INTERMEDIATE 1OS

CSCl 4448/5448: OBJECT-ORIENTED ANALYSIS & DESIGN
LECTURE | /— 03/08/201 |

© Kenneth M. Anderson, 201 | |

Tuesday, March 8, 2011

Goals of the Lecture

® [ecarn more about 1IOS

® |n particular, focusing on the concept of views and their
associated view controllers

® But also covering: autorelease, @selector; the use of
Instruments to track allocations, gesture recognizers,
animation, split view controllers & table view

controllers!

© Kenneth M. Anderson, 201 |)

Tuesday, March 8, 2011

OS5 Fundamentals (1)

® FEach 105 application has
® one application delegate
® one window
® one or more view controllers

® cach view controller has one view that typically has
many sub-views arranged In a tree structure

® c.g. views contain panels contain lists contain items. ..

© Kenneth M. Anderson, 201 | 3

Tuesday, March 8, 2011

OS5 Application Architecture

UlApplication UlApplicationDelegate

sharedApplication() delegate

window

rootViewController
UlViewController

Data structures

_ and resources

not shown

© Kenneth M. Anderson, 201 | 4

Tuesday, March 8, 2011

1OS Fundamentals (Il)

® A window will have a “root’’ view controller

® Some view controllers allow us to “push’ a new view controller
onto a stack (similar to Android’s activity stack)

® the new view controller's view is then displayed

% When we “pop’ that view controller off the stack, we
return to the view of the previous view controller

® At other times, we may switch the “root” view controller entirely

® the new view is displayed and the previous view controller
(and 1ts view) Is deallocated

© Kenneth M. Anderson, 201 | 5

Tuesday, March 8, 2011

OS5 Fundamentals (lll)

® View controllers can be instantiated and activated via the

use of xib files (as we saw last time) or they can be
created programmatically

® T[hey, In turn, can create their view through the use of
a .Xib file or create their view programmatically

® Vel see examples of both in this lecture

© Kenneth M. Anderson, 201 | 6

Tuesday, March 8, 2011

1OS Fundamentals (1V)

® View controllers are very powerful
® they handle the creation of views

® they handle navigation among views and other view
controllers

® they help free up memory when a view Is no longer
being displayed

® they handle the rotation of views when a device's
orientation changes

© Kenneth M. Anderson, 201 | 7

With respect to orientation

® Back in lecture |3, 1 had a problem in which my view would
not change orientation when | rotated the iIPhone simulator

® | blame myself for not appeasing the demo gods AND
(more importantly) | forgot to edit a method in my view
controller

® Each view controller can override the following method
® shouldAutorotateTolnterfaceOrientation:

® |[ts default code keeps views In a portrait orientation

© Kenneth M. Anderson, 201 | 8

Tuesday, March 8, 2011

!J'#

Default Code

- (BOOL)shouldAutorotateTolnterfaceOrientation: (UIInterfaceOrientation)interfaceOrientation {
// Return YES for supported orientations
// return (interface0Orientation == UllnterfaceOrientationPortrait;

® [he
Tem

® i

default code 1Is commented out In the view controller
blate; this shows you the default behavior

nis code will only return YES (true) for

UlinterfaceOrientationPortrait

DEMO ©® and thus the view stays In Portrait orientation

© Kenneth M. Anderson, 201 | 9

Tuesday, March 8, 2011

Say 'yes to changes In orientation

- (BOOL)shouldAutorotateToInterfaceOrientation:(UlInterfaceOrientation)interfaceOrientation {
return YES;

}

® |[n order to rotate to any orientation, we override the
default behavior and return YES to any request

® [hisis an example of delegation.When we rotate the
device, the application asks the current view controller
“SHOULD we autorotate to this new orientation”

® Our change above says “YES!”

DEMO
® [or most apps, the autorotation will work just fine

© Kenneth M. Anderson, 201 | 10

Tuesday, March 8, 2011

Simple View-Based Application

® Image Switcher
® View-Based Application Template
® [wo Image views
® One page controller

® [he two image views will work with the page
controller to make 1t look like multiple images are
avallable to display

© Kenneth M. Anderson, 201 | | |
Tuesday, March 8, 2011

Step |: Add Images

® You can do this via Drag and Drop or
Project = Add to Project...

® Jell XCode to copy the files

® You want the images to end up In the
Resources folder of the project view

© Kenneth M. Anderson, 201 |

™ ImageSwitcher
Classes

Other Sources

Resources

B Aragorn.jpg

B Colum.jpg

B Legolas.jpg

B sauren.jpg

B theTowers.jpg
F] ImageSwitcherViewCg
|_1| MainWindow.xib

2| ImageSwitcher-Info.p

Tuesday, March 8, 2011

Step 2: Edit View Controller's XIB File

8 LEdit ImageSwitcherViewController.xib in Interface Builder
® Change the view's background to black
® Add two image views and one page controller
® one image view directly on top of the other

® the page controller should be “on top™ of the two Image
views; It should be configured to have 5 pages

® tag the image views as 0" and "'

® Use the outline view of IB's window to select the views

© Kenneth M. Anderson, 201 | |3

Tuesday, March 8, 2011

Step 3: Add Outlets In .h file

® \We need to add outlets and properties for the controls,
plus add two variables that will help us manage the views

9| | #amport <UIK1t/UIKit.h>

10

11| | @nterface ImageSwitcherViewController : UIViewController {
12 IBOutlet UIPageControl *pages;

13 IBOutlet UlImageView *one;

14 IBOutlet UIlImageView *two;

15 UlImageView *front, *back;

16| | }

@property (nonatomic, retain) UIPageControl *pages;
@property (nonatomic, retain) UlImageView *one;
@property (nonatomic, retain) UIImageView *two;

@end

Tuesday, March 8, 2011

Step 4: Wire up the controls

® Back in Interface Builder
® connect the outlets to the various controls
® ImageView “one’” should connect to the view with tag “0"

® |ImageView “two’ should connect to the view with tag “|

® Save your work and head back to XCode

© Kenneth M. Anderson, 201 | |5

Tuesday, March 8, 2011

Step 5: Write the Code

® Don't forget to synthesize your properties!

® \We then need to write code for two methods

® The first s viewDidLoad; This is a view controller
method that gets invoked just after 1t has created Its
view and just before that view gets displayed

® [his is your opportunity to initialize the view

® [he second is pageTurnings:; this is a method we will
create ourselves; we'll tell the page control to call this
method when the user asks It to turn the page

© Kenneth M. Anderson, 201 | | 6

viewDidlLoad (I)

® |n this method, we will
® ask one image view to load an image
® cach image loaded will be cached automatically
® hide the other image view
® set up our variables “front” and "back”

® tell the page control which method to invoke

© Kenneth M. Anderson, 201 | |7

Tuesday, March 8, 2011

viewDidLoad (ll)

- (void)viewDidlLoad {
[super viewDidlLoad];

[one setImage:[UIImage imageNamed:@"Aragorn.jpg"]];

front = one;
back = two;

Llone setHidden:NO];
[two setHidden:YES];

[pages addTarget:self
action:@selector(pageTurning:)
forControlEvents:UIControlEventValueChanged];

© Kenneth M. Anderson, 201 | |8

Tuesday, March 8, 2011

viewDidLoad (IIl)

8 Note the call (addTarget:action:forControlEvents:)that
inks up the page control with our method called pageTurning:

® We used an Objective-C function to create a reference to the
method

% @selector(<methodname>)

® creates a reference to the specified method signature that can
then be resolved at run time

® @selector(pageTurning:)

® ensures that the page control can call the correct method

© Kenneth M. Anderson, 201 | |19

Step 6: Implement switching images

® We will make sure we can change the images first
® [hen we'll add animation
® We will ask the page control which page we are turning to

® Welll then load the appropriate image into the
background image view

® Swap the visibilities of the two Image views

® And update our pointers

© Kenneth M. Anderson, 201 | 20

Tuesday, March 8, 2011

switch (nextPage) {

case 0:
[back setImage:[UIImage
break;

case 1:
[back setImage:[UIImage
break;

case 2:
[back setImage:[UIImage
break;

case 3:
[back setImage:[UIImage
break;

case 4:
[back setImage:[UIImage
break;

default:
break;

}

[front setHidden:YES];
[back setHidden:NO];

if (front.tag == @) {
front = two;
back = one;
} else {
front = one;
back = two;

Tuesday, March 8, 2011

- (void) pageTurning: (UIPageControl *) pager {
NSInteger nextPage = [pager currentPage];

imageNamed:@"Aragorn. jpg"]];

imageNamed:@"Gollum. jpg"]];

imageNamed:@"Legolas. jpg"]1];

imageNamed:@"Sauron. jpg"]];

imageNamed:@"theTowers. jpg"]1];

© Kenneth M. Anderson, 201 |

Step /: Add the animation

8 We'll add two simple flip animations
® One animation will flip the front image view out
® [he second will flip the back image In

® [he style of animation that we will use Is very similar to
the "tweening” animation we saw for Android

® T[he only difference Is that 10S animations are specified
programmatically using Core Animation rather than
using resources as we did in Android

© Kenneth M. Anderson, 201 |)

Tuesday, March 8, 2011

Animation femplate

® Animations on Views are started with a call to
beginAnimations:context: which is a class method on
UlView; Animations are committed with a call to
commitAnimations, another class method on UlView

8 Calling this puts the animation request on a queue; the

animation begins executing on a separate thread once the event
handler returns

® |n between, you configure the specific animation and make the

change to the affected view

® In this case, our changes are the calls to setHidden: on front
and back

© Kenneth M. Anderson, 201 | 23

Tuesday, March 8, 2011

[UIView beginAnimations:@"flipping view" context:nil];

[UIView setAnimationDuration:@.5];

[UIView setAnimationCurve:UIViewAnimationCurveEaseInQut];

[UIView setAnimationTransition:UIViewAnimationTransitionFlipFromLeft forView:front cache:YES];

[front setHidden:YES];

[UIView commitAnimations];

[UIView beginAnimations:@"flipping view" context:nil];

[UIView setAnimationDuration:@.5];

[UIView setAnimationCurve:UIViewAnimationCurveEaseInQut];

[UIView setAnimatiunTrunsitiun:UIViewAnimatiunTrunsitiunFlipFrumLeFﬂ forView:back cache:YES];

[back setHidden:NO];

[UIView commitAnimations];

© Kenneth M. Anderson, 201 |

Tuesday, March 8, 2011

Image Switcher Wrap Up

® Here we had a single view with three subviews

® With some trickery, we made it look like our application
had five Images

® with only one ever being displayed at a time

® We needed two Image controls to enable the animation

® [he 5 Iimages are cached (only loaded once); Ullmage
s able to detect low memory situations and empty Its
cache as needed

© Kenneth M. Anderson, 201 | 25

Image Switcher Polished

® [he animation example above Is similar to what we saw In
Android BUT

® As of 105 4.x the "beginAnimations/commitAnimations”
methods are deprecated

® | created a more polished version of image switcher that uses
the new “block style” animation methods... plus

® | added support for swiping and matching the direction of
the animation with whether we were moving forward or
DEMO backward through the images

© Kenneth M. Anderson, 201 | 26

Tuesday, March 8, 2011

°rogrammatic View Creation

® 50 far we have created views only via XIB files

® Occasionally, you will be In situations where you need
to create a view programmatically

® Jo do this, you create a View Controller with no
assoclated XIB file and then create the contents of your
view In viewDidLoad,;

® View Controllers also have a method called

loadView: [cave it alone, its default behavior does
just what we need

© Kenneth M. Anderson, 201 | 27

View Switcher

® |ets create an application with three view controllers

® Each view controller will programmatically create a
view that contains a label and a button

® [he label will state which screen we are looking at
® [he button will take us to one of the other screens

® [o switch among the views, we will install the
appropriate view controller as the application window's
root view controller

© Kenneth M. Anderson, 201 | 28

Tuesday, March 8, 2011

Step |: Create Window-Based 105
Application

® Call itView Switcher

® [his template contains only a single window and a
single app delegate

® No view or view controller is created by default

® Our window has a white background by default, so
that's what we see If we run the default project

® Each screen will have a different color (red, green, blue)
to distinguish our views from the window

© Kenneth M. Anderson, 201 | 29

Tuesday, March 8, 2011

Step 2: Create Screen One

® Select the Classes Folder and then invoke 8=N to bring
up the New File dialog

® Select Cocoa Touch Class on the left and
UlIViewController subclass on the right

® Make sure all checkboxes below are NOT clicked
® (Click Next and name this file ScreenOne.m

® Make sure the checkbox to create a header file IS
clicked

© Kenneth M. Anderson, 201 | 30

Tuesday, March 8, 2011

Step 3: Create Label and Button

® At a high-level, we will
® override the viewDidLoad method to

® programmatically create a Screen One label and a
Go To Screen Two button

® set the background to a nice shade of red

® J[ake a look at the source code for detalls

© Kenneth M. Anderson, 201 | 31

Tuesday, March 8, 2011

Step 4: Arrange Screen One
Creation

® Now that we have created the ScreenOne view controller,
we need to arrange for an instance of It to be created

® o do this, we will override a method in our application
delegate,

application:didFinishLaunchingWithOptions:

® This method gets called after the application has
launched but before the application’s window appears

® We need to import ScreenOne.h, instantiate an
instance and set it as the root view controller

© Kenneth M. Anderson, 201 | By

Tuesday, March 8, 2011

Step 5: Create Screen Iwo and Three

® [hese classes will be exactly the same as ScreenOne

except for label/button names and the background color
of the view

® See example code for detalls

© Kenneth M. Anderson, 201 | 33

Tuesday, March 8, 2011

Step 6: Wire up the Buttons

® Since we are not using Interface Builder to create our views, we
have to wire our buttons to their event handlers programmatically

LgoToScreenTwo addTarget:self action:@selector(handleClick:) forControlEvents:UIControlEventTouchUpInside];

® Ve need to import Screenlwo.h in order to instantiate 1t

® Our method then locates the window via the application
delegate and sets a new root view controller

® Setting a new root view controller causes the previous one
to be released and its views/subviews removed

© Kenneth M. Anderson, 201 | 34

Tuesday, March 8, 2011

handleClick: A lot going on In 2 lines

® [ine one gets the application delegate

- (void) handleClick: (1d) sender {
ViewSwitcherAppDelegate *delegate = (ViewSwitcherAppDelegate *)[[UIApplication sharedApplication] delegate];

[[delegate window] setRootViewController:[[[ScreenOne alloc] initWithNibName:nil bundle:nil] autorelease]];

® linetwo
® allocates a view controller (code from ScreenThree.m)
® autoreleases it

® oets the window from the delegate and sets the root view
controller

© Kenneth M. Anderson, 201 | 35

Tuesday, March 8, 2011

autorelease! (I)

® \We have finally seen a situation that requires autorelease

® T[his method Is one of the memory management
routines; here Is why we need 1t

® |f we don't use It, then
® we create an Instance of the view controller
® retain count defaults to |
® we then pass it to the window, which retains it

® retain count incremented to 2

© Kenneth M. Anderson, 201 | 36

Tuesday, March 8, 2011

autorelease! (II)

® And then?

® We never see that object again and so we are unable
to release It

® When we finally set a new root view controller, the

previous root controller gets released and now Its
retain count returns to |

® which means It never goes away: memory leak!

© Kenneth M. Anderson, 201 | 57

Tuesday, March 8, 2011

autorelease! (llI)

® 50, the question becomes how do we release the view
controller after we create It, so that eventually its retain
count will go to zero

® \We can't release it before we pass it to window

® [f we do, Its count goes to zero iImmediately and It gets
deallocated and we end up passing a deallocated
object to the window

® SO0, we autorelease It

© Kenneth M. Anderson, 201 | 38

Tuesday, March 8, 2011

autorelease! (V)

® \When you autorelease the view controller

® |t gets added to the current autorelease pool, which is
automatically created before the event handler Is called

® |t gets passed to the window: retain count ==

® [he event handler ends and the pool is flushed; When
the pool Is flushed, it releases all of the objects within It;
retain count == |

® When the root view controller 1s updated, the
previous root controller is released and deallocated

© Kenneth M. Anderson, 201 | 39

Tuesday, March 8, 2011

Iracking Memory

® VWe can run our app In a program called Instruments
which allows us to track allocations (among other things)

® Ve can then verify that our view controllers are being
deallocated

® We can then be confident that only one view
controller is ever allocated in the ViewSwitcher
application

® Demo

© Kenneth M. Anderson, 201 | 40

Tuesday, March 8, 2011

Split View Controller

® [ets take a look at a more complicated example

® A SplitView Controller was added when the iIPad came out
to make It easy for an application to

® have a list of items on the left
® and a detail viewing space on the right
® when an item in the list Is selectedq, its detalls are displayed

® the items are shown in a table when in landscape mode
and in a pop-up list when In portrait mode

© Kenneth M. Anderson, 201 | 4|

Tuesday, March 8, 2011

SplitView Template

® [he default template for a split view application s
configured, like all other templates, to work right away

® [t displays a simple list of items “row |, row 2, etc.” and a
detall view containing a label

® when a row Is selected, the label updates

® (see next slide)

© Kenneth M. Anderson, 201 | 42

Tuesday, March 8, 2011

Carrier = 11:13 PM 100 % (=)

Root View Controller

Row 0

Row 1

© Kenneth M. Anderson, 201 |

Tuesday, March 8, 2011

Image Switcher Lives Again

® |ets explore the split-view template by recreating image switcher for
the 1Pad; Create a Split View-based application and call it SplitViewer

® This template comes with
8 A split view controller created in MainWindow.xib
® [wo view controllers: root and detall
® root Is a subclass of Ul'TableViewController

® detal 1s a UlViewController that implements two
interfaces: UISplitViewControllerDelegate and
UlPopoverControllerDelegate

© Kenneth M. Anderson, 201 | 44

Step One: Copy Images

® Drag and Drop the images from Image Switcher into the
Resources folder of Split Viewer and copy them across

® |t's important that you drag and drop the images into
the resources folder contained within the XCode
window

® |f you copy the images to the SplitViewer folder in
the Finder without copying them into the project,
XCode won't be able to find them

© Kenneth M. Anderson, 201 | 45

Tuesday, March 8, 2011

Step 2: Prepare the Detaill View
® \We need to delete the label that Is included In
DetailView.xib by default
® Replace it with an image view

® (Center the image, make It big, set Its autosize
constraints, etc.

® Save your changes, add an outlet/property in the .h file
and synthesize the property in the .m file

® Go back to IB and connect the UlimageView to the
property

© Kenneth M. Anderson, 201 | 46

Tuesday, March 8, 2011

Step 3: Init array of image names

® |n the viewDidLoad method of the root view
controller, we will create an array of image names

® We will then use this array to populate the table

® We will also set the title of the navigation bar to “Lord of
the Rings”

© Kenneth M. Anderson, 201 | 47

Tuesday, March 8, 2011

Yopulating a lable

® J[o populate a table, you implement three methods
® numberOfSectionsinTableView:
® return |
® tableView:numberOfRowslnSection:
® return the size of the array
® tableView:cellForRowAtindexPath:

® Very powertul, slightly complex code (see next slide)

© Kenneth M. Anderson, 201 | 48

Tuesday, March 8, 2011

- (UITableViewCell *)tableView:(UITableView *)tableView cellForRowAtIndexPath:(NSIndexPath *)indexPath {

static NSString *Cellldentifier = @"Cellldentifier”;

// Dequeue or create a cell of the appropriate type.

UITableViewCell *cell = [tableView dequeueReusableCellWithIdentifier:Cellldentifier];

if (cell == nil) {
cell = [[[UITableViewCell alloc] initWithStyle:UITableViewCellStyleDefault reuseldentifier:Cellldentifier] autorelease];
cell.accessoryType = UITableViewCellAccessoryNone;

}

// Configure the cell.
[[cell textlLabel] setText:[images objectAtIndex:[indexPath row]]];
return cell;

© Kenneth M. Anderson, 201 | 49

Tuesday, March 8, 2011

Standard approach to lable creation

® [his approach of implementing a table by implementing
“data source’” methods Is standard across many Ul
frameworks

® Rather than create a table, you create its data source

® [he table asks you:"how many sections do | have” or
“how many rows are In section | or “what cell should |
display for row 6"

® and you give It the answers

® [hisis delegation at work... no need to subclass Ul'Table

© Kenneth M. Anderson, 201 | 50

Tuesday, March 8, 2011

Step 4: Handle a Selection

® Next we need to handle the selection of a name in the table

® We implement the method
tableView:didSelectRowAtindexPath:

® \We are told the selected row
® We use that to retrieve the image name

® We append " pg’ to the name and pass that modified
name to the detall view by calling setDetallltem: on the
detallViewController

© Kenneth M. Anderson, 201 | 5

Tuesday, March 8, 2011

Step >: Update the Image View

® \When the detall item has been updated, a customer
‘setter’ Is invoked on detall view controller

® |n that setter; we call configureView and in that
method, we can set the desired image on the image view
in the same way we did in Image Switcher

® And with that we are done, the default template
automatically takes care of creating, showing and hiding
the pop-up control based on changes in orientation

© Kenneth M. Anderson, 201 | 5

Tuesday, March 8, 2011

Wrapping Up (1)

® |earned the fundamentals of view controllers
® View-based Application template
® Window-based Application template
® Creating views and view controllers programmatically
® Switching between view controllers
® Discussed autorelease, @selector

® Saw new widgets: UllmageView, UlPageControl

© Kenneth M. Anderson, 201 | 53

Tuesday, March 8, 2011

Wrapping Up ()

® New View Controllers
s UlISplitViewController, Ul TableViewController
® Gesture Recognition

® Animation Support

® Allocation Tracking with Instruments

© Kenneth M. Anderson, 201 | 54

Tuesday, March 8, 2011

Coming Up Next

® [ecture |38 Review of Midterm
® Homework 5 Due on Friday

® Homework 6 Assigned on Friday
® [ecture |9: Advanced Android

® |ecture 20: Advanced 1OS

© Kenneth M. Anderson, 201 | 55

Tuesday, March 8, 2011

