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How Do Experts Design?

CSCI 4448/5448: Object-Oriented Analysis & Design
Lecture 22 — 11/8/2012
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Goals of the Lecture

• Cover the material in Chapters 12 & 13 of our textbook

• How do experts design?

• Solving the CAD/CAM Problem
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Overview

• Chapter 12 talks about applying the lessons that Christopher Alexander 
developed for designing cities—architectural design patterns—to software 
engineering and to the design of software systems

• there is not a one-to-one mapping

• but there are important lessons to learn

• It was NOT enough for Alexander to specify individual design patterns… it 
was about using design patterns to transform the nature of the design 
process
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Important for all designers (I)

• Alexander’s approach has had such impact on the software design 
community because his work describes an approach to design that is valid 
for ANY designer

4



© Kenneth M. Anderson, 2012

Important for all designers (II)

• There are several aspects to his work that are not intuitive; indeed, it is our 
intuitive notion of design that can often lead us into trouble by oversimplifying

• Analysis: What’s the Problem?

• Design: What’s the Solution?

• Both of these are oversimplifications of really complex tasks
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Intuitive Notion of Design

• Build by fitting things together: “build from pieces”

• Indeed, this is the whole point of functional decomposition

• decompose the problem into small pieces and then build up from there

• And OO follows this with classes and objects

• But Alexander indicates that this is NOT a good way to design
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The Set-Up

• Alexander says:

• Design is often thought of as a process of synthesis, a process of putting 
together things, a process of combination. According to this view, a whole 
is created by putting together parts.

• The parts come first: and the form of the whole comes second.
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The Problem

• Alexander continues

• When parts are modular and made before the whole, by definition then, 
they are identical, and it is impossible for every part to be unique, 
according to its position in the whole. Even more important, it simply is not 
possible for any combination of modular parts to contain the number of 
patterns which must be present simultaneously in a place which is alive.

• “Cookie cutter” designs do not produce high quality results

• Think European city center vs. Southern California suburb
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Possible Confusions (I)

• In software engineering, we talk about producing modular, generic classes 
that are reusable across multiple contexts

• Now Alexander is seemingly telling us not to do this!

• but remember: he was talking about architecture…

• Alexander’s “modular” refers to identical parts that can be snapped together 
to produce a structure that was designed independent of its final location

• Software Engineering’s “modular” refers to separation of concerns: “I deal 
with persistence in this module.”
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Possible Confusions (II)

• Alexander talks about a “place which is alive”

• What does that mean for software systems?

• Alexander says

• “It is only possible to make a place which is alive by a process in which 
each part is modified by its position in the whole.”

• The context of a part influences the design and characteristics of that part…
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Possible Confusions (III)

• Our authors indicate that the counterpart to

• “a place which is alive” in software design is

• robust and flexible software systems

• systems whose parts have been tweaked by context to reach a state in 
which the system is

• extensible, maintainable, flexible, etc.

• i.e. resilient or lifelike 
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The Goal

• So, interpreting what we’ve seen so far, the goal of design becomes

• Design pieces—classes and objects—within the context in which they 
must live in order to create robust and flexible systems

• How?

• Alexander’s answer is a bit mystifying at first

•    ☺    
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Alexander’s Answer: “Complexification”

• In short, each part is given its specific form by its existence in the context of 
the larger whole.

• This is a differentiating process. It views design as a sequence of acts of 
complexification; structure is injected into the whole by operating on the 
whole and crinkling it, not by adding little parts to one another.

• In the process of differentiation, the whole gives birth to its parts: The form of 
the whole, and its parts, come into being simultaneously. The image of the 
differentiating process is the growth of an embryo.
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Translation

• Design is a process that starts by looking at a problem in its simplest terms, 
giving a unified whole

• it is refined by making decisions, adding information (and thus, 
complexity), making distinctions between elements in the design where 
none existed before

• but the distinctions are made within a larger context, guided by the 
whole, and the elements added to the domain by the decision can be 
guided by patterns
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Example

• Think about planning (designing) an academic conference

• Multi-day event held at a hotel with sessions and a reception organized by 
a set of people

• sessions: workshops, keynotes, papers, posters, etc.

• people: conference chair, program chair, program committee, 
conference committee

• conference committee: publicity chair, proceedings chair, local 
events chair, etc.
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Alexander: The Role of Patterns

• Each pattern is an operator that differentiates space: that is, it creates 
distinctions where no distinction was before.

• … the operations are arranged in sequence: so that, as they are done, one 
after the other, gradually a complete thing is born, general in the sense that it 
shared its patterns with other comparable things; specific in the sense that it 
is unique, according to its circumstances

• … each [pattern] further differentiates the [whole], which is the product of 
previous differentiations.
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Example: Design is a process that starts by looking 
at a problem in its simplest terms...
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Each pattern is an operator that differentiates space: it 
creates distinctions where no distinction was before.
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Perhaps, you now make a decision about persistence...
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Perhaps, you now make a decision about persistence...
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And then about a deployment platform
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And then you decide to apply a pattern again
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And then you decide to apply a pattern again
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And add detail...
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After deployment, your design will continue to 
evolve as requirements change over time
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Design for Everyone

• The interesting thing about this stance is that design is something that can be 
learned by anyone

• A design that follows well-established patterns will produce good, solid 
results; it should not be surprising that quality solutions for similar 
problems appear very much alike

• For instance, following Model-View-Controller brings benefits to even 
the most novice of designers…

• Creativity comes in understanding how to adapt the patterns to the context 
you find yourself in

• These initial steps that I just demonstrated is an example of defining a 
system’s software architecture, it’s basic structures and how they relate to 
each other; each decision adds complexity in that we now have more 
information about the system
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The Steps

• Within the context of a design

• Identify patterns that can add information to the design

• ones that define useful relationships between entities of the design (or 
suggest entities and relationships not currently present that would 
benefit the design)

• Add them to the design, thus updating the context

• Repeat, until no more entities and relationships are needed to solve the 
problem
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Example

• Design a system that aids a geologist in assigning ages to rock samples 
collected from the field

• Context Pattern: Desktop Application

• Leads to: Model-View-Controller

• Model Leads to: Database of Rock Samples

• View Leads to: Collection Browser and Operations

• Controller: Set of “glue” objects that invoke operations on selected 
samples, updates database, displays results
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Limitations

• The authors of our book caution that Alexander’s approach does not directly 
translate to software design

• Well-defined patterns do not exist for all problem domains

• Context to Pattern to New Context to Pattern chains may not be that deep

• How to customize a pattern to a particular context may be non-obvious

• The principles behind Alexander’s techniques ARE important
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Review of CAD/CAM Problem
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CAD/CAM
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Here's the Problem

We are being asked to make the overall 
system resilient to changes in the CAD/
CAM system

Example of encapsulation via software architecture…
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The Original Solution (I)
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For each Feature class, the version 1 
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the version 1 model id and the feature id; 
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The Original Solution (II)
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WWAD? (What Would Alexander Do?)

35

• To develop a better solution to this problem, let’s think in terms of patterns

• What are the essential concepts of the problem domain and what 
relationships exist between them?

• This can help us identify patterns that can be applied

• This doesn’t always work (design is hard) but patterns can often get you 
moving in a particular direction
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Thinking in Patterns (big picture view)

• Step 1: Identify the Patterns

• Step 2: Analyze and apply the patterns

• 2a. Order the patterns by context creation

• 2b. Select pattern and expand design

• 2c. Identify additional patterns, add them to the set

• 2d. Repeat

• Step 3: Add detail
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Step 1: Identify the Patterns

• For the CAD/CAM Domain, the authors identified

• Abstract Factory: Create parts for a particular CAD system

• Adapter: Adapt new CAD systems to the target interface

• Bridge: Implement the abstractions of the domain by “bridging” to a 
particular CAD system

• Facade: keep the complexities of the CAD system hidden from the expert 
system
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Step 2a: Which pattern provides context for the 
others?

• Look through all possible parings of the identified patterns

• Does x provide context for y?

• Does abstract factory provide a context for bridge?

• Look back at our Pizza shop example for inspiration

• To help with these decisions look at the patterns conceptually… 
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Step 2a (II)

• Abstract factory creates sets of related objects

• Adapter adapts existing class A to the interface needed by a client class B

• Bridge allows for different implementations to be used by a set of related 
client objects

• Facade simplifies an existing system A for a client class B
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Step 2a (III)

• Abstract factory’s context is the structure of the objects its creating

• Pizza is made of dough, sauce, toppings, etc.

• It does not provide context for other patterns

• This is true of most “creational patterns”

• So, scratch it off the list

• This leaves

• Adapter ↔ Bridge; Bridge ↔ Facade; Facade ↔ Adapter
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Step 2a (IV)

• Bridge ↔ Adapter

• Adapter will allow the expert system to access the OO interface of the new 
CAD system by making it conform to Feature and its subclasses

• Bridge will ensure that Feature and its subclasses can access version 1 
and 2 of the CAD system

• Bridge provides context for Adapter
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Step 2a (V)

• Bridge ↔ Facade

• Facade will simplify the complex interface of the first CAD system

• Bridge will ensure that Feature and its subclasses can access version 1 
and 2 of the CAD system

• which means making use of the Facade

• Bridge provides context for Facade (in this system)

• Since Bridge “wins” twice, its the outermost pattern
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Step 2b: Select Pattern and Expand Design

• How does Bridge fit into the conceptual whole of the design?

• What, exactly, provides a context for the Bridge pattern?

• The elements of the problem domain!

• Expert System uses Model

• Model aggregates Features (abstractions)

• Different CAD systems provide different types of features 
(implementations)

• Bingo! The Bridge pattern
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Bridge Structure Diagram
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Bridge in Context
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Assumes that Feature has a public interface that provides all of the 
information needed by the expert system
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2c: Identify additional patterns
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• All that is left in this particular system is to attach the V1 and V2 systems to 
the design

• Adapter and Facade will do that for us, so no additional patterns are 
needed

• Looping back, we know that Adapter and Facade are independent of each 
other in this design

• They can be applied in any order
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Context for Facade
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Context for Adapter (& Final Design)
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Step 3: Add Detail
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• At this point, we would start to add detail

• What exactly is the public interface of Feature and FeatureImpl

• How will each subclass of Feature implement that public interface by 
calling operations on FeatureImpl?
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Is it better?

• Is the new design better?

• The book suggests talking through each design

• “Read the UML diagram”

• The new design sounds simpler (especially because it can be explained 
using design patterns)

• Now consider, what happens when V3 of the CAD system comes along…

• 6 new subclasses in 1st design; 2 new classes in the 2nd
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Class Focus vs. Pattern Focus

• In the first design, we got to a state that works but it wasn’t that maintainable

• it had a class-based focus that stuck parts together from the bottom up, 
creating a whole

• In the second design, we started with the big picture, found the most suitable 
pattern and worked down, adding patterns that worked with the first one

• the patterns then deliver on good software qualities because that’s what 
they are all about!
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Wrapping Up

• Went deeper into the pattern-based approach to software design by looking 
at Christopher Alexander’s work more closely

• Start with a conceptual understanding of a problem domain; identify 
patterns that highlight coarse-grained elements and relationships in the 
domain; use those patterns as context to implement additional more-
refined patterns; repeat until problem is solved

• Saw an example of this approach applied to the CAD/CAM problem 
discussed earlier this semester
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Coming Up Next

• Lecture 23: Advanced Design (chapter 14)

• Lecture 24: More Design Techniques (chapters 15 & 16)

• Lecture 25: More Design Patterns
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