
© Kenneth M. Anderson, 2012

How Do Experts Design?

CSCI 4448/5448: Object-Oriented Analysis & Design
Lecture 22 — 11/8/2012

1

© Kenneth M. Anderson, 2012

Goals of the Lecture

• Cover the material in Chapters 12 & 13 of our textbook

• How do experts design?

• Solving the CAD/CAM Problem

2

© Kenneth M. Anderson, 2012

Overview

• Chapter 12 talks about applying the lessons that Christopher Alexander
developed for designing cities—architectural design patterns—to software
engineering and to the design of software systems

• there is not a one-to-one mapping

• but there are important lessons to learn

• It was NOT enough for Alexander to specify individual design patterns… it
was about using design patterns to transform the nature of the design
process

3

© Kenneth M. Anderson, 2012

Important for all designers (I)

• Alexander’s approach has had such impact on the software design
community because his work describes an approach to design that is valid
for ANY designer

4

© Kenneth M. Anderson, 2012

Important for all designers (II)

• There are several aspects to his work that are not intuitive; indeed, it is our
intuitive notion of design that can often lead us into trouble by oversimplifying

• Analysis: What’s the Problem?

• Design: What’s the Solution?

• Both of these are oversimplifications of really complex tasks

5

© Kenneth M. Anderson, 2012

Intuitive Notion of Design

• Build by fitting things together: “build from pieces”

• Indeed, this is the whole point of functional decomposition

• decompose the problem into small pieces and then build up from there

• And OO follows this with classes and objects

• But Alexander indicates that this is NOT a good way to design

6

© Kenneth M. Anderson, 2012

The Set-Up

• Alexander says:

• Design is often thought of as a process of synthesis, a process of putting
together things, a process of combination. According to this view, a whole
is created by putting together parts.

• The parts come first: and the form of the whole comes second.

7

© Kenneth M. Anderson, 2012

The Problem

• Alexander continues

• When parts are modular and made before the whole, by definition then,
they are identical, and it is impossible for every part to be unique,
according to its position in the whole. Even more important, it simply is not
possible for any combination of modular parts to contain the number of
patterns which must be present simultaneously in a place which is alive.

• “Cookie cutter” designs do not produce high quality results

• Think European city center vs. Southern California suburb

8

© Kenneth M. Anderson, 2012

Possible Confusions (I)

• In software engineering, we talk about producing modular, generic classes
that are reusable across multiple contexts

• Now Alexander is seemingly telling us not to do this!

• but remember: he was talking about architecture…

• Alexander’s “modular” refers to identical parts that can be snapped together
to produce a structure that was designed independent of its final location

• Software Engineering’s “modular” refers to separation of concerns: “I deal
with persistence in this module.”

9

© Kenneth M. Anderson, 2012

Possible Confusions (II)

• Alexander talks about a “place which is alive”

• What does that mean for software systems?

• Alexander says

• “It is only possible to make a place which is alive by a process in which
each part is modified by its position in the whole.”

• The context of a part influences the design and characteristics of that part…

10

© Kenneth M. Anderson, 2012

Possible Confusions (III)

• Our authors indicate that the counterpart to

• “a place which is alive” in software design is

• robust and flexible software systems

• systems whose parts have been tweaked by context to reach a state in
which the system is

• extensible, maintainable, flexible, etc.

• i.e. resilient or lifelike

11

© Kenneth M. Anderson, 2012

The Goal

• So, interpreting what we’ve seen so far, the goal of design becomes

• Design pieces—classes and objects—within the context in which they
must live in order to create robust and flexible systems

• How?

• Alexander’s answer is a bit mystifying at first

• ☺

12

© Kenneth M. Anderson, 2012

Alexander’s Answer: “Complexification”

• In short, each part is given its specific form by its existence in the context of
the larger whole.

• This is a differentiating process. It views design as a sequence of acts of
complexification; structure is injected into the whole by operating on the
whole and crinkling it, not by adding little parts to one another.

• In the process of differentiation, the whole gives birth to its parts: The form of
the whole, and its parts, come into being simultaneously. The image of the
differentiating process is the growth of an embryo.

13

© Kenneth M. Anderson, 2012

Translation

• Design is a process that starts by looking at a problem in its simplest terms,
giving a unified whole

• it is refined by making decisions, adding information (and thus,
complexity), making distinctions between elements in the design where
none existed before

• but the distinctions are made within a larger context, guided by the
whole, and the elements added to the domain by the decision can be
guided by patterns

14

© Kenneth M. Anderson, 2012

Example

• Think about planning (designing) an academic conference

• Multi-day event held at a hotel with sessions and a reception organized by
a set of people

• sessions: workshops, keynotes, papers, posters, etc.

• people: conference chair, program chair, program committee,
conference committee

• conference committee: publicity chair, proceedings chair, local
events chair, etc.

15

© Kenneth M. Anderson, 2012

Alexander: The Role of Patterns

• Each pattern is an operator that differentiates space: that is, it creates
distinctions where no distinction was before.

• … the operations are arranged in sequence: so that, as they are done, one
after the other, gradually a complete thing is born, general in the sense that it
shared its patterns with other comparable things; specific in the sense that it
is unique, according to its circumstances

• … each [pattern] further differentiates the [whole], which is the product of
previous differentiations.

16

© Kenneth M. Anderson, 2012

Example: Design is a process that starts by looking
at a problem in its simplest terms...

17

Concert
Tracker

© Kenneth M. Anderson, 2012

Each pattern is an operator that differentiates space: it
creates distinctions where no distinction was before.

18

View

Controller

Model

© Kenneth M. Anderson, 2012

Perhaps, you now make a decision about persistence...

19

View

Controller

MySQL

© Kenneth M. Anderson, 2012

Perhaps, you now make a decision about persistence...

20

View

Controller

MySQL

© Kenneth M. Anderson, 2012

And then about a deployment platform

21

View

Rails

MySQL

© Kenneth M. Anderson, 2012

And then you decide to apply a pattern again

22

Model

Controller

View

Rails

MySQL

© Kenneth M. Anderson, 2012

And then you decide to apply a pattern again

23

Model

Controller

View

Rails

MySQL

© Kenneth M. Anderson, 2012

And add detail...

24

Local Storage

Javascript

DOM

Rails

MySQL

© Kenneth M. Anderson, 2012

After deployment, your design will continue to
evolve as requirements change over time

25

Local Storage

Javascript

DOM

Rails

MySQL
CassandraCassandraCassandraCassandraCassandraCassandra

Web Service
API

CassandraCassandraCassandraCassandraCassandraMobile Clients

© Kenneth M. Anderson, 2012

Design for Everyone

• The interesting thing about this stance is that design is something that can be
learned by anyone

• A design that follows well-established patterns will produce good, solid
results; it should not be surprising that quality solutions for similar
problems appear very much alike

• For instance, following Model-View-Controller brings benefits to even
the most novice of designers…

• Creativity comes in understanding how to adapt the patterns to the context
you find yourself in

• These initial steps that I just demonstrated is an example of defining a
system’s software architecture, it’s basic structures and how they relate to
each other; each decision adds complexity in that we now have more
information about the system

26

© Kenneth M. Anderson, 2012

The Steps

• Within the context of a design

• Identify patterns that can add information to the design

• ones that define useful relationships between entities of the design (or
suggest entities and relationships not currently present that would
benefit the design)

• Add them to the design, thus updating the context

• Repeat, until no more entities and relationships are needed to solve the
problem

27

© Kenneth M. Anderson, 2012

Example

• Design a system that aids a geologist in assigning ages to rock samples
collected from the field

• Context Pattern: Desktop Application

• Leads to: Model-View-Controller

• Model Leads to: Database of Rock Samples

• View Leads to: Collection Browser and Operations

• Controller: Set of “glue” objects that invoke operations on selected
samples, updates database, displays results

28

© Kenneth M. Anderson, 2012

Limitations

• The authors of our book caution that Alexander’s approach does not directly
translate to software design

• Well-defined patterns do not exist for all problem domains

• Context to Pattern to New Context to Pattern chains may not be that deep

• How to customize a pattern to a particular context may be non-obvious

• The principles behind Alexander’s techniques ARE important

29

© Kenneth M. Anderson, 2012

Review of CAD/CAM Problem

30

Slots

Cutouts

Holes

Special

Irregular

Design software that translates CAD designs that use
the parts above into instructions for a machine that
punches the actual part out of sheet metal

© Kenneth M. Anderson, 2012 31

♫

Confident
Engineer

CAD/CAM
System

Expert
System

Cutter
Slots

Cutouts

Holes

Special

Irregular

Slots

Cutouts

Holes

Special

Irregular

Slots

Cutouts

Holes

Special

Irregular

Slots

Cutouts

Holes

Special

Irregular

Parts

Controls

Produces

Our
Software

Retrieves
Info

Produces
Model

System Overview

© Kenneth M. Anderson, 2012 32

CAD/CAM
Version 1

Expert
System

Our
Software

Retrieves
Info

Produces
Model

CAD/CAM
Version 2

CAD/CAM
Version N

•••

Here's the Problem

We are being asked to make the overall
system resilient to changes in the CAD/
CAM system

Example of encapsulation via software architecture…

© Kenneth M. Anderson, 2012

The Original Solution (I)

33

Slot

V1Slot V2Slot

V1System V2SystemSlot

For each Feature class, the version 1
variation will have attributes that link to
the version 1 model id and the feature id;
it will then call the V1 library routines
directly

The version 2 variation will simply wrap
the Feature class that comes from the
CAD system

The arrow with dashed line means “uses”

© Kenneth M. Anderson, 2012

The Original Solution (II)

34

Feature

Slot Special

Model

Hole •••

V1Slot V2Slot ••• V1Special V2Special

One subclass
per CAD system
plus the high
level classes =
17 classes

© Kenneth M. Anderson, 2012

WWAD? (What Would Alexander Do?)

35

• To develop a better solution to this problem, let’s think in terms of patterns

• What are the essential concepts of the problem domain and what
relationships exist between them?

• This can help us identify patterns that can be applied

• This doesn’t always work (design is hard) but patterns can often get you
moving in a particular direction

© Kenneth M. Anderson, 2012

Thinking in Patterns (big picture view)

• Step 1: Identify the Patterns

• Step 2: Analyze and apply the patterns

• 2a. Order the patterns by context creation

• 2b. Select pattern and expand design

• 2c. Identify additional patterns, add them to the set

• 2d. Repeat

• Step 3: Add detail

36

© Kenneth M. Anderson, 2012

Step 1: Identify the Patterns

• For the CAD/CAM Domain, the authors identified

• Abstract Factory: Create parts for a particular CAD system

• Adapter: Adapt new CAD systems to the target interface

• Bridge: Implement the abstractions of the domain by “bridging” to a
particular CAD system

• Facade: keep the complexities of the CAD system hidden from the expert
system

37

© Kenneth M. Anderson, 2012

Step 2a: Which pattern provides context for the
others?

• Look through all possible parings of the identified patterns

• Does x provide context for y?

• Does abstract factory provide a context for bridge?

• Look back at our Pizza shop example for inspiration

• To help with these decisions look at the patterns conceptually…

38

© Kenneth M. Anderson, 2012

Step 2a (II)

• Abstract factory creates sets of related objects

• Adapter adapts existing class A to the interface needed by a client class B

• Bridge allows for different implementations to be used by a set of related
client objects

• Facade simplifies an existing system A for a client class B

39

© Kenneth M. Anderson, 2012

Step 2a (III)

• Abstract factory’s context is the structure of the objects its creating

• Pizza is made of dough, sauce, toppings, etc.

• It does not provide context for other patterns

• This is true of most “creational patterns”

• So, scratch it off the list

• This leaves

• Adapter ↔ Bridge; Bridge ↔ Facade; Facade ↔ Adapter

40

© Kenneth M. Anderson, 2012

Step 2a (IV)

• Bridge ↔ Adapter

• Adapter will allow the expert system to access the OO interface of the new
CAD system by making it conform to Feature and its subclasses

• Bridge will ensure that Feature and its subclasses can access version 1
and 2 of the CAD system

• Bridge provides context for Adapter

41

© Kenneth M. Anderson, 2012

Step 2a (V)

• Bridge ↔ Facade

• Facade will simplify the complex interface of the first CAD system

• Bridge will ensure that Feature and its subclasses can access version 1
and 2 of the CAD system

• which means making use of the Facade

• Bridge provides context for Facade (in this system)

• Since Bridge “wins” twice, its the outermost pattern

42

© Kenneth M. Anderson, 2012

Step 2b: Select Pattern and Expand Design

• How does Bridge fit into the conceptual whole of the design?

• What, exactly, provides a context for the Bridge pattern?

• The elements of the problem domain!

• Expert System uses Model

• Model aggregates Features (abstractions)

• Different CAD systems provide different types of features
(implementations)

• Bingo! The Bridge pattern

43

© Kenneth M. Anderson, 2012

Bridge Structure Diagram

44

+operationImpl()
Implementor

+operationImpl()
ConcreteImplementorA

+operationImpl()
ConcreteImplementorB

+operation()
Abstraction

+operation()
Variation

imp.operationImpl()

© Kenneth M. Anderson, 2012

Bridge in Context

45

Feature

Slot Special

Model

Hole •••

FeatureImpl

V1Impl V2Impl

Assumes that Feature has a public interface that provides all of the
information needed by the expert system

© Kenneth M. Anderson, 2012

2c: Identify additional patterns

46

• All that is left in this particular system is to attach the V1 and V2 systems to
the design

• Adapter and Facade will do that for us, so no additional patterns are
needed

• Looping back, we know that Adapter and Facade are independent of each
other in this design

• They can be applied in any order

© Kenneth M. Anderson, 2012

Context for Facade

47

Feature

Slot Special

Model

Hole •••

FeatureImpl

V1Impl V2Impl

V1Facade

V1 C API

© Kenneth M. Anderson, 2012

Context for Adapter (& Final Design)

48

Feature

Slot Special

Model

Hole •••

FeatureImpl

V1Impl V2Impl

V1Facade

V1 C API

OOGFeature

•••

© Kenneth M. Anderson, 2012

Step 3: Add Detail

49

• At this point, we would start to add detail

• What exactly is the public interface of Feature and FeatureImpl

• How will each subclass of Feature implement that public interface by
calling operations on FeatureImpl?

© Kenneth M. Anderson, 2012

Is it better?

• Is the new design better?

• The book suggests talking through each design

• “Read the UML diagram”

• The new design sounds simpler (especially because it can be explained
using design patterns)

• Now consider, what happens when V3 of the CAD system comes along…

• 6 new subclasses in 1st design; 2 new classes in the 2nd

50

© Kenneth M. Anderson, 2012

Class Focus vs. Pattern Focus

• In the first design, we got to a state that works but it wasn’t that maintainable

• it had a class-based focus that stuck parts together from the bottom up,
creating a whole

• In the second design, we started with the big picture, found the most suitable
pattern and worked down, adding patterns that worked with the first one

• the patterns then deliver on good software qualities because that’s what
they are all about!

51

© Kenneth M. Anderson, 2012

Wrapping Up

• Went deeper into the pattern-based approach to software design by looking
at Christopher Alexander’s work more closely

• Start with a conceptual understanding of a problem domain; identify
patterns that highlight coarse-grained elements and relationships in the
domain; use those patterns as context to implement additional more-
refined patterns; repeat until problem is solved

• Saw an example of this approach applied to the CAD/CAM problem
discussed earlier this semester

52

© Kenneth M. Anderson, 2012

Coming Up Next

• Lecture 23: Advanced Design (chapter 14)

• Lecture 24: More Design Techniques (chapters 15 & 16)

• Lecture 25: More Design Patterns

53

