
Programs try to insulate the internal structure of their classes from their public
interfaces by implementing the principle of encapsulation.

Using Reflection, we can not only find out about a class's internal structure;
we can access and modify their private properties as well.

This presentation will give a cursory overview of the principle of
encapsulation.

It will also show basic examples of how to access and modify private variables
of another class using reflection, and how to invoke private functions of
another class.

*source code: All the slides that use main(), are in the Main.java. There are
commented out sections for each different main() that were used in the slides

Summary: Using Refletion To Break
Encapsulation

Breaking Encapsulation
By Using Reflection

by
Drew Goldberg

reference: http://en.wikipedia.org/wiki/File:Russian_Dolls.jpg

http://en.wikipedia.org/wiki/File:Russian_Dolls.jpg

What Is Encapuslation?

"Encapsulation: Encapsulation refers to a set of language-
level mechanisms or design techniques that hide
implementation details of a class, module, or subsystem
from other classes, modules, and subsystems."

reference: http://www.cs.colorado.edu/~kena/classes/5448/f12/lectures/02-
ooparadigm.pdf

http://www.cs.colorado.edu/~kena/classes/5448/f12/lectures/02-ooparadigm.pdf
http://www.cs.colorado.edu/~kena/classes/5448/f12/lectures/02-ooparadigm.pdf
http://www.cs.colorado.edu/~kena/classes/5448/f12/lectures/02-ooparadigm.pdf

Why Is Encapsulation Important?

Encapsulation enables a class to modify its internal state
without having to modify it public interface.

This means that a class's internal structure can be changed
without breaking other classes using it's public interface.

Encapsulation also protects the class for other classes
modifying it's internal state.

reference: http://stackoverflow.com/questions/3982844/encapsulation-well-designed-class

http://stackoverflow.com/questions/3982844/encapsulation-well-designed-class

Simple Example Of Encapsulations

Some basic types of encapsulation
are making variables private.

Allowing access to these variables via getter
and setter functions.

What Isn't Encapsulation
Sometimes it is helpful to define something by what it isn't. For clarity, here is
an example of what isn't encapsulation in regards to programming.

How Old Is Steve Martin?

Let's look at the class SteveMartinHumanAutomaton to see
some basic examples of encapsulation

 1977 1979 1986

1995 2009

SteveMartinAutomaton

We have a simple program that instantiates a
SteveMartinHumanAutomaton object.

The object ageLess displays the age/appearence of Steve
Martin upon its construction.

public static void main(String args[]){
SteveMartinHumanAutomaton ageLess = new SteveMartinAutomaton();
ageLess.setAge(67);
ageLess.displayAppearence();

}output:
Steve Martin has been 57 years old since 1977!
Steve Martin has been 57 years old since 1977!

Wait...I changed SteveMartin's age to
his actual age of 67....but his age is still
the same?

Encapsulation Part II
SteveMartinHumanAutomaton.java

public class SteveMartinHumanAutomaton {

private static int ageFake = 57;
private String secretFoodSource = "The Tears Of Children";
private String hoursOfSleep = "Steve Martin Doesn't Sleep. He is an automaton";
public String ageMessage = "Steve Martin has been " + ageFake + " years old since 1977!";
public SteveMartinHumanAutomaton() {

displayAppearence();
}

public void setAge(int age){
if(age <= 55)

this.ageFake = 55;
else if(age >= 60)

this.ageFake = 60;
}
public int getAgeFake(){

return this.ageFake;
}
public void displayAppearence() {

System.out.println(ageMessage);
}

}

we have hidden some of our class's
variables/fields as private.

Not only is the variable private, it has to be
accessed via the class's public getters and
setters methods. There is some simple error
checking for setAge(). This basic validation
ensures that Steve Martin's ageFake value is
never greater than 60 nor smaller than 55.

Encapsulation Examples Recap
SteveMartinHumanAutomaton Class

In the previous example, another class can't access the variable ageFake directly because it has a
private modifier.

To access the private variable, ageFake, you must go through setAgeFake(), which does error
checking.

The SteveMartinHumanAutomaton class could change the data structure for ageFake from an int to
some else, without breaking other classes' code that were already using its public method
getAgeFake().

In another words the internal structure of the SteveMartinHumanAutomaton class can change without
other classes knowing it has been changed.

Changes to the internals of the SteveMartinHumanAutomaton can be made without breaking other
classes's code.

Other class can't accidentally modify the SteveMartinHumanAutomaton's internal structure.... or can
they?

What's Reflection?

Be careful when using reflection, it can lead
you down some strange paths.

REFLECTION DEFINITION
"Reflection is the ability of a computer program to examine (see type introspection) and modify the
structure and behavior (specifically the values, meta-data, properties and functions) of an object at
runtime"
reference: http://en.wikipedia.org/wiki/Reflection_(computer_programming)

http://en.wikipedia.org/wiki/Computer_program
http://en.wikipedia.org/wiki/Type_introspection
http://en.wikipedia.org/wiki/Run_time_(program_lifecycle_phase)
http://en.wikipedia.org/wiki/Run_time_(program_lifecycle_phase)
http://en.wikipedia.org/wiki/Reflection_(computer_programming)

REFLECTION DEFINITION CONT'D

"In object oriented programing languages such as Java, reflection allows
inspection of classes, interfaces, fields and methods at runtime
without knowing the names of the interfaces, fields, methods at
compile time. It also allows instantiation of new objects and
invocation of methods."

reference: http://en.wikipedia.org/wiki/Reflection_(computer_programming)

http://en.wikipedia.org/wiki/Java_(programming_language)
http://en.wikipedia.org/wiki/Reflection_(computer_programming)

JAVA'S REFLECTION OVERVIEW

We will examine the reflection capabilities in the Java language.

Java's reflection's capabilities are stored in the java.lang.reflect package.

"Also the Java runtime system always maintains what is called runtime type
identification on all objects.

This information keeps track of the class to which each object belongs. Runtime
type information is used by the virtual machine to select the correct methods to
execute."

reference: Horstmann, Cay S., Gary Cornell, and Cay S. Horstmann. Core Java. Vol. 1. Upper Saddle River, NJ: Prentice Hall/Sun
Microsystems, 2008. Print.

Java Reflection's Class Class
There is a Java Class called Class. It is typically used to get the name a of class via the getName()
The getName() gets the name of the more specific name of the object. In our example, it prints out that Rick Roll is a manager,
which is a subclass of Employee.

public class Main {
public static void main(String args[]) {

Employee e[] = new Employee[] { new Employee("Billy Bob"), new Manager("Rick Roll")};
System.out.println("The name of the employee e is " + e[0].getName());
Class cl0 = e[0].getClass();
System.out.println("The name of the class of e[0] is " + cl0.getName());
System.out.println("The name of the employee e is " + e[1].getName());
Class cl1 = e[1].getClass();
System.out.println("The name of the class of e[1] is " + cl1.getName());

}
}

reference: Horstmann, Cay S., Gary Cornell, and Cay S. Horstmann. Core Java. Vol. 1. Upper Saddle River, NJ: Prentice Hall/Sun
Microsystems, 2008. Print.

output:
The name of the employee e is Billy Bob
The name of the class of e[0] is
Employee
The name of the employee e is Rick Roll
The name of the class of e[1] is Manager

Using Reflection To Analyze The
Capabilities of Classes

We are going to look at 2 classes in the java.lang.reflect
package: (Field, Method).

These classes allow for the discovery of another class's
internal data structures, and methods.

Each of these classes have a getName() that returns the
name of each item they are investigating.

reference: Horstmann, Cay S., Gary Cornell, and Cay S. Horstmann. Core Java. Vol. 1. Upper Saddle River, NJ: Prentice Hall/Sun
Microsystems, 2008. Print.

Java's Field Class Capabilities
Formally Speaking

"A Field provides information about, and dynamic access
to, a single field of a class or an interface. The reflected
field may be a class (static) field or an instance field."

reference: http://docs.oracle.com/javase/7/docs/api/java/lang/reflect/Field.html

http://docs.oracle.com/javase/7/docs/api/java/lang/reflect/Field.html

The Java Field Class Capabilities
Informally Speaking

Encapsulation is about not exposing the internal structure
of an object/class to the outside world.

With the java.lang.relect.Field class, we can easily find out
about all of a class's fields (variables) and each field type.

We will look at a simple class, Employee, and in a
separate class discover all of its hidden treasure.

Or as a Flock Of Smeagols would Say, "The Preciousses"

Let's Use The Field Class To Find
Out All Of Employee's Variables

import java.lang.reflect.Field;
public class Main {

public static void main (String args[]) throws NoSuchFieldException, SecurityException{
Field field[] = Employee.class.getDeclaredFields();
int i = 0;
while(i < field.length) {

System.out.println("Employee contains the field " + field[i].getName() + " which is
a/an " + field[i].getType());

i++;
}

}

Output:
Employee contains the field num which is a/an int
Employee contains the field id which is a/an interface java.util.Map

getDeclaredFields() will get all field
types.

getFields() will only return public fields

Employee.java
import java.util.*;
public class Employee {

private static int num = 1;
private Map<String, Integer> id = new HashMap<String, Integer>();
public void setId(String lastName){

this.id.put(lastName, num);
num++;

}
public int getId(String lastName){

return this.id.get(lastName);
}

}

Both field members we
found out about, were also
private!

Using Reflection To Find Field
Parameter Types

We can even find out about the field's parameters for more complex data structures, such as Lists and
Maps.
Let's use reflection to figure out Employee's id variable's parameters!
We already know that id is a type of Map, let's find out it's key/value pair type.
import java.lang.reflect.Field;
import java.lang.reflect.ParameterizedType;
import java.lang.reflect.Type;
public class Main {

public static void main (String args[]) throws NoSuchFieldException, SecurityException{
Field idField = Employee.class.getDeclaredField("id");
ParameterizedType params = (ParameterizedType)idField.getGenericType();
Type[] paramsType= params.getActualTypeArguments();
int i = 0;
while (i < paramsType.length){

System.out.println("The type of the first parameter is " + paramsType[i].toString());
i++;

}
}

} output:
The type of the first parameter is class java.lang.String
The type of the first parameter is class java.lang.Integer

Must use getDeclaredField() to
retrieve a private variable.

Using Reflection To Find Field
Parameter Types Continued

Why could this be bad?

We can now make assumptions about the id's parameter
types.

What if the id attribute data structure from a Map<String,
Integer> to an ArrayList<Integer>?

Then any code based on the assumption of the structure of
id, could easily break if the structure of the id variable is
changed.

This is because we violated the principle of encapsulation.

Using Java's Field Class To Access
And Modify Private Variables

What are other ways we could break the
principle of encapsulation now that we know
some of the class's internal structure?

How about accessing and modifying private
variables directly!

THE CLASS MrCONSTANT

public class MrConstant {
private String name = "Mr.Constant";
public void printName() {

System.out.println("Hello my name is " + name);
}

}

We are going to access and
modify MrConstant private
variable name.

Changing Mr.Constant's Name
Variable

import java.lang.reflect.Field;
public class Main {

public static void main (String args[]) throws NoSuchFieldException,
SecurityException, IllegalArgumentException, IllegalAccessException{

MrConstant mrConstant = new MrConstant();
mrConstant.printName();
Field field = mrConstant.getClass().getDeclaredField("name");
field.setAccessible(true);
field.set(mrConstant, "NotSoMuch");
mrConstant.printName();

}
}

output:
Hello my name is Mr.Constant
Hello my name is NotSoMuch

Using Java Method Class To Break
Encapsulation

We can also investigate methods inside a
class. These include private methods!

For the method section on reflection, we are
going to try enter the Mines of Moria two
different ways.

THE LEGITIMATE WAY
THE SNEAKY REFLECTION WAY

http://www.mkyong.com/java/how-to-read-input-from-console-java/

http://www.mkyong.com/java/how-to-read-input-from-console-java/
http://www.mkyong.com/java/how-to-read-input-from-console-java/

Legitimately Get into Moria by
Guessing the Password

public static void main(String args[]) {
HiddenMethods hm = new HiddenMethods();
while (!hm.getAnswerFlag()) {

hm.askPassword();
try {

BufferedReader bufferRead = new BufferedReader(
new InputStreamReader(System.in));
String guess = bufferRead.readLine();
hm.validatePassword(guess);

} catch (IOException e) {
e.printStackTrace();

}
}

}
ouput:
The doors of Durin, Lord of Moria, speak friend and enter.
blah
Ask Frodo for some help?
The doors of Durin, Lord of Moria, speak friend and enter.
mellon
The doors Of Durin Opens. Fly you fools!

Getting Into Moria Continued

In our sample program, it looks like we are
going to be stuck for a while, unless we know
the password, mellon.

Or...

We could investigate the class,
HiddenMethods, via reflection to figure out the
password.

Let's Get All Of The Names Of All Of The
Methods In The HiddenMethods class.

public static void main(String args[]){
//Get the Class object associated with this class.
HiddenMethods hm = new HiddenMethods();
Class objClass = hm.getClass();

//Get all of the public methods associated with this class.
Method[] publicMethods = objClass.getMethods();
for(Method publicMethod: publicMethods)

System.out.println("Public method found: " + publicMethod.toString());

//Get the all methods associated with this class.
Method[] allMethods = objClass.getDeclaredMethods();
for(Method method: allMethods)

System.out.println("Public method found: " + method.toString());
}

reference: http://stackoverflow.com/questions/8524011/java-reflection-how-can-i-get-the-all-getter-methods-of-a-java-class-and-
invoke

http://stackoverflow.com/questions/8524011/java-reflection-how-can-i-get-the-all-getter-methods-of-a-java-class-and-invoke
http://stackoverflow.com/questions/8524011/java-reflection-how-can-i-get-the-all-getter-methods-of-a-java-class-and-invoke
http://stackoverflow.com/questions/8524011/java-reflection-how-can-i-get-the-all-getter-methods-of-a-java-class-and-invoke

Output From Using Reflection
output:

Public method found: public java.lang.Boolean HiddenMethods.
getAnswerFlag()
Public method found: public void HiddenMethods.askPassword()
Public method found: public void HiddenMethods.validatePassword(java.lang.
String)
Public method found: public void HiddenMethods.response(java.lang.Boolean)
.....
Method found: private void HiddenMethods.setPassword(java.lang.String)
Method found: private java.lang.String HiddenMethods.getPassword()
Method found: private void HiddenMethods.setAnswerFlag(java.lang.Boolean)
Method found: public java.lang.Boolean HiddenMethods.getAnswerFlag()

Scrolling through the printout, there appears to be two private functions that we
could manipulate in order to bypass the application's validation process.
We can infer that their method's signature looks like this.
private void setPassword(String)
private void setAnswerFlag(Boolean)

Let's Change The Password!

Let's use reflection to access
private void setPassword(String)

and change the value of the password
to something we want.

Changing The Password
public static void main(String args[]) throws NoSuchMethodException, SecurityException, IllegalAccessException,
IllegalArgumentException, InvocationTargetException{

HiddenMethods hm = new HiddenMethods();
Class<? extends HiddenMethods> objClass = hm.getClass();

Method setPasswordMethod = objClass.getDeclaredMethod("setPassword", String.class);

setPasswordMethod.setAccessible(true);

setPasswordMethod.invoke(hm, "blah");
hm.validatePassword("blah");

}
referece: http://stackoverflow.com/questions/6704190/java-invoke-its-own-private-method-with-fix-parameter
reference: http://www.coderanch.com/t/532965/java/java/Accessing-methods-primitive-argument-via

Get the Class object associated with
this class.

Get the setPassword(String password), you need to provide the class type for each parameter.
In the setPassword(String password), it has a string parameter named guess.

Next set the method to true, so it is no longer private and therefore we can access it.

Next invoke the setPassward() using invoke()
The first parameter is an instance of the object that contains the
function, hm
The next is the parameter that we are passing to the
setPassword() function.

http://stackoverflow.com/questions/6704190/java-invoke-its-own-private-method-with-fix-parameter
http://www.coderanch.com/t/532965/java/java/Accessing-methods-primitive-argument-via

Protect Your Classes' Encapsulation
From Reflection

So maybe you wish your program's
encapsulation could stay intact by
preventing the use of reflection!

Minizing Reflection To Help Ensure
Security And Encapsulation

You can do this by changing java's security
architecture.

Unfortunately, that can be very difficult because
java's security architecture is quite complicated.

Check out the reference below for more specific
instructions on how to do that.

reference: http://stackoverflow.com/questions/770635/disable-java-reflection-for-the-current-thread

http://stackoverflow.com/questions/770635/disable-java-reflection-for-the-current-thread

Try To Use Reflection Judiciously

In general violating the principles of
Encapsulation is very bad.

One way of doing this is by using reflection.

Keep in mind, reflection is a very useful tool.

It shouldn't be avoided, but rather used
appropriately.

