
© Kenneth M. Anderson, 2012

Principles of Design Patterns

CSCI 4448/5448: Object-Oriented Analysis & Design
Lecture 23 — 11/13/2012

1

© Kenneth M. Anderson, 2012

Goals of the Lecture

• Cover the material in Chapter 14 of our textbook

• Principles of Design Patterns

2

© Kenneth M. Anderson, 2012 3

Principles of Design Patterns (I)

• One benefit of studying design
patterns is that they are based on
good object-oriented principles

• learning the principles increases
the chance that you will apply
them to your own designs

• We’ve encountered several
principles this semester already

• Code to an interface

• Encapsulate What Varies

• Only One Reason to Change

• Classes are about behavior

• Prefer delegation over
inheritance

• Dependency Inversion Principle

© Kenneth M. Anderson, 2012

Principles of Design Patterns (II)

• Code to an interface

• If you have a choice between coding to an interface or an abstract base
class as opposed to an implementation or subclass, choose the former

• Let polymorphism be your friend

• Pizza store example

• Two abstract base classes: Pizza and Pizza Store

• There were a LOT of classes underneath, all hidden

4

© Kenneth M. Anderson, 2012

Principles of Design Patterns (III)

• Encapsulate What Varies

• Identify the ways in which your software will change

• Hide the details of what can change behind the public interface of a class

• Combine with previous principle for powerful results

• Need to cover a new region? New PizzaStore subclass

• Need a new type of pizza? New Pizza subclass

5

© Kenneth M. Anderson, 2012

Principles of Design Patterns (IV)

• Only One Reason to Change

• Each class should have only one design-related reason that can cause it to
change

• That reason should relate to the details that class encapsulates/hides
from other classes

• The FeatureImpl class discussed during last lecture has only one reason to
change

• a new CAD system requires new methods in order to fully access its
features

6

© Kenneth M. Anderson, 2012

Principles of Design Patterns (V)

• Classes are about behavior

• Emphasize the behavior of classes over the data of classes

• Do not subclass for data-related reasons; It’s too easy in such
situations to violate the contract associated with the behaviors of the
superclass

• Think back to our Square IS-A/HAS-A Rectangle example

• Related: Prefer Delegation over Inheritance

• to solve the Square/Rectangle problem, we resorted to delegation; it
provides a LOT more flexibility, since delegation relationships can change
at run-time

7

© Kenneth M. Anderson, 2012

Principles of Design Patterns (VI)

• Dependency Inversion Principle

• “Depend upon abstractions. Do not depend upon concrete classes.”

• Normally “high-level” classes depend on “low-level” classes;

• Instead, they BOTH should depend on an abstract interface

• We saw this when discussing the Factory Method back in lecture 10

8

© Kenneth M. Anderson, 2012

Dependency Inversion Principle: Pictorially

9

Level 1

Level 2

Client

Concrete
Service

Here we have a client class in an “upper”
level of our design depending on a
concrete class that is “lower” in the design

© Kenneth M. Anderson, 2012

Dependency Inversion Principle: Pictorially

10

Level 1

Level 2

Client

Concrete
Service

Service
Interface

Instead, create an interface that lives in
the upper level that hides the concrete
classes in the lower level; “code to an
interface”

© Kenneth M. Anderson, 2012

Dependency Inversion Principle: Pictorially

11

Level 1

Level 2

Client

Concrete
Service

Service
Interface

Now, instead of Client depending on a
Concrete service, they BOTH depend
on an abstract interface defined in the
upper level

© Kenneth M. Anderson, 2012

Principles of Design Patterns (VII)

• Let’s learn about a few more principles

• Open-Closed Principle

• Don’t Repeat Yourself

• Single Responsibility Principle

• Liskov Substitution Principle

• Some of these just reinforce what we’ve seen before

• This is a GOOD thing, we need the repetition…

12

© Kenneth M. Anderson, 2012

Open-Closed Principle (I)

• Classes should be open for extension and closed for modification

• Basic Idea:

• Prevent, or heavily discourage, changes to the behavior of existing classes

• especially classes that exist near the root of an inheritance hierarchy

• You’ve got a lot of code that depends on this behavior

• It should not be changed lightly

13

© Kenneth M. Anderson, 2012

Open-Closed Principle (II)

• If a change is required, one approach would be to create a subclass and
allow it to extend/override the original behavior

• This means you must carefully design what methods are made public and
protected in these classes

• private methods cannot be extended

14

© Kenneth M. Anderson, 2012

Is this just about Inheritance? (I)

• Inheritance is certainly the easiest way to apply this principle

• but its not the only way

• Think about the delegate pattern we saw in iOS

• We can customize a class’s behavior significantly by having it assume the
existence of a delegate

• If the delegate implements a delegate method, then call it, otherwise
invoke default behavior

15

© Kenneth M. Anderson, 2012

Is this just about Inheritance? (II)

• In looking at Design Patterns, we see that composition and delegation offer
more flexibility in extending the behavior of a system

• Inheritance still plays a role but we will try to rely on delegation and
composition first

16

© Kenneth M. Anderson, 2012

Open-Closed Principle (III)

• Returning to the open-closed principle, the key point is to get you to be
reluctant to change working code

• look for opportunities to extend, compose and/or delegate your way to
achieve what you need first

17

© Kenneth M. Anderson, 2012

Don’t Repeat Yourself (I)

• Avoid duplicate code by abstracting out things that are common and placing
those things in a single location

• Basic Idea

• Duplication is Bad!

• … at all stages of software engineering: analysis, design, implement,
and test

18

© Kenneth M. Anderson, 2012

Don’t Repeat Yourself (II)

• We want to avoid duplication in our requirements & use cases

• We want to avoid duplication of responsibilities in our code

• We want to avoid duplication of test coverage in our tests

• Why?

• Incremental errors can creep into a system when one copy is changed but
the others are not

• Isolation of Change Requests (a benefit of Cohesion)

• We want to go to ONE place when responding to a change request

19

© Kenneth M. Anderson, 2012

• Duplication of Code: Imagine the following system

• Suppose we had the responsibility for closing the door live in the Remote
class (which was implemented first)

• When we add the BarkRecognizer, the first time we use it we’ll discover
that it won’t auto-close the door

Example (I)

20

recognize(bark: string)
BarkRecognizer

pressButton()
Remoteopen()

close()
isOpen(): boolean

open: boolean
DogDoor

© Kenneth M. Anderson, 2012

• We then have a choice:

• we could add the code from Remote for closing the door automatically to
the BarkRecognizer

• But that would violate Don’t Repeat Yourself

Example (II)

21

recognize(bark: string)
BarkRecognizer

pressButton()
Remoteopen()

close()
isOpen(): boolean

open: boolean
DogDoor

© Kenneth M. Anderson, 2012

• OR

• we could remove the auto-close code from Remote and move it to
DogDoor

• now, the responsibility lives in one place

Example (III)

22

recognize(bark: string)
BarkRecognizer

pressButton()
Remoteopen()

close()
isOpen(): boolean

open: boolean
DogDoor

© Kenneth M. Anderson, 2012

Don’t Repeat Yourself (III)

• DRY is really about ONE requirement in ONE place

• We want each responsibility of the system to live in a single, sensible place

• To aid in this, you must make sure that there is no duplication hiding in your
requirements

23

© Kenneth M. Anderson, 2012

Example (II)

• New Requirements for the Dog Door System: Beware of Duplicates

• The dog door should alert the owner when something inside the house
gets too close to the dog door

• The dog door will open only during certain hours of the day

• The dog door will be integrated into the house’s alarm system to make
sure it doesn’t activate when the dog door is open

• The dog door should make a noise if the door cannot open because of a
blockage outside

• The dog door will track how many times the dog uses the door

• When the door closes, the house alarm will re-arm if it was active before
the door opened

24

© Kenneth M. Anderson, 2012

Example (I)

• New Requirements for the Dog Door System: Beware of Duplicates

• The dog door should alert the owner when something inside the house
gets too close to the dog door

• The dog door will open only during certain hours of the day

• The dog door will be integrated into the house’s alarm system to make
sure it doesn’t activate when the dog door is open

• The dog door should make a noise if the door cannot open because of a
blockage outside

• The dog door will track how many times the dog uses the door

• When the door closes, the house alarm will re-arm if it was active before
the door opened

25

© Kenneth M. Anderson, 2012

Example (III)

• New Requirements for the Dog Door System

• The dog door should alert the owner when something is too close to the
dog door

• The dog door will open only during certain hours of the day

• The dog door will be integrated into the house’s alarm system

• The dog door will track how many times the dog uses the door

• Duplicates Removed!

26

© Kenneth M. Anderson, 2012

Example (IV)

• Ruby on Rails makes use of DRY as a core part of its design

• focused configuration files; no duplication of information

• for each request, often single controller, single model update, single view

• But, prior to Ruby on Rails 1.2, there was duplication hiding in the URLs used
by Rails applications

• POST /people/create # create a new person

• GET /people/show/1 # show person with id 1

• POST /people/update/1 # edit person with id 1

• POST /people/destroy/1 # delete person with id 1

27

© Kenneth M. Anderson, 2012

Example (V)

• The duplication exists between the HTTP method name and the operation name in
the URL

• POST /people/create

• Recently, there has been a movement to make use of the four major “verbs” of
HTTP

• PUT/POST == create information (create)

• GET == retrieve information (read)

• POST == update information (update)

• DELETE == destroy information (destroy)

• These verbs mirror the CRUD operations found in databases

• Thus, saying “create” in the URL above is a duplication

28

© Kenneth M. Anderson, 2012

Example (VI)

• In version 1.2, Rails eliminates this duplication; Now URLs look like this:

• POST /people

• GET /people/1

• PUT /people/1

• DELETE /people/1

• And the duplication is logically eliminated

• Disclaimer: … but not actually eliminated… Web servers do not universally
support PUT and DELETE “out of the box”. As a result, Rails uses POST

• POST /people/1
Post-Semantics: Delete

29

© Kenneth M. Anderson, 2012

Single Responsibility Principle (I)

• Every object in your system should have a single responsibility, and all the
object’s services should be focused on carrying it out

• This is obviously related to the “One Reason to Change” principle

• If you have implemented SRP correctly, then each class will have only one
reason to change

30

© Kenneth M. Anderson, 2012

Single Responsibility Principle (II)

• The “single responsibility” doesn’t have to be “small”, it might be a major
design-related goal assigned to a package of objects, such as “inventory
management” in an adventure game

• We’ve encountered SRP before

• SRP == high cohesion

• “One Reason To Change” promotes SRP

• DRY is often used to achieve SRP

31

© Kenneth M. Anderson, 2012

Textual Analysis and SRP (I)

• One way of identifying high cohesion in a system is to do the following

• For each class C

• For each method M

• Write “The C Ms itself”

• Examples

• The Automobile drives itself

• The Automobile washes itself

• The Automobile starts itself

32

© Kenneth M. Anderson, 2012

Textual Analysis and SRP (II)

• If any one of the generated sentences does not make sense then investigate
further.

• “The Automobile puts fuel in itself.”

• You may have discovered a service that belongs to a different responsibility of
the system and should be moved to a different class (Gas Station)

• This may require first creating a new class before performing the move

33

© Kenneth M. Anderson, 2012

Liskov Substitution Principle (I)

• Subtypes must be substitutable for their base types

• Basic Idea

• Instances of subclasses do not violate the behaviors exhibited by
instances of their superclasses

• They may constrain that behavior but they do not contradict that
behavior

34

© Kenneth M. Anderson, 2012

Liskov Substitution Principle (II)

• Named after Barbara Liskov who co-authored a paper with Jeannette Wing in
1993 entitled Family Values: A Behavioral Notion of Subtyping

• Let q(x) be a property provable about objects x of type T. Then q(y) should
be true for objects y of type S where S is a subtype of T.

• Properties that hold on superclass objects, hold on subclass objects

• Return to Rectangle/Square:

• WidthAndHeightMayBeDifferent(Rectangle)

• is true for Rectangle and but is false for Square

35

© Kenneth M. Anderson, 2012

Well-Designed Inheritance

• LSP is about well-designed inheritance

• When I put an instance of a subclass in a place where I normally place an
instance of its superclass

• the functionality of the system must remain correct

• (not necessarily the same, but correct)

36

© Kenneth M. Anderson, 2012

Bad Example (I)

• Extend Board to produce Board3D

• Board handles the 2D situation

• so it should be easy to extend
that implementation to handle
the 3D case, right? RIGHT?

• Nope

getTile(int, int): Tile
addUnit(Unit, int, int)
removeUnit(Unit, int int)
removeUnits(int, int)
getUnits(int, int): List

width: int
height: int
tiles: Tile [*][*]

Board

getTile(int, int, int): Tile
addUnit(Unit, int, int, int)
removeUnit(Unit, int int, int)
removeUnits(int, int, int)
getUnits(int, int, int): List

zpos: int
3dTiles: Tile [*][*][*]

Board3D

37

© Kenneth M. Anderson, 2012

Bad Example (II)

• But look at an instance of
Board3D…

• Each attribute and method in
bold is meaningless in this
object

• Board3D is getting nothing
useful from Board except for
width and height!!

• We certainly could NOT create a
Board3D object and hand it to
code expecting a Board object!

• As a result, this design violates
the LSP principle; How to fix?

getTile(int, int): Tile
addUnit(Unit, int, int)
removeUnit(Unit, int int)
removeUnits(int, int)
getUnits(int, int): List
getTile(int, int, int): Tile
addUnit(Unit, int, int, int)
removeUnit(Unit, int int, int)
removeUnits(int, int, int)
getUnits(int, int, int): List

width: int
height: int
zpos: int
tiles: Tile [*][*]
3dTiles: Tile [*][*][*]

: Board3D

38

© Kenneth M. Anderson, 2012

Delegation to the Rescue! (Again)

• You can understand why a designer thought they could extend Board when
creating Board3D

• Board has a lot of useful functionality and a Board3D should try to reuse
that functionality as much as possible

• However

• the Board3D has no need to CHANGE that functionality, and

• the Board3D does not really behave in the same way as a board

• For instance, a unit on “level 10” may be able to attack a unit on “level 1”

• such functionality doesn’t make sense in the context of a 2D board

39

© Kenneth M. Anderson, 2012

Delegation to the Rescue! (Again)

• Thus, if you need to use functionality in another class, but you don’t want to
change that functionality, consider using delegation instead of inheritance

• Inheritance was simply the wrong way to gain access to the Board’s
functionality

• Delegation is when you hand over the responsibility for a particular task to
some other class or method

40

© Kenneth M. Anderson, 2012

New Class Diagram

getTile(int, int): Tile
addUnit(Unit, int, int)
removeUnit(Unit, int int)
removeUnits(int, int)
getUnits(int, int): List

width: int
height: int
tiles: Tile [*][*]

Board

getTile(int, int, int): Tile
addUnit(Unit, int, int, int)
removeUnit(Unit, int int, int)
removeUnits(int, int, int)
getUnits(int, int, int): List

zpos: int
Board3D

boards *

Board3D now maintains a list of Board objects for
each legal value of “zpos”

It then delegates to the Board object as needed

public Tile getTile(int x, int y, int z) {
 Board b = boards.get(z);
 return b.getTile(x,y);
}

41

© Kenneth M. Anderson, 2012

Summary of New Principles

• Open-Closed Principle (OCP)

• Classes should be open for extension and closed for modification

• Don’t Repeat Yourself (DRY)

• Avoid duplicate code by abstracting out things that are common and
placing those things in a single location

• Single Responsibility Principle (SRP)

• Every object in your system should have a single responsibility, and all the
object’s services should be focused on carrying it out

• Liskov Substitution Principle (LSP)

• Subtypes must be substitutable for their base types

42

© Kenneth M. Anderson, 2012

Use of Principles in Design Patterns

• When you look at a design pattern, you’ll see evidence of these principles
everywhere

• Strategy Pattern

• Code to an interface (the algorithm)

• Prefer delegation over inheritance

• Inheritance used between the abstract algorithm and the concrete algorithms
because they will all behave similarly; Liskov Substitution Principle

• Dependency Inversion Principle (everything depends on algorithm)

• Encapsulate What Varies (concrete algorithms hidden behind abstraction)

• Open Closed Principle; client object is not modified directly, new behavior
comes from a new concrete algorithm subclass

43

So simple yet so powerful!

© Kenneth M. Anderson, 2012

The Principle of Healthy Skepticism

• Chapter 14 ends with a warning not to depend on patterns for everything

• “Patterns are useful guides but dangerous crutches…”

• Patterns are useful in guiding/augmenting your thinking during design

• use the ones most relevant to your context

• but understand that they won’t just hand you a solution… creativity
and experience are still key aspects of the design process

44

© Kenneth M. Anderson, 2012

Problems (I)

• Problems that can occur from an over reliance on patterns

• Superficiality: selecting a pattern based on a superficial understanding of
the problem domain

• Bias: When all you have is a hammer, everything looks like a nail; a favorite
pattern may bias you to a solution that is inappropriate to your current
problem domain

• Incorrect Selection: not understanding the problem a pattern is designed
to solve and thus inappropriately selecting it for your problem domain

45

© Kenneth M. Anderson, 2012

Problems (II)

• Problems that can occur from an over reliance on patterns

• Misdiagnosis: occurs when an analyst selects the wrong pattern because
they don’t know about alternatives; has not had a chance to absorb the
entire range of patterns available to software developers

• Fit: applies a pattern to a set of objects that do not quite exhibit the range
of behaviors the pattern is supposed to support

• the objects don’t “fit” the pattern and so the pattern does not provide
all of its benefits to your system

46

© Kenneth M. Anderson, 2012

Wrapping Up

• Principles of Design Patterns

• We’ve now encountered ten OO design principles

• Looked at how they are applied in certain patterns

• Cautioned against an over reliance on patterns

• They are useful but they can’t be your hammer

• They are one tool among many in performing OO A&D

47

© Kenneth M. Anderson, 2012

Coming Up Next

• Presentations due on Friday

• Homework 5 due on Friday

• Lecture 24: More Design Techniques

• Chapters 15 and 16

• Plus Decorator

• FALL BREAK!!!!

• Lecture 25: More Design Patterns

• Chapters 17, 18 and 19

48

