
© Kenneth M. Anderson, 2012

Intermediate Android

CSCI 4448/5448: Object-Oriented Analysis & Design
Lecture 18 — 10/25/2012

1

© Kenneth M. Anderson, 2012

Goals of the Lecture

• Dig deeper into the Android Framework

• Screen Orientation

• Animation

• Dialogs

• Playing Sounds

• (Simple) Networking

2

© Kenneth M. Anderson, 2012

Android Development Philosophy

• As I learned more about Android development, I came to understand the
Android Development Philosophy

• “Everything is a Resource”

• or

• “It’s resources all the way down…”

• Many of the steps in Android programming depend on creating resources and
then loading them or referencing them (in XML files) at the right time

3

© Kenneth M. Anderson, 2012

Screen Orientation

• People can easily change the orientation by which they hold their mobile
devices

• Mobile apps have to deal with changes in orientation frequently

• We saw iOS automatic support for multiple orientations in our last lecture

• Let’s see how Android deals with this issue (hint: resources)

4

© Kenneth M. Anderson, 2012

Start with Portrait Orientation

• It is natural to start by designing the UI of your main activity in portrait
orientation

• That is the default orientation in the Eclipse plug-in

• Here’s a typical layout for the “main screen” of a game

5

© Kenneth M. Anderson, 2012 6

© Kenneth M. Anderson, 2012 7

Quick Interjection: Unit Sizes

• Android supports a wide variety of unit sizes for specifying UI layouts; here
are all but two

• px (device pixel), in, mm, pt (1/72nd of an inch)

• All of these have problems creating UIs that work across multiple types of
devices

• Google recommends using resolution-independent units

• dp (or dip): density-independent pixels

• sp: scale-independent pixels

• In particular, use sp for font sizes and dp for everything else

© Kenneth M. Anderson, 2012 8

But switch to landscape mode (in the emulator Ctrl+F12)
and a problem becomes evident

© Kenneth M. Anderson, 2012 9

Resources to the Rescue!

• To solve this problem, we create a new activity_main.xml file that has been
created specifically for landscape orientation

• This file will live in a new subfolder in the res folder of our Android project:
res/layout-land/

• This folder is not created by default; right click on the res folder and select
New ⇒ Folder

• Then you can right click on the existing activity_main.xml and select copy and
then right click on layout-land and select paste; Finally, you can edit the file
for the new orientation

© Kenneth M. Anderson, 2012 10

This layout arranges the
buttons into two rows and
two columns using a
TableLayout

© Kenneth M. Anderson, 2012 11

Problem solved. Android automatically switches the layout
behind the scenes when the orientation of the device
changes.

© Kenneth M. Anderson, 2012 12

Types of Layouts?

• LinearLayout: Each child view is placed after the previous one in a single row
or column

• RelativeLayout: Each child view is placed in relation to other views in the
layout or relative to its parent’s layout

• FrameLayout: Each child view is stacked within a frame, relative to the top-
left corner. Child views may overlap.

• TableLayout: Each child view is a cell in a grid of rows and columns

© Kenneth M. Anderson, 2012

Specifying the Size of a View

• We’ve previously discussed the use of resolution-independent measurements
for specifying the size of a view

• These values go in the XML attributes

• android:layout_width and android:layout_height

• But, you get more flexibility with

• fill_parent: the child scales to the size of its parent

• wrap_content: the parent shrinks to the size of the child

13

© Kenneth M. Anderson, 2012

Animating Views

• Android offers four different ways of performing animation

• Support for Animated GIF images

• Frame-by-Frame animation: developer supplies images and specifies
transitions between them

• Tweened animation: simple animation effects that can be programmatically
applied to views

• OpenGL ES: advanced 3D drawing, animation, etc.

14

© Kenneth M. Anderson, 2012

Tweened Animation

• Tweened animations are specified (unsurprisingly) via resources

• The basic process involves doing the following in the onCreate() method of
the Activity

• get a handle to the view

• load the animation resource: such as fade

• apply it to the view: view.startAnimation(fade)

• Android provides animation support for alpha, rotation, scaling and
translating

• the first deals with transparency; the third deals with a view’s size; the last
deals with moving views around

15

© Kenneth M. Anderson, 2012

Our Plan

• We’ll apply animations to the buttons defined on the portrait layout of the
previous example

• We’ll make one fade in, one rotate, one scale, and one that does all three at
once!

• We’ll also have each animation happen one after the other

• In a real application, this would get tedious, but as an example, it’s fine

16

© Kenneth M. Anderson, 2012

The Process (I)

• Step One: Use the New Folder command to create a folder called anim in the
res folder of our project

• Step Two: Create a new Android XML File in the anim subfolder, call it
fade.xml

17

© Kenneth M. Anderson, 2012

The Process (II)

• Step 3: Add the following code to the Main activity’s onCreate() method

 Button continue_button = (Button) findViewById(R.id.continue_button);

 Animation fade = AnimationUtils.loadAnimation(this, R.anim.fade);

 continue_button.startAnimation(fade);

• You will need these import statements

 import android.view.animation.Animation;

 import android.view.animation.AnimationUtils;

 import android.widget.Button;

18

© Kenneth M. Anderson, 2012

The Process (IV)

• There are no additional steps… just run the program!

• Demo of “Fun With Animation”

• As you saw from the code, we used the attribute

• android:startOffset

• to control when particular animations start

• As you can see, Android makes it straightforward to perform simple
animations within Android apps

19

© Kenneth M. Anderson, 2012

Getting input from the user

• Android provides several types of default dialog boxes

• and provides a way to create custom dialogs as well

• The dialog types

• Dialog

• the base class for all dialogs; you subclass this class to create custom
dialogs

• AlertDialog: a dialog with 1-3 buttons

• DatePicker and TimePicker

• ProgressDialog (both determinate and indeterminate)

20

© Kenneth M. Anderson, 2012

Dialog Life Cycle (I)

• Each activity manages the life cycle of the dialog boxes it displays to its users

• It calls showDialog()to display a dialog

• That dialog gets added to its dialog window cache

• It calls dismissDialog() to

• remove a dialog window

• but keep it in the cache

• subsequent display of the dialog is faster

• It calls removeDialog() to remove the dialog from the cache

21

© Kenneth M. Anderson, 2012

Dialog Life Cycle (II)

• Each dialog has an associated id; you pass that id to showDialog()

• This causes the method onCreateDialog() to be called with that id. You
then use a switch statement to create the appropriate dialog based on the
id

• onCreateDialog() is typically called once; thereafter the dialog is
retrieved from the cache

• The next method called is onPrepareDialog()

• this method is called whenever the dialog is about to be shown

22

© Kenneth M. Anderson, 2012

Example

• Let’s create an app that shows how to use

• AlertDialog

• DatePicker

• TimePicker

• We’ll see the use of a ProgressDialog a little bit later

• Demo of “Fun With Dialogs”

23

© Kenneth M. Anderson, 2012

Discussion (I)

• Code looks more complex than it actually is

• In the onCreateDialog() method, we simultaneously create the dialogs that
we need PLUS the methods that act as the dialog’s event handlers

• In the onPrepareDialog() method, we either reuse the previously set value
(stored in attributes) or we set the dialog to a default value (current day
and current time)

24

© Kenneth M. Anderson, 2012

Discussion (II)

• The approach demonstrated by this code works but it is deprecated

• The new approach recommended by Google is documented here:

• http://developer.android.com/guide/topics/ui/dialogs.html

• The basic difference is that you now need to create a custom subclass of
DialogFragment and then use the AlertDialog.Builder and DatePickerDialog as
shown in my example code

• The reason for this change is a need to unify the user interface paradigm
across phones and tablets

• In table interfaces, you can create “fragments” of UI that appear
embedded in the larger space of a table UI

• On a phone, these same UI elements would appear as dialogs

25

http://developer.android.com/guide/topics/ui/dialogs.html
http://developer.android.com/guide/topics/ui/dialogs.html

© Kenneth M. Anderson, 2012

Playing Sounds

• Android makes it very easy to play sounds

• You copy supported sound files to res/raw

• Just copy the file to the right place on the file system and then right
click on res/raw in Eclipse and select “Refresh”

• You create an instance of MediaPlayer

• When you want the sound to play, you call start() and pass in the id of
the sound you want; Call stop() want the sound to stop

• Demo of SoundPlayer

• Note: The included sound is public domain; I downloaded it from here:

• http://www.mediacollege.com/downloads/sound-effects/space/

26

http://www.mediacollege.com/downloads/sound-effects/space/
http://www.mediacollege.com/downloads/sound-effects/space/

© Kenneth M. Anderson, 2012

Networking (I)

• Mobile apps will often need to access a web service or web page to retrieve
information that it then displays to its user

• In Android, accessing network resources must always occur in a thread that
is separate from the GUI thread

• Otherwise, the GUI thread can be blocked waiting for a remote server to
respond and the user will think that the application has crashed

27

© Kenneth M. Anderson, 2012

Networking (II)

• There is nothing magic about Android’s networking

• Your program can use any of Java’s IO packages to access the internet

• The trick is that you must run that code in a thread

• Android offers two ways of running tasks asynchronously

• AsyncTask and Thread/Handler

• The latter requires the developer to do all the work, so we will look at the
former

28

© Kenneth M. Anderson, 2012

Networking (III)

• AsyncTask is an abstract class that makes it straightforward to run a task in
the background that also updates the GUI

• To use, you create a subclass of AsyncTask and override the following
methods

• onPreExecute() - runs on the GUI thread before the background process is
started

• doInBackground() - contains the code for the background process

29

© Kenneth M. Anderson, 2012

Networking (IV)

• To use, you create a subclass of AsyncTask and override

• onProgressUpdate() - runs on the GUI thread and contains information
passed from the background thread; to do this, the background thread,
passes information to a method called publishProgress()

• onPostExecute() - runs on the GUI thread, once the background process is
done

30

© Kenneth M. Anderson, 2012

Networking (V)

• So, for a standard hit on a web service, you would

• set up a progress bar in onPreExecute()

• call the web service in doInBackground()

• when you receive a result, loop over the contents and call
publishProgress() with info

• in onProgressUpdate() update the progress bar or update the GUI with
information from the web service or both

• make the progress bar go away in onPostExecute()

31

© Kenneth M. Anderson, 2012

Java Feature: varargs

• The AsyncTask class makes use of Java’s version of sending a method a
variable number of arguments

• The syntax looks like this

• public void process(String… args);

• Inside the method, args acts just like a Java array but defining it this way
allows you to pass in any number of strings to process, be it as an array or as
individual string arguments

32

© Kenneth M. Anderson, 2012

The progress indicator

• We’ll create an instance of ProgressDialog to let our user know that data is
being downloaded and processed

• Since we don’t know how long the download will take, we will use an
indeterminate progress indicator

• This type of progress bar displays a spinning image to let the user know
that the program hasn’t crashed

33

© Kenneth M. Anderson, 2012 34

Demonstration

• Let’s write a simple Android client that uses AsyncTask to hit the Twitter
Search API to retrieve tweets that contain the word “Android”

• We will hit a URL that returns a list of tweets in JSON format

• We’ll parse the JSON to get the text of the tweets

• We’ll display the tweets in a list

• We’ll demonstrate the use of AsyncTask along the way

• Note: must set android.permission.INTERNET to access the network

© Kenneth M. Anderson, 2012

Discussion

• Straightforward example

• AsyncTask works as advertised

• creating, displaying, and dismissing progress dialog was a snap

• very easy to send results from background thread to GUI thread

• Makes use of some advanced Java constructs to allow a private class to
access attributes and methods of its surrounding class

35

© Kenneth M. Anderson, 2012

Wrapping Up

• Learned more about the Android framework

• How to handle multiple orientations

• How to handle simple animations

• How to handle simple dialogs

• How to play sounds

• How to handle a simple network request (with progress bars!)

36

© Kenneth M. Anderson, 2012

Coming Up Next

• Homework 5: Released on Monday; Due in Two Weeks

• Need to form teams now, if you haven’t already!

37

