
Object-Oriented Design
with Python

CSCI 5448: Object – Oriented A & D

Presentation

Yang Li

http://www.python.org/

Summary

• This presentation assumes audience have the knowledge
of Object-Oriented A & D and emphasize on OOP
programming with python

• Introduces Python’s special methods to realize class
definition, inheritance, multiple inheritance, accessibility,
polymorphism, encapsulation.

• This presentation indicates the difference of how to
realize OOP method between python and other OOP
language

• Compare Python’s OOP methods with other OOP
languages. Analyze their advantages and disadvantages.

What’s Python?
• Python is a general-purpose, interpreted high-level

programming language.

• Its syntax is clear and emphasize readability.

• Python has a large and comprehensive standard library.

• Python supports multiple programming paradigms,
primarily but not limited to object-oriented, imperative
and, to a lesser extent, functional programming styles.

• It features a fully dynamic type system and automatic
memory management

Advantages of Python

• Simple

• Easy to study

• Free and open source

• High-level programming language

• Portability

• Expansibility

• Embedability

• Large and comprehensive standard libraries

• Canonical code

A Example of Python Class

This example includes
class definition, constructor function, destructor function,
attributes and methods definition and object definition.
These definitions and uses will be introduced specifically in
the following.

Class Definition and Object Instantiation

• Class definition syntax:

 class subclass[(superclass)]:

 [attributes and methods]

• Object instantiation syntax:

 object = class()

• Attributes and methods invoke:

 object.attribute

 object.method()

Special Class Attributes in Python

• Except for self-defined class attributes in Python, class
has some special attributes. They are provided by object
module.

Attributes Name Description

__dict__ Dict variable of class name space

__doc__ Document reference string of class

__name__ Class name

__module__ Module name consisting of class

__bases__ The tuple including all the superclasses

Constructor: __init__()

• The __init__ method is run as soon as an object of a class
is instantiated. Its aim is to initialize the object.

From the code , we can see that
after instantiate object, it
automatically invokes __init__()

As a result, it runs
self.name = ‘Yang Li’,
and
print self.name

Form and Object for Class
• Class includes two members: form and object.

• The example in the following can reflect what is the
difference between object and form for class.

Invoke form: just invoke data or
method in the class, so i=123

Invoke object: instantialize object
Firstly, and then invoke data or
Methods.
Here it experienced __init__(),
i=12345

Inheritance
Inheritance in Python is simple,
Just like JAVA, subclass can invoke
Attributes and methods in superclass.

From the example, Class Man inherits
Class Person, and invoke speak() method
In Class Person

Inherit Syntax:

class subclass(superclass):
 …
 …

In Python, it supports multiple inheritance,
In the next slide, it will be introduced.

Multiple Inheritance
• Python supports a limited form of multiple inheritance.
• A class definition with multiple base classes looks as follows:

 class DerivedClass(Base1, Base2, Base3 …)
 <statement-1>
 <statement-2>
 …

• The only rule necessary to explain the semantics is the

resolution rule used for class attribute references. This is
depth-first, left-to-right. Thus, if an attribute is not found in
DerivedClass, it is searched in Base1, then recursively in the
classes of Base1, and only if it is not found there, it is searched
in Base2, and so on.

An Example of Multiple Inheritance

C multiple-inherit A and B, but
since A is in the left of B, so C
inherit A and invoke A.A()
according to the left-to-right
sequence.

To implement C.B(), class A
does not have B() method, so
C inherit B for the second
priority. So C.B() actually
invokes B() in class B.

“Self”
• “Self” in Python is like the pointer “this” in C++. In

Python, functions in class access data via “self”.

• “Self” in Python works as a variable of function but it
won’t invoke data.

Encapsulation – Accessibility (1)

• In Python, there is no keywords like ‘public’, ‘protected’
and ‘private’ to define the accessibility. In other words, In
Python, it acquiesce that all attributes are public.

• But there is a method in Python to define Private:

 Add “__” in front of the variable and function name
 can hide them when accessing them from out of
 class.

An Example of Private

Public variable

Private variable

Invoke private variable in class

Access public variable out of class, succeed

Access private variable our of class, fail

Access public function but this function access
Private variable __B successfully since they are in
the same class.

Encapsulation – Accessibility (2)

• Actually, the private accessibility method is just a rule,
not the limitation of compiler.

• Its fact is to change name of private name like __variable
or __function() to _ClassName__variable or
_ClassName__function(). So we can’t access them
because of wrong names.

• We even can use the special syntax to access the private
data or methods. The syntax is actually its changed
name. Refer to the following example in the next slide.

An example of Accessing Private

Define public function

Define private function

Access public function

Can’t access private function

Access private function via changed name

Polymorphism
• Polymorphism is an important definition in OOP.

Absolutely, we can realize polymorphism in Python just
like in JAVA. I call it “traditional polymorphism”

• In the next slide, there is an example of polymorphism in
Python.

• But in Python,

 Only traditional polymorphism exist?

Compare Accessibility of Python and Java

• Java is a static and strong type definition language. Java
has strict definition of accessibility type with keywords.

• While Python is a dynamic and weak type definition
language. Python acquiesces all the accessibility types
are public except for supporting a method to realize
private accessibility virtually.

• Someone think Python violates the requirement of
encapsulation. But its aim is to make language simple.

Traditional Polymorphism Example

Everywhere is polymorphism in Python (1)

• Since Python is a dynamic programming language, it
means Python is strongly typed as the interpreter keeps
track of all variables types. It reflects the polymorphism
character in Python.

Dynamic language

Track variables types
Polymorphism

Everywhere is polymorphism in Python (2)

• So, in Python, many operators have the property of
polymorphism. Like the following example:

• Looks stupid, but the key is that variables can support
any objects which support ‘add’ operation. Not only
integer but also string, list, tuple and dictionary can
realize their relative ‘add’ operation.

Everywhere is polymorphism in Python (3)

• Some methods in Python also have polymorphism
character like ‘repr’ function.

• For ‘repr’ method, it can transfer any kinds of data to
string type. In the above example, it converts integer 123
to string ‘123’ and it can even added to string c ‘string’ to
get ‘123string’.

Avoid Destroying Polymorphism!

• Many operators and functions in Python are polymorphic. So
as long as you use the polymorphic operators and functions,
polymorphism will exist even if you don’t have this purpose.

• The only way to destroy polymorphism is check types by
using functions like ‘type’, ‘isinstance’ and ‘issubclass’ etc.

• So in the programming, we should avoid using these methods
which might destroy polymorphism except for compiler
design.

• The most important thing is to let objects to work according to
your requirements rather than mind if they have right types

How to Affect Polymorphism

Traditional
polymorphism

design

Polymorphic
operators and

methods

Functions of
‘type’,

‘isinstance’,
‘issubclass’ etc

Polymorphism

Conclusion
• As a OOP language, Python has its special advantages but

also has its disadvantages.

• Python can support operator overloading and multiple
inheritance etc. advanced definition that some OOP languages
don’t have.

• The advantages for Python to use design pattern is that it
supports dynamic type binding. In other words, an object is
rarely only one instance of a class, it can be dynamically
changed at runtime.

• But Python might ignore a basic regulation of OOP: data and
methods hiding. It doesn’t have the keywords of ‘private’,
‘public’ and ‘protected’ to better support encapsulation. But I
think it aims to guarantee syntax simple. As the inventor of
Python, Guido Van Rossum said: “abundant syntax bring
more burden than help”.

