
© Kenneth M. Anderson, 2011

INTRODUCTION TO OBJECTIVE-C
CSCI 4448/5448: OBJECT-ORIENTED ANALYSIS & DESIGN

LECTURE 12 — 02/17/2011

1

Thursday, February 17, 2011

© Kenneth M. Anderson, 2011

Goals of the Lecture

Present an introduction to Objective-C 2.0

Coverage of the language will be INCOMPLETE

We’ll see the basics… there is a lot more to learn

2

Thursday, February 17, 2011

© Kenneth M. Anderson, 2011

History (I)

Brad Cox created Objective-C in the early 1980s

It was his attempt to add object-oriented programming
concepts to the C programming language

NeXT Computer licensed the language in 1988; it was
used to develop the NeXTSTEP operating system,
programming libraries and applications for NeXT

In 1993, NeXT worked with Sun to create OpenStep,
an open specification of NeXTSTEP on Sun hardware

3

Thursday, February 17, 2011

© Kenneth M. Anderson, 2011

History (II)

In 1997, Apple purchased NeXT and transformed
NeXTSTEP into MacOS X which was first released in the
summer of 2000

Objective-C has been one of the primary ways to
develop applications for MacOS for the past 11 years

In 2008, it became the primary way to develop
applications for iOS targeting (currently) the iPhone
and the iPad and (soon, I’m guessing) the Apple TV

4

Thursday, February 17, 2011

© Kenneth M. Anderson, 2011

Objective-C is “C plus Objects” (I)

Objective-C makes a small set of extensions to C which
turn it into an object-oriented language

It is used with two object-oriented frameworks

The Foundation framework contains classes for basic
concepts such as strings, arrays and other data
structures and provides classes to interact with the
underlying operating system

The AppKit contains classes for developing applications
and for creating windows, buttons and other widgets

5

Thursday, February 17, 2011

© Kenneth M. Anderson, 2011

Objective-C is “C plus Objects” (II)

Together, Foundation and AppKit are called Cocoa

On iOS, AppKit is replaced by UIKit

Foundation and UIKit are called Cocoa Touch

In this lecture, we focus on the Objective-C language,

we’ll see a few examples of the Foundation framework

we’ll see examples of UIKit in Lecture 13

6

Thursday, February 17, 2011

© Kenneth M. Anderson, 2011

C Skills? Highly relevant

Since Objective-C is “C plus objects” any skills you have in
the C language directly apply

statements, data types, structs, functions, etc.

What the OO additions do, is reduce your need on

structs, malloc, dealloc and the like

and enable all of the object-oriented concepts we’ve
been discussing

Objective-C and C code otherwise freely intermix

7

Thursday, February 17, 2011

© Kenneth M. Anderson, 2011

Development Tools (I)

Apple provides XCode and Interface Builder to develop
programs in Objective-C

Behind the scenes, XCode makes use of gcc to compile
Objective-C programs

In a future version of XCode, to be released shortly,
Interface Builder will go away as a separate application

Its functionality will be merged into XCode

We’ll see examples of Interface Builder next week

8

Thursday, February 17, 2011

© Kenneth M. Anderson, 2011

Development Tools (II)

XCode and Interface Builder comes with Snow Leopard
on the Development Tools DVD

It is also available for download at <http://
developer.apple.com/>

You need to register in Apple’s development program
but registration is free

To install: double click the downloaded .dmg file and then
double click the installer and follow instructions

9

Thursday, February 17, 2011

http://developer.apple.com
http://developer.apple.com
http://developer.apple.com
http://developer.apple.com

© Kenneth M. Anderson, 2011

Hello World

As is traditional, let’s look at our first objective-c program via
the traditional Hello World example

To create it, we launch XCode and create a New Project

In the resulting dialog (see next slide)

select Application under the MacOS X

select Command Line Tool on the right

select Foundation from the pop-up menu

click Choose and select a location for the project

10

Thursday, February 17, 2011

© Kenneth M. Anderson, 2011 11

Thursday, February 17, 2011

© Kenneth M. Anderson, 2011 12

Similar to what we saw
with Eclipse, XCode
creates a default project
for us;

There are folders for this
command line program’s
source code (.m files),
documentation, external
dependencies and products
(the application itself)

Note: the Foundation
framework is front and
center and HelloWorld is
shown in red because it
hasn’t been created yet

Thursday, February 17, 2011

© Kenneth M. Anderson, 2011 13

Exciting, isn’t it. The template is ready to run; clicking “Build and Run”
brings up a console that shows “Hello, World!” being displayed; One
interesting thing to note is that the program is being run by gdb

Thursday, February 17, 2011

© Kenneth M. Anderson, 2011 14

The resulting
project
structure on
disk does not
map
completely to
what is shown
in Xcode; The
source file,
man page,
project file,
and pre-
compiled
header file are
all in the
same
directory;

A lot of stuff
gets
generated
when you
build

Thursday, February 17, 2011

© Kenneth M. Anderson, 2011 15

The resulting executable can be executed from the
command line, fulfilling the promise that we were creating a
command-line tool

As you can see, most of the text on Slide 11 was generated
by gdb… our command line tool doesn’t do much but say hi
to the world.

Note the “2011-02-17 08:51:21.023 HelloWorld[41071:903]”
is generated by a function called NSLog() as we’ll see next

Thursday, February 17, 2011

© Kenneth M. Anderson, 2011 16

Objective-C programs start with a function called main, just
like C programs; #import is similar to C’s #include except it
ensures that header files are only included once and only once

Ignore the “NSAutoreleasePool” stuff for now

Thus our program calls a function, NSLog, and returns 0

The blue arrow indicates that a breakpoint has been set; gdb
will stop execution on line 7 the next time we run the program

Thursday, February 17, 2011

© Kenneth M. Anderson, 2011 17

gdb is integrated into XCode; here we see the program
stopped at our breakpoint; variables can be viewed in the
upper right

Thursday, February 17, 2011

© Kenneth M. Anderson, 2011 18

Let’s add objects…

Note: This example comes from “Learning Objective-C
2.0: A Hands-On Guide to Objective-C for Mac and iOS
Developers” written by Robert Clair

It is an excellent book that I highly recommend

His review of the C language is an excellent bonus to
the content on Objective-C itself

We’re going to create an Objective-C class called Greeter
to make this HelloWorld program a bit more object-
oriented

Thursday, February 17, 2011

© Kenneth M. Anderson, 2011

First, we are going to add a class

Select File ⇒ New File

In the resulting Dialog (see next two slides)

Select Cocoa Class

Select Objective-C class

Select NSObject from the “Subclass of ” menu

Click the Next button and title the class Greeter.m and
ask that Greeter.h be generated. Click Finish

19

Thursday, February 17, 2011

© Kenneth M. Anderson, 2011 20

Thursday, February 17, 2011

© Kenneth M. Anderson, 2011 21

This dialog names the new class, creates a header file and
adds the class to the current project (HelloWorld) and to
the current target (HelloWorld); A single project can
generate multiple executables, which are known as
targets; for this program, we just have one target

Thursday, February 17, 2011

© Kenneth M. Anderson, 2011 22

After the creation, Greeter.h and Greeter.m have been
added to our project and the header file has been displayed
automatically; Note the import of Cocoa.h; all this does is
import Foundation.h and AppKit.h. We could switch this to
just import Foundation.h as we won’t be using AppKit

Thursday, February 17, 2011

© Kenneth M. Anderson, 2011 23

Classes in Objective-C are defined in two files

A header file which defines the attributes and method
signatures of the class

An implementation file (.m) that provides the method
bodies

Objective-C classes

Thursday, February 17, 2011

© Kenneth M. Anderson, 2011

Header Files

The header file of a class has the following structure

<import statements>

@interface <classname> : <superclass name> {

 <attribute definitions>

}

<method signature definitions>

@end

24

Thursday, February 17, 2011

© Kenneth M. Anderson, 2011

Objective-C additions to C (I)

Besides the very useful #import, the best way to spot an
addition to C by Objective-C is the presence of this symbol

@
25

Thursday, February 17, 2011

© Kenneth M. Anderson, 2011

Objective-C additions to C (II)

In header files, the two key additions from Objective-C are

@interface

and

@end

@interface is used to define a new objective-c class

As we saw, you provide the class name and its superclass;
Objective-C is a single inheritance language

@end does what it says, ending the @interface compiler directive

26

Thursday, February 17, 2011

© Kenneth M. Anderson, 2011

Greeter’s interface (I)

27

We’ve added
one attribute

greetingText of
type
NSString *

“pointer to an
NSString”

NS stands for
“NeXTSTEP” !!

Thursday, February 17, 2011

© Kenneth M. Anderson, 2011

Greeter’s interface (II)

28

We’ve added
three method
signatures

one getter, one
setter, and one
method to issue
a greeting

Thursday, February 17, 2011

© Kenneth M. Anderson, 2011

Objective-C Methods (I)

29

It takes a while to get use to Object-C method signatures

- (void) setGreetingText: (NSString *) newText;

defines an instance method (-) called setGreetingText:

The colon signifies that the method has one parameter
and is PART OF THE METHOD NAME

newText of type (NSString *)

The names setGreetingText: and setGreetingText refer to
TWO different methods; the former has a parameter

Thursday, February 17, 2011

© Kenneth M. Anderson, 2011

Objective-C Methods (II)

A method with multiple parameters will have multiple
colon characters and the parameter defs are interspersed
with the method name

 - (void) setStrokeColor: (NSColor *) strokeColor

 andFillColor: (NSColor *) fillColor;

The above signature defines a method with two
parameters called setStrokeColor :andFillColor :

30

Thursday, February 17, 2011

© Kenneth M. Anderson, 2011

NSString * and NSColor *

We’ve now seen examples of types

NSString * and NSColor *

What does this mean?

The * in C means “pointer”

Thus, this can be read as

“pointer to <class>”

it simply means an instance has been allocated and we
have a handle to the instance

31

Thursday, February 17, 2011

© Kenneth M. Anderson, 2011

Let’s implement the method bodies

The implementation file of a class looks like this

<import statements>

@implementation <classname>

<method body definitions>

@end

32

Thursday, February 17, 2011

© Kenneth M. Anderson, 2011

Greeter’s implementation

33

We implement the getter,
setter, greet method and a
Framework method called
dealloc that takes care of
memory allocation issues

The getter is straightforward;

Let’s look at the others in
detail

Thursday, February 17, 2011

© Kenneth M. Anderson, 2011

But first, calling methods (I)

34

The method invocation syntax of Objective-C is

[object method:arg1 method:arg2 …];

Method calls are enclosed by square brackets

Inside the brackets, you list the object being called

Then the method with any arguments for the methods
parameters

Thursday, February 17, 2011

© Kenneth M. Anderson, 2011

But first, calling methods (II)

35

Here’s a call using Greeter’s setter method; @“Howdy!” is a shorthand
syntax for creating an NSString instance

[greeter setGreetingText: @“Howdy!”];

Here’s a call to the same method where we get the greeting from
some other Greeter object

[greeterOne setGreetingText:[greeterTwo greetingText]];

Above we nested one call inside another ; now a call with multiple args

[rectangle setStrokeColor: [NSColor red] andFillColor: [NSColor green]];

Thursday, February 17, 2011

© Kenneth M. Anderson, 2011

Memory Management (I)

Memory management of Objective-C objects involves the
use of six methods

alloc, init, dealloc, retain, release, autorelease

Objects are created using alloc and init

We then keep track of who is using an object with retain
and release

We get rid of an object with dealloc (although, we never
call dealloc ourselves)

36

Thursday, February 17, 2011

© Kenneth M. Anderson, 2011

Memory Management (II)

When an object is created, its retain count is set to 1

It is assumed that the creator is referencing the object
that was just created

If another object wants to reference it, it calls retain to
increase the reference count by 1

When it is done, it calls release to decrease the
reference count by 1

If an object’s reference count goes to zero, the runtime
system automatically calls dealloc

37

Thursday, February 17, 2011

© Kenneth M. Anderson, 2011

Memory Management (III)

I won’t talk about autorelease today, we’ll see it in action
soon

Objective-C 2.0 added a garbage collector to the language

When garbage collection is turned on, retain, release, and
autorelease become no-ops, doing nothing

However, the garbage collector is not available when
running on iOS, so the use of retain and release are still
with us; as the hardware of iOS devices gets more
powerful, garbage collection will be available everywhere
and these memory management techniques will go away

38

Thursday, February 17, 2011

© Kenneth M. Anderson, 2011

Back to the Code
- (void) setGreetingText: (NSString *) newText {

 [newText retain];

 [greetingText release];

 greetingText = newText;

}

You are now in a position to understand the setter method

We retain the new NSString passed in, we release the
NSString we previously pointed at, we set our
greetingText to point at the new NSString

39

Thursday, February 17, 2011

© Kenneth M. Anderson, 2011

The greet method
- (void) greet {

 NSLog(@"%@", [self greetingText]);

}

NSLog is a variable argument function.

The number of arguments is determined by the format string that is
passed in as the first argument

Just like printf in C

This format string “%@” says convert an object into a string

Note: [self greetingText] is this object invoking the getter function on itself
rather than accessing the greetingText string directly

40

Thursday, February 17, 2011

© Kenneth M. Anderson, 2011

The dealloc method

- (void) dealloc {

 [greetingText release];

 [super dealloc];

}

The dealloc method releases the NSString that we are
pointing at with our attribute and then invokes the dealloc
method of our superclass

We’ve now seen examples of the self and super keywords

41

Thursday, February 17, 2011

© Kenneth M. Anderson, 2011

A new main method

We now need a new version of main to make use of our
new Greeter class

We’ll import its header file

We’ll instantiate an instance of the class

We’ll set its greeting text

We’ll call its greet method

We’ll release it

42

Thursday, February 17, 2011

© Kenneth M. Anderson, 2011 43

The only thing new is the sequence of calls on alloc and init; alloc is a
class method of NSObject; we can invoke it on Greeter since it is
inherited; it returns a new instance and we then call init on it. We didn’t
override init so a default version defined by NSObject will execute
instead. Otherwise, we create it, set the greeting, invoke greet, and
release; ignore pool for now

Thursday, February 17, 2011

© Kenneth M. Anderson, 2011 44

Some things not (yet) discussed

Objective-C has a few additions to C not yet discussed

The type id: id is defined as a pointer to an object

id iCanPointAtAString = @“Hello”;

Note: no need for an asterisk in this case

The keyword nil: nil is a pointer to no object

It is similar to Java’s null

The type BOOL: BOOL is a boolean type with values YES
and NO; used throughout the Cocoa frameworks

Thursday, February 17, 2011

© Kenneth M. Anderson, 2011

Wrapping Up (I)

Basic introduction to Objective-C

main methods

class and method definition and implementation

method calling syntax

creation of objects and memory management

More to come as we use this knowledge to explore the
iOS platform in future lectures

45

Thursday, February 17, 2011

© Kenneth M. Anderson, 2011

Coming Up Next

Homework 4 Assigned on Friday

Lecture 13: Introduction to iOS

Homework 4 Due on Wednesday

Lecture 14: Review for Midterm

Lecture 15: Midterm

Lecture 16: Review of Midterm

46

Thursday, February 17, 2011

