

Back in Interface Builder

connect the outlets to the various controls

ImageView “one” should connect to the view with tag “0”

ImageView “two” should connect to the view with tag “1”

Save your work and head back to XCode

15

Tuesday, March 8, 2011



© Kenneth M. Anderson, 2011

Step 5: Write the Code

Don’t forget to synthesize your properties!

We then need to write code for two methods

The first is viewDidLoad; This is a view controller 
method that gets invoked just after it has created its 
view and just before that view gets displayed

This is your opportunity to initialize the view

The second is pageTurning:; this is a method we will 
create ourselves; we’ll tell the page control to call this 
method when the user asks it to turn the page

16

Tuesday, March 8, 2011



© Kenneth M. Anderson, 2011

viewDidLoad (I)

In this method, we will

ask one image view to load an image

each image loaded will be cached automatically

hide the other image view

set up our variables “front” and “back”

tell the page control which method to invoke

17

Tuesday, March 8, 2011



© Kenneth M. Anderson, 2011

viewDidLoad (II)

18

Tuesday, March 8, 2011



© Kenneth M. Anderson, 2011

viewDidLoad (III)

19

Note the call (addTarget:action:forControlEvents:)that 
links up the page control with our method called pageTurning:

We used an Objective-C function to create a reference to the 
method

@selector(<methodname>)

creates a reference to the specified method signature that can 
then be resolved at run time

@selector(pageTurning:)

ensures that the page control can call the correct method

Tuesday, March 8, 2011



© Kenneth M. Anderson, 2011

Step 6: Implement switching images

20

We will make sure we can change the images first

Then we’ll add animation

We will ask the page control which page we are turning to

We’ll then load the appropriate image into the 
background image view

Swap the visibilities of the two image views

And update our pointers

Tuesday, March 8, 2011



© Kenneth M. Anderson, 2011 21

Whenever this 
method gets 
invoked, we know 
that front points 
to the image 
currently displayed

we load the next 
image into back

then we hide the 
front and show the 
back

and then we swap 
our pointers

Tuesday, March 8, 2011



© Kenneth M. Anderson, 2011

Step 7: Add the animation

We’ll add two simple flip animations

One animation will flip the front image view out

The second will flip the back image in

The style of animation that we will use is very similar to 
the “tweening” animation we saw for Android

The only difference is that iOS animations are specified 
programmatically using Core Animation rather than 
using resources as we did in Android

22

Tuesday, March 8, 2011



© Kenneth M. Anderson, 2011

Animation Template
Animations on Views are started with a call to 
beginAnimations:context: which is a class method on 
UIView; Animations are committed with a call to 
commitAnimations, another class method on UIView

Calling this puts the animation request on a queue; the 
animation begins executing on a separate thread once the event 
handler returns

In between, you configure the specific animation and make the 
change to the affected view

in this case, our changes are the calls to setHidden: on front 
and back

23

Tuesday, March 8, 2011



© Kenneth M. Anderson, 2011 24

We set up a flip transition for the front image view and ask 
that by the end of the transition, it be hidden from view

We add that animation to the queue and then we configure 
our second transition, another flip, on the back image view, 
asking that it be visible by the end

By specifying two Left transitions in a row, we get a nice 
flipping effect

Tuesday, March 8, 2011



© Kenneth M. Anderson, 2011 25

Image Switcher Wrap Up

Here we had a single view with three subviews

With some trickery, we made it look like our application 
had five images

with only one ever being displayed at a time

We needed two image controls to enable the animation

The 5 images are cached (only loaded once); UIImage 
is able to detect low memory situations and empty its 
cache as needed

Tuesday, March 8, 2011



© Kenneth M. Anderson, 2011

Image Switcher Polished

The animation example above is similar to what we saw in 
Android BUT

As of iOS 4.x the “beginAnimations/commitAnimations” 
methods are deprecated

I created a more polished version of image switcher that uses 
the new “block style” animation methods… plus

I added support for swiping and matching the direction of 
the animation with whether we were moving forward or 
backward through the images

26

DEMO

Tuesday, March 8, 2011



© Kenneth M. Anderson, 2011

Programmatic View Creation

So far we have created views only via XIB files

Occasionally, you will be in situations where you need 
to create a view programmatically

To do this, you create a View Controller with no 
associated XIB file and then create the contents of your 
view in viewDidLoad;

View Controllers also have a method called 
loadView; leave it alone, its default behavior does 
just what we need

27

Tuesday, March 8, 2011



© Kenneth M. Anderson, 2011

View Switcher

Let’s create an application with three view controllers

Each view controller will programmatically create a 
view that contains a label and a button

The label will state which screen we are looking at

The button will take us to one of the other screens

To switch among the views, we will install the 
appropriate view controller as the application window’s 
root view controller

28

Tuesday, March 8, 2011



© Kenneth M. Anderson, 2011

Step 1: Create Window-Based iOS 
Application

Call it View Switcher

This template contains only a single window and a 
single app delegate

No view or view controller is created by default

Our window has a white background by default, so 
that’s what we see if we run the default project

Each screen will have a different color (red, green, blue) 
to distinguish our views from the window

29

Tuesday, March 8, 2011



© Kenneth M. Anderson, 2011

Step 2: Create Screen One

Select the Classes Folder and then invoke ⌘-N to bring 
up the New File dialog

Select Cocoa Touch Class on the left and 
UIViewController subclass on the right

Make sure all checkboxes below are NOT clicked

Click Next and name this file ScreenOne.m

Make sure the checkbox to create a header file IS 
clicked

30

Tuesday, March 8, 2011



© Kenneth M. Anderson, 2011

Step 3: Create Label and Button

At a high-level, we will

override the viewDidLoad method to

programmatically create a Screen One label and a 
Go To Screen Two button

set the background to a nice shade of red

Take a look at the source code for details

31

Tuesday, March 8, 2011



© Kenneth M. Anderson, 2011

Step 4: Arrange Screen One 
Creation

Now that we have created the ScreenOne view controller, 
we need to arrange for an instance of it to be created

To do this, we will override a method in our application 
delegate, 
application:didFinishLaunchingWithOptions:

This method gets called after the application has 
launched but before the application’s window appears

We need to import ScreenOne.h, instantiate an 
instance and set it as the root view controller

32

Tuesday, March 8, 2011



© Kenneth M. Anderson, 2011

Step 5: Create Screen Two and Three

These classes will be exactly the same as ScreenOne 
except for label/button names and the background color 
of the view

See example code for details

33

Tuesday, March 8, 2011



© Kenneth M. Anderson, 2011

Step 6: Wire up the Buttons
Since we are not using Interface Builder to create our views, we 
have to wire our buttons to their event handlers programmatically

Now we need to create the handleClick: method

We need to import ScreenTwo.h in order to instantiate it

Our method then locates the window via the application 
delegate and sets a new root view controller

Setting a new root view controller causes the previous one 
to be released and its views/subviews removed

34

Tuesday, March 8, 2011



© Kenneth M. Anderson, 2011

handleClick: A lot going on in 2 lines

Line one gets the application delegate

Line two

allocates a view controller (code from ScreenThree.m)

autoreleases it

gets the window from the delegate and sets the root view 
controller

35

Tuesday, March 8, 2011



© Kenneth M. Anderson, 2011

autorelease? (I)

We have finally seen a situation that requires autorelease

This method is one of the memory management 
routines; here is why we need it

If we don’t use it, then

we create an instance of the view controller

retain count defaults to 1

we then pass it to the window, which retains it

retain count incremented to 2

36

Tuesday, March 8, 2011



© Kenneth M. Anderson, 2011

autorelease? (II)

And then?

We never see that object again and so we are unable 
to release it

When we finally set a new root view controller, the 
previous root controller gets released and now its 
retain count returns to 1

which means it never goes away: memory leak!

37

Tuesday, March 8, 2011



© Kenneth M. Anderson, 2011

autorelease? (III)

So, the question becomes how do we release the view 
controller after we create it, so that eventually its retain 
count will go to zero

We can’t release it before we pass it to window

If we do, its count goes to zero immediately and it gets 
deallocated and we end up passing a deallocated 
object to the window

So, we autorelease it

38

Tuesday, March 8, 2011



© Kenneth M. Anderson, 2011

autorelease? (IV)

When you autorelease the view controller

It gets added to the current autorelease pool, which is 
automatically created before the event handler is called

It gets passed to the window: retain count == 2

The event handler ends and the pool is flushed; When 
the pool is flushed, it releases all of the objects within it; 
retain count == 1

When the root view controller is updated, the 
previous root controller is released and deallocated

39

Tuesday, March 8, 2011



© Kenneth M. Anderson, 2011

Tracking Memory

We can run our app in a program called Instruments 
which allows us to track allocations (among other things)

We can then verify that our view controllers are being 
deallocated

We can then be confident that only one view 
controller is ever allocated in the ViewSwitcher 
application

Demo

40

Tuesday, March 8, 2011



© Kenneth M. Anderson, 2011

Split View Controller

Let’s take a look at a more complicated example

A Split View Controller was added when the iPad came out 
to make it easy for an application to

have a list of items on the left

and a detail viewing space on the right

when an item in the list is selected, its details are displayed

the items are shown in a table when in landscape mode 
and in a pop-up list when in portrait mode

41

Tuesday, March 8, 2011



© Kenneth M. Anderson, 2011

SplitView Template

The default template for a split view application is 
configured, like all other templates, to work right away

It displays a simple list of items “row 1, row 2, etc.” and a 
detail view containing a label

when a row is selected, the label updates

(see next slide)

42

Tuesday, March 8, 2011



© Kenneth M. Anderson, 2011 43

Tuesday, March 8, 2011



© Kenneth M. Anderson, 2011 44

Image Switcher Lives Again
Let’s explore the split-view template by recreating image switcher for 
the iPad; Create a Split View-based application and call it SplitViewer

This template comes with

A split view controller created in MainWindow.xib

Two view controllers: root and detail

root is a subclass of UITableViewController

detail is a UIViewController that implements two 
interfaces: UISplitViewControllerDelegate and 
UIPopoverControllerDelegate

Tuesday, March 8, 2011



© Kenneth M. Anderson, 2011

Step One: Copy Images

Drag and Drop the images from Image Switcher into the 
Resources folder of Split Viewer and copy them across

It’s important that you drag and drop the images into 
the resources folder contained within the XCode 
window

If you copy the images to the SplitViewer folder in 
the Finder without copying them into the project, 
XCode won’t be able to find them

45

Tuesday, March 8, 2011



© Kenneth M. Anderson, 2011

Step 2: Prepare the Detail View

We need to delete the label that is included in 
DetailView.xib by default

Replace it with an image view

Center the image, make it big, set its autosize 
constraints, etc.

Save your changes, add an outlet/property in the .h file 
and synthesize the property in the .m file

Go back to IB and connect the UIImageView to the 
property

46

Tuesday, March 8, 2011



© Kenneth M. Anderson, 2011

Step 3: Init array of image names

In the viewDidLoad method of the root view 
controller, we will create an array of image names

We will then use this array to populate the table

We will also set the title of the navigation bar to “Lord of 
the Rings”

47

Tuesday, March 8, 2011



© Kenneth M. Anderson, 2011

Populating a Table

To populate a table, you implement three methods

numberOfSectionsInTableView:

return 1

tableView:numberOfRowsInSection:

return the size of the array

tableView:cellForRowAtIndexPath:

Very powerful, slightly complex code (see next slide)

48

Tuesday, March 8, 2011



© Kenneth M. Anderson, 2011 49

The above code is an iOS design pattern that ensures that 
you never allocate more table cells than you need

If a table cell scrolls off the top or bottom of a table, it 
becomes available to be used again; that is, the call to 
dequeueReusableCell… will return a pointer to a cell that is 
no longer visible on screen

You can then customize its contents based on the row it 
represents; it will then be displayed with the new content

A table with 1000s of rows may only have 10 cells allocated!

Tuesday, March 8, 2011



© Kenneth M. Anderson, 2011 50

Standard approach to Table creation

This approach of implementing a table by implementing 
“data source” methods is standard across many UI 
frameworks

Rather than create a table, you create its data source

The table asks you: “how many sections do I have” or 
“how many rows are in section 1” or “what cell should I 
display for row 6”

and you give it the answers

This is delegation at work… no need to subclass UITable

Tuesday, March 8, 2011



© Kenneth M. Anderson, 2011 51

Step 4: Handle a Selection

Next we need to handle the selection of a name in the table

We implement the method 
tableView:didSelectRowAtIndexPath:

We are told the selected row

We use that to retrieve the image name

We append “.jpg” to the name and pass that modified 
name to the detail view by calling setDetailItem: on the 
detailViewController

Tuesday, March 8, 2011



© Kenneth M. Anderson, 2011

Step 5: Update the Image View

When the detail item has been updated, a customer 
“setter” is invoked on detail view controller

In that setter, we call configureView and in that 
method, we can set the desired image on the image view 
in the same way we did in Image Switcher

And with that we are done, the default template 
automatically takes care of creating, showing and hiding 
the pop-up control based on changes in orientation

52

Tuesday, March 8, 2011



© Kenneth M. Anderson, 2011

Wrapping Up (I)

Learned the fundamentals of view controllers

View-based Application template

Window-based Application template

Creating views and view controllers programmatically

Switching between view controllers

Discussed autorelease, @selector

Saw new widgets: UIImageView, UIPageControl

53

Tuesday, March 8, 2011



© Kenneth M. Anderson, 2011

Wrapping Up (II)

New View Controllers

UISplitViewController, UITableViewController

Gesture Recognition

Animation Support

Allocation Tracking with Instruments

54

Tuesday, March 8, 2011



© Kenneth M. Anderson, 2011

Coming Up Next

Lecture 18: Review of Midterm

Homework 5 Due on Friday

Homework 6 Assigned on Friday

Lecture 19: Advanced Android

Lecture 20: Advanced iOS

55

Tuesday, March 8, 2011


