UML & OO FUNDAM

CSCl 4448/5448: OBJECT-ORIENTED ANALYSIS & DESIGN
LECTURE 3—01/18/201 |

© Kenneth M. Anderson, 201 |

-NTALS

Monday, January 17, 2011

Goals of the Lecture

® Review the material in Chapter 2 of the Textbook
® Cover key parts of the UML notation
® Demonstrate the ways in which | think it is useful

® Give you a chance to apply the notation yourself to
several examples

® \Warning: | repeat important information several times in
this lecture; this is a hint to the future you when you are
studying for the midterm.

© Kenneth M. Anderson, 201 |)

Monday, January 17, 2011

UML

® UML is short for Unified Modeling Language

® [he UML defines a standard set of notations for use In
modeling object-oriented systems

® [hroughout the semester we will encounter UML in the form of
® class diagrams
® sequence/collaboration diagrams
® state diagrams

® activity diagrams, use case diagrams, and more

© Kenneth M. Anderson, 201 | 3

Monday, January 17, 2011

(Very) Brief History of the UML

® |n the 80s and early 90s, there were multiple OO A&D
approaches (each with their own notation) available

® [hree of the most popular approaches came from
® James Rumbaugh: OMT (Object Modeling Technigue)
® |var Jacobson: Wrote "OO Software Engineering”

® Grady Booch: Booch method of OO A&D

® |n the mid-90’'s all three were hired by Rational and
together developed the UML; “three amigos”

© Kenneth M. Anderson, 201 | 4

Monday, January 17, 2011

Big Picture View of OO Paradigm

8 OO techniques view software systems as
® networks of communicating objects
® Fach object is an instance of a class
® All objects of a class share similar features
® attributes
® methods
® (lasses can be specialized by subclasses

® Objects communicate by sending messages

© Kenneth M. Anderson, 201 | 5

Monday, January 17, 2011

Objects (I)

® Objects are instances of classes

® T[hey have state (attributes) and exhibit behavior
(methods)

® Ve would like objects to be
® highly cohesive
® have a single purpose; make use of all features
® [oosely coupled

® be dependent on only a few other classes

© Kenneth M. Anderson, 201 | 6

Monday, January 17, 2011

Objects (Il

® Objects interact by sending messages

® Object A sends a message to Object B to request 1t
perform a task

® When done, B may pass a value back to A
® Sometimes A ==

® e, an object can send a message to rtself

© Kenneth M. Anderson, 201 | 7/

Monday, January 17, 2011

Objects (Il

® Sometimes messages can be rerouted

® nvoking a method defined In class A may In fact invoke
an overridden version of that method in subclass B

® a method of class B may In turn invoke messages on Its
superclass that are then handled by overridden
methods from lower In the hierarchy

® [he fact that messages (dynamic) can be rerouted
distinguishes them from procedure calls (static) in non-

OO languages

© Kenneth M. Anderson, 201 | 8

Monday, January 17, 2011

Objects (V)

® |n response to a message, an object may

update 1ts internal state
return a value from its internal state

perform a calculation based on its state and return the
calculated value

create a new object (or set of objects)

delegate part or all of the task to some other object

© Kenneth M. Anderson, 201 | 9

Monday, January 17, 2011

Objects (V)
® As a result, objects can be viewed as members of
multiple object networks
® Object networks are also called collaborations

® Objects In an collaboration work together to perform
a task for their host application

© Kenneth M. Anderson, 201 | 10

Monday, January 17, 2011

Objects (VI)

® UML notation

® Objects are drawn as rectangles with their names and
types (class names) underlined

® Ken : Person

® [he name of an object is optional. The type Is required

® : Person

® Note: The colon is not optional.

© Kenneth M. Anderson, 201 | | |

Monday, January 17, 2011

Objects (VI

® Objects work together have lines drawn between them
® [his connection has many names
® object reference
® reference
® link

® Messages are sent across links

® |inks are instances of associations (see slide 31)

© Kenneth M. Anderson, 201 | |12

Monday, January 17, 2011

Ken: Person

3 objects; 3 classes; 2 links; 2 messages

You can think of the names as the variables
that a program uses to keep track of the

three objects

© Kenneth M. Anderson, 201 |

Monday, January 17, 2011

Skippy: Dog

Felix: Cat

Classes (I)

® A class is a blueprint for an object

® [he blueprint specifies a class’s attributes and methods
® attributes are things an object of that class Knows
® methods are things an object of that class does

® An object is Instantiated (created) from the description
provided by Its class

® [hus, objects are often called instances

© Kenneth M. Anderson, 201 | | 4

Monday, January 17, 2011

Classes (Il

® An object of a class has its own values for the
attributes of Its class

® [or instance, two objects of the Person class can have
different values for the name attribute

® Objects share the mplementation of a class's methods
® and thus behave similarly

® |.e. Objects A and B of type Person each share the
same iImplementation of the sleep() method

© Kenneth M. Anderson, 201 | |5

Monday, January 17, 2011

Classes (lII)

® C(lasses can define “class-based” (a.k.a. static) attributes
and methods

® A static attribute is shared among a class’'s objects

® [hat s, all objects of that class can read/write the
static attribute

® A static method does not have to be accessed via
an object; you invoke static methods directly on a class

® In Lecture 2's Java code: String.format() was an
example of a static method

© Kenneth M. Anderson, 201 | |6

Monday, January 17, 2011

Classes by Analogy: Address Book

® Fach card in an address book is an “instance” or “object”
of the AddressBookCard class

® Each card has the same blank fields (attributes)
® You can do similar things to each card
® cach card has the same set of methods

® [he number of cards in the book Is an example of a static
attribute; Sorting the cards alphabetically Is an example of
a static method

© Kenneth M. Anderson, 201 | |7

Monday, January 17, 2011

Classes (V)

® C(lasses in UML appear as rectangles with multiple sections
® T[he first section contains its name (defines a type)
® [he second section contains the class's attributes

® [he third section contains the class's methods

artist

title

© Kenneth M. Anderson, 201 | |8

Monday, January 17, 2011

Class Diagrams, 2nd Example

NERRE All parts are optional
Atts —— except the class name

MEe s el getSpeed(): int
setSpeed(int)

A class Is represented as a rectangle

This rectangle says that there Is a class called Airplane that
could potentially have many instances, each with its own
speed variable and methods to access It

© Kenneth M. Anderson, 201 |

Monday, January 17, 2011

Translation to Code

® (lass diagrams can be translated into code straightforwardly
8 Define the class with the specified name
® Define specified attributes (assume private access)
8 Define specified method skeletons (assume public)
® May have to deal with unspecified information
® J[ypes are optional In class diagrams
® (lass diagrams typically do not specify constructors

® just the class's public interface

© Kenneth M. Anderson, 201 | 20

Monday, January 17, 2011

Alrplane In Java

private int speed;

: . public Airplane(int speed) ({
Using Airplane this.speed = speed;

}

Airplane a = new Airplane(5);

a.setSpeed(10): public int getSpeed() {

return speed;
System.out.println()
“7 + a.getSpeed());

public void setSpeed(int speed) {
this.speed = speed;
}

© Kenneth M. Anderson, 201 |

Monday, January 17, 2011

Relationships Between Classes

® C(lasses can be related in a variety of ways
® I[nheritance
® Association
® Multiplicity
® Whole-Part (Aggregation and Composition)
® Qualification

® |nterfaces

© Kenneth M. Anderson, 201 | 22

Monday, January 17, 2011

Animal

Relationships: Inheritance

makeNoise()
eat()
® notation: a white triangle points to the superclass Jgeluly)

® One class can extend another

® the subclass can add attributes T

® Hippo adds submerged as new state

® the subclass can add behaviors or override
g submerged: boolean
exIsting ones

® Hippo is overriding makeNoise() and eat() JUELCACEEW
and adding submerge() eat()

submerge()

© Kenneth M. Anderson, 201 | 23

Inheritance Airplane
speed: int

getSpeed(): int

® |[nheritance lets you build setSpeed(int)

classes based on other
classes and avoid

duplicating code

® Here, Jet builds off
the basics that

Airplane provides
MULTIPLIER: int

© Kenneth M. Anderson, 201 | 24

Monday, January 17, 2011

00O o O s WD -

Inherrting From Airplane (in Java)

public class Jet extends Airplane {

private static final int MULTIPLIER

public Jet(int id,

}

int speed) {

super (id, speed);

public void setSpeed(int speed) {
super.setSpeed(speed * MULTIPLIER);

}

public void accelerate() {
super.setSpeed(getSpeed() * 2);

}

© Kenneth M. Anderson, 201 |

Monday, January 17, 2011

2;

Note:

extends keyword indicates
inherrtance

super() and super keyword Is used
to refer to superclass

No need to define getSpeed()
method; its inherited!

setSpeed() method
overrides behavior of setSpeed() In
Airplane

subclass can define new behaviors,
such as accelerate()

25

Yolymorphism:“Many Forms”

® “Being able to refer to different derivations of a
class in the same way, ...”

® Implication: both of these are legal statements
® Airplane plane = new Airplane();
® Airplane plane = new Jet();

® ‘“...but getting the behavior appropriate to the
derived class being referred to”

® when | invoke setSpeed() on the second plane variable
above, | will get Jet's method, not Airplane’s method

© Kenneth M. Anderson, 201 | 26

Monday, January 17, 2011

-ncapsulation

® [Encapsulation lets you

® hide data and algorithms in one class from the rest of
your application

® |[imit the ablility for other parts of your code to access
that information

® protect iInformation In your objects from being used
iIncorrectly

© Kenneth M. Anderson, 201 | 27

Monday, January 17, 2011

-ncapsulation Example

® [he'speed’ instance variable
s private in Airplane. That
means that JGJ[doesn't have E.)l.lk.)lic void setSpeed(int speed) {

direct access to It. this.speed = speed;
}

Airplane

® Nor does any client of
Alirplane or Jet objects Jet

® Imagine If we changec

, SNINIL : ublic void setSpeed(int speed
speed’s visibility to public P peec peed) 1

super.setSpeed(speed * MULTIPLIER);

}

® The encapsulation of Jet’s
setSpeed() method would
be destroyed

© Kenneth M. Anderson, 201 | 28

Monday, January 17, 2011

Reminder: Abstraction

® Abstraction is distinct from encapsulation
® [t answers the questions
® \What features does a class provide to its users?

® \What services can it perform?

® Abstraction is the MOST IMPORTANT concern in A&D!

® [he choices you make in defining the abstractions of
your system will live with you for a LONG time

© Kenneth M. Anderson, 201 | 29

Monday, January 17, 2011

The Difference lllustratea

® [he getSpeed() and setSpeed()
methods represent Airplane’s
abstraction

public class Airplane {
private int speed;

8 Of all the possible things
that we can model about
airplanes, we choose just to

model speed public int getSpeed() {

public Airplane(int speed) {
this.speed = speed;
}

O ~1 o U1 S LU DD -

return speed;

® Making the speed attribute }
private I1s an example of
encapsulation; if we choose to public void setSpeed(int speed) {
use a linked list to keep track of this.speed = speed;
the history of the airplane’s
speed, we are free to do so

© Kenneth M. Anderson, 201 | 30

Relationships: Association

® One class can reference

another (a.k.a. association) _

® [his notation Is a graphical

® notation: straight line

shorthand that each class
contains an attribute whose
type Is the other class

® [his s just one way to mat‘;)eNoiSGO
. . ea
implement this; there are

MANY others

© Kenneth M. Anderson, 201 |

Hippo ourHippo

addAnimal()

makeNoise()
eat()

31

Monday, January 17, 2011

Multiplicity
® Associations can indicate the number of instances
involved n the relationship
® this is known as multiplicity
® An association with no markings Is “one to one”
® An association can also indicate directionality

® If so, It Indicates that the “knowledge” of the relationship
s not bidirectional

® Examples on next slide

© Kenneth M. Anderson, 201 | By

Monday, January 17, 2011

One B with each A; one
A with each B

Same as above

Zero or more Bs with each
A; one A with each B

Zero or more Bs with each
A; ditto As with each B

Two to Five Bs with each
A: one A with each B

Zero or more Bs with each
A; B knows nothing about A

© Kenneth M. Anderson, 201 |

Monday, January 17, 2011

Multiplicity Example

© Kenneth M. Anderson, 201 |

Monday, January 17, 2011

Self Assoclation

parent-of

e
o | oton | [i

© Kenneth M. Anderson, 201 | 35

Monday, January 17, 2011

Relationships: whole-part

® Associations can also convey semantic information about
themselves

® |n particular; aggregations indicate that one object
contains a set of other objects

® think of it as a whole=part relationship between
® a class representing a group of components
® a class representing the components

® Notation: aggregation Is indicated with a white diamond
attached to the class playing the container role

© Kenneth M. Anderson, 201 | 36

Monday, January 17, 2011

Aggregation

Bottle

Monday, January 17, 2011

-Xample: Aggregation

Composition Composition will be
defined on the next slide

Note: aggregation and
composition relationships

| change the default multiplicity
Section of associations;

instead of “one to one’’, you
should assume “one to many”

© Kenneth M. Anderson, 201 |

37

Semantics of Aggregation

8 Aggregation relationships are transitive

® if A contains B and B contains C, then A contains C
® Aggregation relationships are asymmetric

® |f A contains B, then B does not contain A

® A variant of aggregation i1s composition which adds the property
of existence dependency

® if A composes B, then If A Is deleted, B Is deleted

® Composition relationships are shown with a black diamond
attached to the composing class

© Kenneth M. Anderson, 201 | 38

Relationships: Qualification

® An association can be qualified with information that
indicates how objects on the other end of the association are
found

® [his allows a designer to indicate that the association
requires a guery mechanism of some sort

® c.g,an association between a phonebook and Its
entries might be qualified with a name

® Notation: a qualification Is indicated with a rectangle
attached to the end of an association indicating the
attributes used In the query

© Kenneth M. Anderson, 201 | 39

Qualification Example

PhoneBook

Qualification I1s not used very often; the same
information can be conveyed via a note or a use
case that accompanies the class diagram

© Kenneth M. Anderson, 201 | 40

Monday, January 17, 2011

Relationships: Interfaces

® A class can indicate that it implements an interface

® An Interface Is a type of class definition in which only
method sighatures are defined

8 A class implementing an interface provides method
bodies for each defined method signature in that interface

® This allows a class to play different roles, with each role
providing a different set of services

® [hese roles are then independent of the class’s
iInheritance relationships

© Kenneth M. Anderson, 201 | 4|

Monday, January 17, 2011

—XdMm p ‘ c food type food type
location location

makeNoise() makeNoise()
eat() eat()

roam() roam()

® Other classes can then access a class via its interface

® [hisisindicated via a “‘ball and socket” notation

© Kenneth M. Anderson, 201 | 4

Monday, January 17, 2011

Class Summary

® C(lasses are blue prints used to create objects
® C(lasses can participate in multiple types of relationships

® inherrtance, association (with multiplicity), agsregation/
composlition, qualification, interfaces

© Kenneth M. Anderson, 201 | 43

Monday, January 17, 2011

Your lurn

® Draw the following UML diagrams
® A can have zero or more B's; each B can have 3-4 C's

® A inherits from B; B implements an interface called C;
D accesses B via C's interface

® R's are accessed from A via an 1d

® A composes zero or more B's; C aggregates zero or
more A's

© Kenneth M. Anderson, 201 | 44

Monday, January 17, 2011

Questions

® Given

$ A inherits from B; B implements an interface called C; D accesses
B via C's interface

® Can D access an instance of A via C's interface!
® How would you implement the following?

® A can contain zero or more B's

® B's are accessed from A via an 1d

® A composes zero or more B's; C aggregates zero or more A’s

© Kenneth M. Anderson, 201 | 45

Monday, January 17, 2011

Sequence Diagrams (I)

® Objects are shown across the top of the diagram

® Objects at the top of the diagram existed when the scenario
begins

® All other objects are created during the execution of the
scenario

® [ach object has a vertical dashed line known as its lifeline

® When an object is active, the lifeline has a rectangle placed above
its lifeline

® |f an object dies during the scenario, its lifeline terminates with an
“><’,

© Kenneth M. Anderson, 201 | 46

Monday, January 17, 2011

Sequence Diagrams (ll)

® [Messages between objects are shown with lines pointing
at the object receiving the message

® [he line is labeled with the method being called and
(optionally) its parameters

® All UML diagrams can be annotated with “notes”

® Seqguence diagrams can be useful, but they are also labor
intensive (1)

© Kenneth M. Anderson, 201 | 47

Monday, January 17, 2011

‘DoaDoorSimulator
e O
«create»

printin("Fido starts barking."

H n n |
M:—__} printin("BarkRecognizer: Heard a 'Woof".")
| |
| |

printin("*The dog door opens.")

printin("Fido has gone'outside..") ‘

prinirn("Fido's all n .")

close()
sleep(10000) I
I printin("The dog door closes.")

_
printin("...but he's stuck outside!")
printin("Fido starts barking.") |
recognize("Woof") L

Insert another copy of the
interaction shown above here
printin("Fido's back inside...")
© Kenneth M. Anderson, 201 | _ 48

Monday, January 17, 2011

Coming Up Next

® [ecture 4. More OO Fundamentals; tExample
problem domain and traditional OO solution
® Read Chapters 3 and 4 of the Textbook

® [ecture 5:Introduction to Design Patterns

® Read Chapter 5 of the Textbook

© Kenneth M. Anderson, 201 | 49

Monday, January 17, 2011

