INTRODUCTION TO OBJECTIVE-C

CSCl 4448/5448: OBJECT-ORIENTED ANALYSIS & DESIGN
LECTURE |2 —02/17/201 |

© Kenneth M. Anderson, 201 |

Thursday, February 17, 2011

Goals of the Lecture

® Present an introduction to Objective-C 2.0

® Coverage of the language will be INCOMPLETE

® \We'll see the basics... there is a lot more to learn

© Kenneth M. Anderson, 201 | Y

Thursday, February 17, 2011

History (1)

® Brad Cox created Objective-C in the early [980s

® [t was his attempt to add object-oriented programming
concepts to the C programming language

® NeXT Computer licensed the language in 1988; it was
used to develop the NeXTSTEP operating system,
brogramming libraries and applications for NeXT

® In 1993, NeXT worked with Sun to create OpenStep,
an open specification of NeXTSTEP on Sun hardware

© Kenneth M. Anderson, 201 | 3

Thursday, February 17, 2011

History (II)

® In 199/, Apple purchased NeXT and transformed
NeXTSTEP into MacOS X which was first released in the

summer of 2000

® Objective-C has been one of the primary ways to
develop applications for MacOS for the past | | years

® |n 2008, it became the primary way to develop
applications for 10S targeting (currently) the iIPhone
and the 1Pad and (soon, I'm guessing) the Apple TV

© Kenneth M. Anderson, 201 | 4

Thursday, February 17, 2011

Objective-C 1s “C plus Objects™ (1)

® Objective-C makes a small set of extensions to C which
turn It Into an object-oriented language

® [t s used with two object-oriented frameworks

® [he Foundation framework contains classes for basic
concepts such as strings, arrays and other data
structures and provides classes to interact with the
underlying operating system

® [he AppKit contains classes for developing applications
and for creating windows, buttons and other widgets

© Kenneth M. Anderson, 201 | 5
Thursday, February 17, 2011

Objective-C 1s “C plus Objects™ (II)

® Jogether, Foundation and AppKit are called Cocoa
® On 105, AppKit is replaced by UIKit
® Foundation and UIKit are called Cocoa Touch
® |n this lecture, we focus on the Objective-C language,
® well see a few examples of the Foundation framework

® we'll see examples of UIKit in Lecture |3

© Kenneth M. Anderson, 201 | 6

Thursday, February 17, 2011

C Skills? Highly relevant

® Since Objective-C i1s “C plus objects’ any skills you have in
the C language directly apply

® statements, data types, structs, functions, etc.
® \What the OO additions do, Is reduce your need on
® structs, malloc, dealloc and the like

® and enable all of the object-oriented concepts we've
been discussing

® Objective-C and C code otherwise freely intermix

© Kenneth M. Anderson, 201 | 7/

Thursday, February 17, 2011

Development Tools (1)

® Apple provides XCode and Interface Builder to develop
programs In Objective-C

® Behind the scenes, XCode makes use of gcc to compile
Objective-C programs

® |n a future version of XCode, to be released shortly,
Interface Builder will go away as a separate application

® [ts functionality will be merged into XCode

® We'll see examples of Interface Builder next week

© Kenneth M. Anderson, 201 | 8

Thursday, February 17, 2011

Development Tools (II)

® XCode and Interface Builder comes with Snow Leopard
on the Development Tools DVD

® |t s also avallable for download at <http://
developerapple.com/>

® You need to register in Apple’s development program
but registration Is free

® Jo install: double click the downloaded .dmg file and then
double click the installer and follow Iinstructions

© Kenneth M. Anderson, 201 | 9

Thursday, February 17, 2011

http://developer.apple.com
http://developer.apple.com
http://developer.apple.com
http://developer.apple.com

Hello VWorld

® As s traditional, let's look at our first objective-c program via
the traditional Hello World example

® Jo create it, we launch XCode and create a New Project
® |n the resulting dialog (see next slide)
® select Application under the MacOS X
® select Command Line Tool on the right
® select Foundation from the pop-up menu

® click Choose and select a location for the project

© Kenneth M. Anderson, 201 | 10

Thursday, February 17, 2011

®SNo New Project

Choose a template for your new project:

i- \
/) ~
Application y W v
S f \
Library ’
Cocoa Cocoa~ Quartz
L User Templates Application AppleScript Composer
Application Application
Application
MacFUSE

%.: Mac OS X

Framework & Library
Application Plug-in

System Plug-in
Other Foundation

This project builds a command-line tool that links against the Foundation library.

Cancel) (Choose...)

© Kenneth M. Anderson, 201 |

Thursday, February 17, 2011

il ool Similar to what we ¢
A . sl
I Helloworld with Eclipse, XCoc

Source
| HelloWorld_Prefix.pch
| HelloWorld.m
Documentation
HelloWorld.1
External Frameworks and Libraries
A= Foundation.framework
Products
M HelloWorld

(L) Targets
/ Executables

-+, Fing Results
" Bookmarks
SCM
Bl Project Symbols
| Implementation Files
'] NIB Files

© Kenneth M. Anderson, 201 |

Thursday, February 17, 2011

HelloWorld - Debugger Console

Debug | x86_64 - S G W il

Overview Breakpoints Build and Run Tasks Restart Pause Clear Log

[Session started at 2011-02-17 08:43:03 -0700.]

GNU gdb 6.3.50-20050815 (Apple version gdb-1510) (Wed Sep 22 02:45:02 UTC 2010)
Copyright 2004 Free Software Foundation, Inc.

GDB is free software, covered by the GNU General Public License, and you are
welcome to change it and/or distribute copies of it under certain conditions.
Type "show copying” to see the conditions.

There is absolutely no warranty for GDB. Type "show warranty” for details.
This GDB was configqured as "xB86_ 64-apple-darwin”.tty /dev/ttys000

Loading program into debugger..

Program loaded.

run

[Switching to process 40935]

Running...

2011-02-17 08:43:04.020 HelloWorld[40935:a0f] Hello, World!

Debugger stopped.
Program exited with status value:0.

Debugging of “HelloWorld™ ended normally. Y

© Kenneth M. Anderson, 201 |

Thursday, February 17, 2011

-

eNe

e) GL)EHEne@-)(E)E] L4 0 o 6

Refresh Finder Back View Action Dropbox Path New Folder Getnfo Delete ><d 10 ..

| lUsers/kena/Documents/Classes/5448/511/Lectures/12-Materials/Lecture12Examples/HelloWorld

Q

Search

Date Modifed

Today, 8:46 AM

Name "

build

——

B Jiriki
£ iDisk
. Macintosh HD

Debug Today, 8:43 AM
[S—

K3 Oesiaop B Helloworld Today, 8:43 AM
W Downloads
. Mail Down'oads

{b kena

- HelloWorld.build Today, 8:46 AM

Today, 8:46 AM

N\ Applications Debug

| Documents
B Mowies
J] Music

& Pictures

— HelloWorld.build Today, 8:47 AM

.‘j build-state.dat

Today, 8:43 AM

| Cuweb
s HCC Crisisinf
 Atfiliate
. Dropbox
S11

HelloWorld-all-target-headers.hmap Today, 8:43 AM

HelloWorld-generated-files.hmap Today, 8:43 AM

HelloWorld-own-target-headers.hmap Today, 8:43 AM

HelloWorld-project-headers.hmap Today, 8:43 AM

HelloWorld.dep Today, 8:43 AM
HelloWorld.hmap Today, 8:43 AM
- Objects-normal Today, 8:47 AM
v 9 x86_64

HelloWorld.LinkFileList

Today, 8:43 AM
Today, 8:43 AM
HelloWorld.o Today, 8:43 AM
— Helloworld.pbxindex Today, 8:47 AM
|y HelloWorld_Prefix.pch Today, 8:39 AM
HelloWorld.1 Today, 8:39 AM
‘m HelloWorld.m Today, 8:39 AM

. HelloWorld.xcodeproj Today, 8:39 AM

) Macintosh HD +]] i S 1S JLe » L) L

4 KB

7 KB

Kind

Folder
Folder
Unix... File
Folder
Folder
Folder
Ima...rmat
Document
Document
Document
Document
Document
Document
Folder
Folder
Document
Document
Folder
C Pr... File
Document
Obje... File

Xco...t File

Objects-normal | xB6_64

1 of 22 selected, 172.26 GB available

© Kenneth M. Anderson, 201 |

Thursday, February 17, 2011

Sno Terminal — bash — 80x34 — 381

Jiriki:Lecturel2Examples $ pwd 2
/Users/kena/Documents/Classes/5448/S11/Lectures/12-Materials/Lecturel2Examples
Jiriki:Lecturel2Examples $ cd HelloWorld/build/Debug/

Jiriki:Debug $ 1s

HelloWorld*

ES

Jiriki:Debug $./HelloWorld
2011-02-17 08:51:21.023 HelloWorld[41071:903] Hello, World!
Jiriki:Debug $ |

© Kenneth M. Anderson, 201 | |5
Thursday, February 17, 2011

#¥1mport <Foundation/Foundation.h>

int main (int argc, const char * argv[]) {
NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];

// 1nsert code here...
NSLog(@"Hello, World!");
[pool drain];

return 0;

© Kenneth M. Anderson, 201 |

Thursday, February 17, 2011

O m| HelloWorld.m: HelloWorld - Debugger

e : ' T T+
Pewieees -] B3 N @@ © © 0 @

Overview Breakpoints Build and Debug Tasks Restart Continue Step Over Step Into Step Cut
Thread-1-<com.apple.main-thread> ¢ Variable Value Summary

RECETN . v arguments
argc 1
argv Ox7ffi5fbff498
Locals
pool 0x100108020
Clobals
Registers

Vector Registers
x87 Registers

9

o HelloWorld.m:7:1 ¢ main(} <
#¥1mport <Foundation/Foundation.h>

int main (int argc, const char * argv[]) {
NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];

// 1nsert code here...
NSLog(@"Hello, World!");
[pool drain];

return 0;

- GDB: Stopped at breakpoint 1 (hit count : 1) - 'main() - Line 7" @ Succeeded

© Kenneth M. Anderson, 201 |

Thursday, February 17, 2011

Let's add objects...

® Note: This example comes from “Learning Objective-C
2.0: A Hands-On Guide to Objective-C for Mac and 105

Developers” written by Robert Clair

® |t is an excellent book that | highly recommend

® His review of the C language Is an excellent bonus to
the content on Objective-C itself

® \We're going to create an Objective-C class called Greeter
to make this HelloWorld program a bit more object-
oriented

© Kenneth M. Anderson, 201 | |8

Thursday, February 17, 2011

FIrst, we are going to add a class

® Select File = New File

® |n the resulting Dialog (see next two slides)
® Select Cocoa Class
® Select Objective-C class
® Select NSObject from the “Subclass of " menu

® (lick the Next button and title the class Greeterm and
ask that Greeterh be generated. Click Finish

© Kenneth M. Anderson, 201 | |9

Thursday, February 17, 2011

< NN $) New File

Choose a template for your new file:

,

i! i0S . ~ S £

Cocoa Touch Class 'R : I[] = n.‘_ - >

User Interface 2 b TEXT

Resource Objective-C Objective-C test AppleScript class
case class

Code Signing protocol

' User Templates

Ruby

%‘1 Mac OS X

Cand C++

User Interface
Resource

Interface Builder Kit

Other N
M Objective-C class

Subclass of NSObject ?J

An Objective-C class file, with an opticnal header which includes the <Cocoa/Cocoa.h> header.

N———”
y yz

© Kenneth M. Anderson, 201 |

Thursday, February 17, 2011

() &) New File

New Objective-C class

File Name: GCreeter.m

IZF Also create "Creeter.h”

Location: ~/Documents/Classes/5448/S11/Lectures/12-Materials/Lecturel2Examples/HelloWorld z] " Choose... |

Add to Project: HelloWorld ?]

Targets: & W@ Helloworld

" Previous | [Finish)

© Kenneth M. Anderson, 201 |

Thursday, February 17, 2011

e MO h| Greeter.h - HelloWorld

| Debug | x86_64 =8 = Kj}\ » O

Action Breakpoints Build and Debug Tasks Info Search

Groups & Files ; File Name A < Code
"™ Helloworld B |u Greeter.h

Source j-.« Greeter.m v

u| HelloWorld_Prefix.pch

w| HelloWorld.m

| Greeter.h # Greeter.h:1:1 + <No selected symbol> 3

m| Greeter.m V/

Documentation 2| | // Greeter.h
Helloworld. 1 3 | // HelloWorld

External Frameworks and Libraries ! L

= Foundation.framework | | // Created by Ken Anderson on 2/17/11.

Products 6 | // Copyright 2011 University of Colorado, Boulder. All rights reserved.
M HelloWorld 1/

(&) Targets
Z Executables
A Find Results
(Y Bookmarks
SCM
@ Project Symbols 12| | @interface Greeter : NSObject {
@] Implementation Files

#import <Cocoa/Cocoa.h>

{4 | NIB Files

Debugging of "HelloWorld™ ended normally. @ Succeeded

© Kenneth M. Anderson, 201 |

Thursday, February 17, 2011

Objective-C classes

® C(lasses in Objective-C are defined in two files

® A header file which defines the attributes and method
signatures of the class

® An implementation file (.(m) that provides the method
bodies

© Kenneth M. Anderson, 201 |

Thursday, February 17, 2011

23

Header Files

® [he header file of a class has the following structure
<import statements>
@interface <classname> : <superclass name> ({

<attribute definitions>

;

<method signature definitions>

@end

© Kenneth M. Anderson, 201 | 24

Thursday, February 17, 2011

Objective-C additions to C (I)

® Besides the very useful #import, the best way to spot an
addition to C by Objective-C is the presence of this symbol

© Kenneth M. Anderson, 201 | 25

Thursday, February 17, 2011

Objective-C additions to C (Il

® |n header files, the two key additions from Objective-C are
® @interface

® and
® @end

® @interface Is used to define a new objective-c class

® As we saw, you provide the class name and rts superclass;
Objective-C Is a single inheritance language

® @end does what It says, ending the @interface compliler directive

© Kenneth M. Anderson, 201 | 26

Thursday, February 17, 2011

Greeter's interface (l)

#import <Foundation/Foundation.h> We’ve added
ohe attribute
@interface Greeter : NSObject {

NSString *greetingText; greetingText of

type
NSString *

(NSString *) greetingText;
(void) setGreetingText: (NSString *) newText; “pointer to an

(void) greet; NSString”

@end

NS stands for
> “NeXTSTEP” !!

© Kenneth M. Anderson, 201 | 27
Thursday, February 17, 2011

Greeter's interface (ll)

#import <Foundation/Foundation.h> We’ve added
three method
@interface Greeter : NSObject { sighatures

NSString *g tingTe>

- B e

ohe getter, one
setter, and one
(NSS5tring *) greetingText; method to issue
(void) setGreetingText: (NSString *) newText; a greeting
(vold) greet;

@end

© Kenneth M. Anderson, 201 | 28
Thursday, February 17, 2011

Objective-C Methods (I)

® |t takes a while to get use to Object-C method signatures

- (void) setGreetinglText: (NSString *) newText;

® defines an instance method (-) called setGreeting lext:

® [he colon signifies that the method has one parameter
and i1s PART OF THE METHOD NAME

® new lext of type (NSString *)

® [he names setGreeting lext: and setGreeting lext refer to
TWO different methods; the former has a parameter

© Kenneth M. Anderson, 201 | 29

Thursday, February 17, 2011

Objective-C Methods ()

® A method with multiple parameters will have multiple

colon characters and the parameter defs are interspersed
with the method name

’ - (void) setStrokeColor: (NSColor *) strokeColor

* A ERINEONIO R (NS Colfoim IR R RIS Col'or ;

® [he above signature defines a method with two
parameters called setStrokeColor:andFillColor:

© Kenneth M. Anderson, 201 | 30
Thursday, February 17, 2011

NSString * and NSColor *

® VVe've now seen examples of types
® NSString * and NSColor *
® \What does this mean!
® The *in C means “pointer”
® [hus, this can be read as
® “pointer to <class>"

® it ssimply means an instance has been allocated and we
have a handle to the instance

© Kenneth M. Anderson, 201 | 31

Thursday, February 17, 2011

Let's mplement the method bodies

® [he implementation file of a class looks like this
<import statements>
@implementation <classname>
<method body definitions>

@end

© Kenneth M. Anderson, 201 | By

Thursday, February 17, 2011

Greeter's Implementation

#import "Greeter.h"

We implement the getter,

@implementation Greeter setter, greet method and a
(NSString *) greetingText { Framework method called
return greetinglext;
| dealloc that takes care of
(void) setGreetingText: (NSString *) newText { memOry a"ocation issues
[newText retain];
[greetingText release]; . .
, SmeRirdlah = naler: The getter is straightforward;
- (void) greet { .
NSLog(@"¥%@", [self greetingText]); Let’s IOOk at the Others n
. detail
- (void) dealloc {
[greetingText release];
[super dealloc];
© Kenneth M. Anderson, 201 | 33

Thursday, February 17, 2011

But first, calling methods (1)

® [he method invocation syntax of Objective-C Is

® [object method:argl method:arg2?2 ..1;
® Method calls are enclosed by square brackets

® |nside the brackets, you list the object being called

® [hen the method with any arguments for the methods
parameters

© Kenneth M. Anderson, 201 | 34

Thursday, February 17, 2011

But first, calling methods (lI)

® Here's a call using Greeter's setter method; @ ‘Howdy!" is a shorthand
syntax for creating an NSString instance

® [greeter setGreetinglText: @“Howdy!™”];

® Here's a call to the same method where we get the greeting from
some other Greeter object

® [greeterOne setGreetinglext:[greeterTwo greetinglext]];

® Above we nested one call inside another; now a call with multiple args

Y Ifecitangle seisirekeCelor: [NsColer Feell]l apelrillCeolors [[NSCekelr =ircEmn s

© Kenneth M. Anderson, 201 | 35

Thursday, February 17, 2011

Memory Management (1)

® Memory management of Objective-C objects involves the
use of six methods

® alloc, Init, dealloc, retain, release, autorelease
® Objects are created using alloc and init

® e then keep track of who Is using an object with retain
and release

® \We get rnid of an object with dealloc (although, we never
call dealloc ourselves)

© Kenneth M. Anderson, 201 | 36

Thursday, February 17, 2011

Memory Management (lI)

® \When an object Is created, its retain count Is set to |

® |t is assumed that the creator is referencing the object
that was just created

® |[f another object wants to reference I, it calls retain to
Increase the reference count by |

® When 1t Is done, It calls release to decrease the
reference count by |

® |[f an object’s reference count goes to zero, the runtime
system automatically calls dealloc

© Kenneth M. Anderson, 201 | 57

Thursday, February 17, 2011

Memory Management (ll)

® | won't talk about autorelease today, we'll see 1t in action
Jelely

® Opjective-C 2.0 added a garbage collector to the language

® When garbage collection Is turned on, retain, release, and
autorelease become no-ops, doing nothing

® However, the garbage collector 1s not available when
running on 1059, so the use of retain and release are still
with us; as the hardware of 10S devices gets more
powerful, garbage collection will be available everywhere
and these memory management technigues will go away

© Kenneth M. Anderson, 201 | 38
Thursday, February 17, 2011

Back to the Code

- (void) setGreetingText: (NSString *) newText {
[newText retain];
[greetingText release];

greetinglext = newlext;

;

® You are now In a position to understand the setter method

® We retain the new NSString passed in, we release the
NSString we previously pointed at, we set our
oreeting lext to point at the new NSString

© Kenneth M. Anderson, 201 | 39

Thursday, February 17, 2011

| he greet methoa

- (void) greet {
NSLog (@"%@", [self greetingText]);
}
® NSLog is a variable argument function.

® T[he number of arguments Is determined by the format string that Is
passed in as the first argument

® Just like printfin C
® This format string “%@'"" says convert an object into a string

® Note: [self greetinglext] Is this object invoking the getter function on itself
rather than accessing the greeting lext string directly

© Kenneth M. Anderson, 201 | 40

Thursday, February 17, 2011

T he dealloc method

- (void) dealloc {
[greetinglext release];
[super dealloc];

;

® [he dealloc method releases the NSString that we are
pointing at with our attribute and then invokes the dealloc
method of our superclass

® We've now seen examples of the self and super keywords

© Kenneth M. Anderson, 201 | 4|

Thursday, February 17, 2011

A new main method

® Ve now need a new version of main to make use of our
new Greeter class

® Welll import rts header file

® Welll instantiate an instance of the class
® Well set its greeting text

® Welll call its greet method

® \We'll release It

© Kenneth M. Anderson, 201 | 42

Thursday, February 17, 2011

;#impa}t <Foundation/Foundation. h>
#import "Greeter.h"

int main (int argc, const char * argv[]) {
NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];

Greeter *myGreeter = [[Greeter alloc] init];

[myGreeter setGreetingText:@"Hello from Objective-C!!"];
[myGreeter greet];

[myGreeter release];

[pool drain];
return 0;

e

The only thing new is the sequence of calls on alloc and init; alloc is a
class method of NSObject; we can invoke it on Greeter since it is
inherited; it returns a new instance and we then call init on it. We didn’t
override init so a default version defined by NSObject will execute

instead. Otherwise, we create it, set the greeting, invoke greet, and
release; ignore pool for now © Kenneth M. Anderson, 201 | 43

Thursday, February 17, 2011

Some things not (yet) discussed

® Objective-C has a few additions to C not yet discussed
® The type id:id Is defined as a pointer to an object
® d ICanPointAtAString = @ "Hello™;
® Note: no need for an asterisk in this case
® [he keyword nil: nil 1s a pointer to no object

® |t s similar to Java's null

® [he type BOOL: BOOL is a boolean type with values YES
and NO; used throughout the Cocoa frameworks

© Kenneth M. Anderson, 201 | 44

Thursday, February 17, 2011

Wrapping Up (1)

® Basic introduction to Objective-C
® main methods
® class and method definition and implementation
® method calling syntax
® creation of objects and memory management

® [More to come as we use this knowledge to explore the
1OS platform in future lectures

© Kenneth M. Anderson, 201 | 45

Thursday, February 17, 2011

Coming Up Next

® Homework 4 Assigned on Friday
® [ecture |3:Introduction to 105

® Homework 4 Due on Wednesday
® [ecture |4: Review for Midterm

® [ecture [5: Midterm

® |ecture |6: Review of Midterm

© Kenneth M. Anderson, 201 | 46

Thursday, February 17, 2011

