
© Kenneth M. Anderson, 2012

Introduction To iOS

CSCI 4448/5448: Object-Oriented Analysis & Design
Lecture 16 — 10/18/2012

1

© Kenneth M. Anderson, 2012

Goals of the Lecture

• Present an introduction to the iOS Framework

• Coverage of the framework will be INCOMPLETE

• We’ll see the basics… there is a lot more to learn

2

© Kenneth M. Anderson, 2012

History

• iOS is the name (as of version 4.0) of Apple’s platform for mobile applications

• The iPhone was released in the summer of 2007

• According to Wikipedia, it has been updated 46 times since then, with the
most recent update released this past September with version 6.0

• iOS apps can be developed for iPhone, iPod Touch and iPad

• iOS is used to run the Apple TV but apps are not currently supported
for that platform

3

http://en.wikipedia.org/wiki/IOS_version_history
http://en.wikipedia.org/wiki/IOS_version_history

© Kenneth M. Anderson, 2012

iOS 6.0

• I’ll be covering iOS 6.0 which is the current “official version”

• Version 6.0 was released on September 19, 2012

• A major release with ~200 new features

• Most significant update was version 4.2 in November 2010 when iOS was
unified across all three hardware platforms (iPhone, iPad, Apple TV)

4

© Kenneth M. Anderson, 2012

Acquiring the Software

• To get the software required to develop in iOS

• Follow the instructions in Lecture 13

• Installing XCode via the App Store installs all the software you need to
develop for OS X and iOS

5

© Kenneth M. Anderson, 2012

Tools

• Xcode: Integrated Development Environment

• Provides multiple iOS application templates

• Provides drag-and-drop creation of user interfaces

• iPhone Simulator

• Provides ability to test your software on iPhone & iPad

• Instruments: Profile your application at runtime

6

© Kenneth M. Anderson, 2012

iOS Platform (I)

• The iOS platform is made up of several layers

• The bottom layer is the Core OS

• OS X Kernel, Mach 3.0, BSD, Sockets, File System, …

• The next layer up is Core Services

• Collections, Address Book, SQLite, Networking, Core Location,
Threading, Preferences, …

7

© Kenneth M. Anderson, 2012

iOS Platform (II)

• The third layer is the Media layer

• Core Audio, OpenGL and OpenGL ES, Video and Image support, PDF,
Quartz, Core Animation

• The fourth layer is Cocoa Touch (Foundation/UIKit)

• Views, Controllers, Multi-Touch events and controls, accelerometer, alerts,
web views, etc.

• An app can be written using only layer 4 but advanced apps will make use of
services from all four layers

8

© Kenneth M. Anderson, 2012

Introduction to Interface Builder (I)

• Interface Builder is a graphical editor inside of XCode for creating GUIs

• It provides a drag and drop interface for constructing the graphical user
interface of your mobile and desktop apps

• It also lets you connect graphical widgets with properties defined in
your source code

• Interface Builder stores the user interface widgets that it creates in .xib
files; .xib stands for “XML Interface Builder”

• A .xib file is a text file (but you will never edit it directly)

• When a .xib file is copied over to a device, it is converted to a .nib file
(NeXT Interface Builder) which is stored in binary format to save space

9

© Kenneth M. Anderson, 2012

Introduction to Interface Builder (II)

• The GUIs created by Interface Builder are

• actual instances of the underlying UIKit classes

• When you save a .xib file, you “freeze dry” the objects and store them on the
file system

• When your app runs, the objects get reconstituted and linked to an object
in your running app

10

© Kenneth M. Anderson, 2012

Introduction to Interface Builder (III)

• This object-based approach to UI creation is what provides interface builder
its power

• To demonstrate the power of Interface Builder, let’s create a simple web
browser without writing a single line of code (!)

• The fact that we can do this is testament to the power of object-
oriented techniques in general

11

© Kenneth M. Anderson, 2012

Step One: Create Project (I)

• Launch XCode and create an OS X application (we’ll get to iOS in a minute)

• Select Cocoa Application rather than Command Line Tool

12

© Kenneth M. Anderson, 2012

Step One: Create Project (II)

• Product Name: WebBrowser; Class Prefix: CU; Select “Use ARC”

13

Save the resulting
project wherever
you want

© Kenneth M. Anderson, 2012

Step Two: :Launch Interface Builder

• XCode creates a default set of files

• We’re going to ignore
CUAppDelegate for now

• Instead, we’re going to select
MainMenu.xib and launch
Interface Builder

14

© Kenneth M. Anderson, 2012 15

Here, we see a portion
of Interface Builder’s UI

On the left hand side is
the Dock, showing
placeholders and
instances

On the right hand side
is a canvas that can be
used to layout the
graphical user
interface of your
application

Placeholders

Dock

Instances

© Kenneth M. Anderson, 2012 16

Placeholders are
objects that exist
“outside” of the .xib file

They exist before
the .xib file is loaded
and get connected at
run-time

The icons for the
placeholders represent
the “File’s Owner”, the
“First Responder”, and
the “Application”

We’ll learn more about
these roles later.

Placeholders

© Kenneth M. Anderson, 2012 17

Instances are objects
that exist inside of
the .xib file

These objects typically
are widgets but can
also include controller
objects and utility
objects

By default, an OS
application starts life
with four objects—two
of which are visible—
the application’s menu
and the application’s
window; The other
two objects are
unimportant for now

Menu
Window

Instances

© Kenneth M. Anderson, 2012 18

Just to emphasize,
Interface Builder
operates on “live”
objects.

The window to the left
is an actual instance of
NSWindow

It is not a “simulation”
of NSWindow.

You can manipulate
this window via drag
and drop; behind the
scenes, Interface
Builder is calling
methods and setting
properties to match
your edits!

Window

© Kenneth M. Anderson, 2012 19

The Dock can be expanded to show the
object hierarchy within the .xib file

© Kenneth M. Anderson, 2012 20

Object Connections (I)

• The cool thing about Interface Builder is that you can

• instantiate instances of objects (widgets, controllers, …)

• and then

• connect them together via drag and drop

• And by “connect”, I mean “establish a link between the two objects such that
they can send messages to each other”

• In practice, Interface Builder links are unidirectional

• If you connect your CUAppDelegate object to your NSButton, then
CUAppDelegate can send messages to your NSButton

• If you want, the NSButton to talk to CUAppDelegate, you create a
second connection going the opposite direction

© Kenneth M. Anderson, 2012 21

Object Connections (II)

• Say a button should call a controller when clicked

• You drag from the button

• to the controller’s icon in the dock

• and then select the method the button should invoke

• These graphical actions are equivalent to the following code invocations

• [button setTarget: controller]

• [button setAction: @selector(handleClick:)]

• Note: @selector() is a way to reference a particular method at compile time

• At run-time, @selector() will map “handleClick:” to the actual handleClick:
method of the controller object

© Kenneth M. Anderson, 2012

Step 3: Launch Application

22

When you run the application, you
will see the UI you created in
Interface Builder.

Exciting, isn’t it?

Quit the application and make
changes to the window. Save the
document, and run the program
again.

You’ll see your changes reflected;
because the window in the editor
and the window at run time are
THE SAME WINDOW!

© Kenneth M. Anderson, 2012

Step 4: Acquire Widgets

23

• Invoke View ⇒ Utilities ⇒ Show Object Library to bring up the widgets that
can be dragged and dropped onto our window

• Type button in the search field and then drag two “push buttons” on to the
window

• It doesn’t matter where you drag them just yet

• Type text field in the search field and then drag a “text field” on to the window
(ignore “text field cell”)

• Type “web” and drag a “web view” to the window

© Kenneth M. Anderson, 2012

Results of Step 4

24

Our window now has
four widgets but they
are not yet placed
where we want them

© Kenneth M. Anderson, 2012

Step 5: Layout Widgets (I)

25

• Put the buttons in the upper right corner

• Use the guides to space them correctly

• Double click on them and name one “Back” and one “Forward”

• Put the text field in the upper left corner and stretch it out so it ends up next
to the buttons

• Again use the guides to get the spacing right

• These guides help you follow Apple’s human interface guidelines

• Expand the Web view so that it now fills the rest of the window, following the
guides to leave the appropriate amount of space

© Kenneth M. Anderson, 2012

Step 5: Layout Widgets (II)

26

• Your window should look like the image
to the right

• You can try your UI out by invoking the
menu command

• “Editor ⇒ Simulate Document”

• What’s cool is that the widgets resize
correctly if you resize the window

• All without writing a single line of
code!

• This is handled by Apple’s new
constraint-based “auto-layout”
system

© Kenneth M. Anderson, 2012

Step 6: Make Connections (I)

• We want to establish connections between the various widgets we’ve created

• With Interface Builder, you do this via “Control Drag”

• You hold down the control key, click on a widget and hold, and then
finally drag to another widget

• A menu will pop-up allowing you to specify a connection

27

© Kenneth M. Anderson, 2012

Step 6: Make Connections (II)

• Establish the following connections

• From Text Field to Web View: takeStringURLFrom:

• From Back Button to Web View: goBack:

• From Forward Button to Web View: goForward:

• Note the colon symbol at the end of these names: “:”

• these are Objective-C method names!

• they are methods defined by the Web View class

• they will be invoked when the source widget is triggered

28

© Kenneth M. Anderson, 2012

Step 6: Make Connections (III)

• Check your connections by selecting the Web View and then bring up the
Connections inspector (⌥⌘6)

29

This inspector will show that
you have buttons wired up to
the goBack: and goForward:
methods and a text field wired
up to the takeStringURLFrom:
method

If you click on one of the
buttons, you’ll see the
connection from the opposite
end. There it appears under a
section called Sent Actions

© Kenneth M. Anderson, 2012

Step 7: Link the Framework

• Save your .xib file

• Click on the project icon; select the WebBrowser target

• Select “Build Phases”

• Expand “Link Binary with Libraries”

• Click “+”

• Scroll down to WebKit.framework

• Select it and click Add

• This step ensures that the framework that implements the Web View object is
available at run-time. If you skip this step, your app will compile but not run.

30

© Kenneth M. Anderson, 2012

Step 8: Run the App; Browse the Web

• Type a URL and click Return

• Watch the page load

• Load another page

• Click the Back button

• Click the Forward button

• A simple web browser without writing a single line of code

31

© Kenneth M. Anderson, 2012

Discussion

• This example is relevant to iOS programming because it shows all of the
major mechanics of Interface Builder

• We’ll see a few more things Interface Builder can do when we link up code
in XCode to widgets in Interface Builder

• This example demonstrates the power of objects; WebView is simply an
instance of a very powerful object that makes use of Apple’s open source
WebKit framework

• We can establish connections to it in Interface Builder and invoke methods
on it by triggering other widgets

• “Clicking” in the case of the buttons and “hitting enter” in the case of
the text field

32

© Kenneth M. Anderson, 2012

SpeakHelloWorld iOS App

• Let’s create a “hello world” iOS app that can greet us (literally) in a variety of
ways

• Select New Project from the File Menu of XCode

• Under the iOS section, select Single View Application

33

© Kenneth M. Anderson, 2012

Configure Project

• Product Name: SpeakHelloWorld

• Class Prefix: CU

• Device: iPhone

• Click “Use Storyboards”

• Click “Use Automatic Reference
Counting”

• Click Next and then save your
project wherever you want

34

© Kenneth M. Anderson, 2012

iOS Project Structure (I)

• All iOS apps are instances of a
class called UIApplication

• You will never create an instance
of that class directly

• Instead, your application has an
“application delegate” object
that is associated with
UIApplication

• UIApplication will call your
instance of CUAppDelegate
at various points in the
application life cycle

35

© Kenneth M. Anderson, 2012

iOS Project Structure (II)

• Our project has the following set of
components

• UIApplication (created in main.m)

• CUAppDelegate (discussed above)

• MainStoryboard.storyboard

• despite the new extension, you can
think of this as a .xib file on
steroids

• CUViewController (the view controller
is going to manage the single view of
this application)

• How is this all connected?

36

© Kenneth M. Anderson, 2012

iOS Project Structure (III)

• The main.m file is straightforward

• It creates an autorelease pool (used by ARC to manage memory)

• It invokes UIApplicationMain()

• This method reads in the storyboard, creates the specified user interface,
loads it into the app’s window and notifies the CUAppDelegate that the
application has launched. It then starts the event loop

• It will remain in the event loop forever

• The reason?

• When a user “quits” an iOS app by pressing the Home button, the
current app’s process is simply moved to the background

• it can then be brought back to the foreground at a later time or
(eventually) the process gets destroyed while in a suspended state

37

© Kenneth M. Anderson, 2012

iOS Project Structure (IV)

• The definition of our application delegate, CUAppDelegate, looks like this

• It imports UIKit; it is a subclass of UIResponder; and it implements the
UIApplicationDelegate protocol (think Java interface)

• it also has a property that gives it access to the main window

• An iOS app has only a single window that covers the entire display

38

© Kenneth M. Anderson, 2012

iOS Project Structure (V)

• All of the methods for UIApplicationDelegate are optional

• The most commonly implemented method is

• - application:didFinishLaunchingWithOptions:

• This method is called just before the UI appears on screen

• You can perform various initialization tasks here

• For this simple app, all of our initialization will be handled by the storyboard
and our view controller

• As a result, you can ignore the code that appears in CUAppDelegate.m for
this application; indeed, you can delete everything that appears between
@implementation CUAppDelegate and @end in that file

39

© Kenneth M. Anderson, 2012

iOS Project Structure (VI)

• All that remains is the storyboard

• It looks like this

• A storyboard consists of scenes
and segues (transitions between
scenes)

• Our app has only a single
scene that is controlled by
CUViewController

• The gray arrow indicates the first
scene of the application

40

© Kenneth M. Anderson, 2012

iOS Project Structure (VII)

• When a scene is loaded, the
storyboard does the following

• It instantiates the associated
view controller

• It sets the rootViewController
property of the window to
point at the newly instantiated
view controller

• It loads up the interface and
calls various life cycle
methods on the view
controller to get the interface
displayed and ready for
events

41

© Kenneth M. Anderson, 2012

iOS Project Structure (VIII)

• We can add additional scenes
with additional view controllers
to the storyboard

• We can then specify how to
transition between scenes

• We’ll see examples of this
in our next lecture on iOS
programming

42

© Kenneth M. Anderson, 2012

iOS Project Structure (IX)

• Currently, our scene contains a
single view object (the white
background) and that object is
connected to our view controller
via a property defined by its
parent class

• UIViewController

• We can now drag other widgets
onto this view and connect them
to our view controller subclass
via properties

43

© Kenneth M. Anderson, 2012

Add an interface

• Back in Interface Builder

• Change view’s background color to light gray

• Add a label that says “How should I greet you?”; give it a white
background

• Add a text view and enter “Hello World!” as its default text

• Add one button that says “Greet Me!”

• Position them to present the UI on the next slide

• Test out the UI by running the application and test switching the phone
from portrait to landscape to confirm that auto-layout picked a reasonable
set of defaults

44

© Kenneth M. Anderson, 2012

Our UI

45

© Kenneth M. Anderson, 2012

Only Skin Deep

46

• While this UI looks nice, it is currently only “skin deep”

• It doesn’t actually do anything

• besides letting you edit the text in the text view

• But, if you try this, you’ll discover that you can’t make the keyboard
go away!

• We’ll fix this later

• To make progress, we’re going to connect these widgets with our view
controller

• We first need to have properties that point at the text view and the button

© Kenneth M. Anderson, 2012

Making the connections (I)

• We’re going to use XCode’s ability to generate properties for us

• To do this, make sure the storyboard file is selected and then click the
assistant editor button in the toolbar; it looks like this:

• This brings up a split view in XCode in which you can see the storyboard and
the text of an associated source code file; in this case, XCode selects
automatically CUViewController.h

• This file is where we want to create properties for our view controller

47

© Kenneth M. Anderson, 2012

Making the connections (II)

• To make the connections, control click on the desired widget and drag over to
the source code file until it indicates that it can create an “outlet”

• An outlet is simply a property that points at a user interface widget

• Let go and the following dialog pops up

•

48

© Kenneth M. Anderson, 2012

Making the connections (II)

• Let’s call the outlet for the text view “greeting” and use Weak storage

• We use “weak” here because we don’t own the text view

• It is owned by its enclosing view object

• Let’s call the outlet for the Greet Me! button “speak” and use weak storage

• When we’re done, the following properties have been defined, connected,
and synthesized by XCode; IBOutlet is a special tag for Interface Builder

• @property (weak, nonatomic) IBOutlet UITextView *greeting;

• @property (weak, nonatomic) IBOutlet UIButton *speak;

49

© Kenneth M. Anderson, 2012

Making the connections (III)

• Now we need to be able to handle events from the various widgets

• We’ll start with the buttons

• Switch the assistant editor to view the CUViewController.m file

• Control drag from the Greet Me button over to the .m file until a pop-up
indicates that you can insert an “action” (an action is simply a method)

• Configure the dialog to look like this

50

© Kenneth M. Anderson, 2012

Making the connections (IV)

• We now have a method that look like this in CUViewController.m

• - (IBAction)handleSpeak:(UIButton *)sender {}

• This method is connected to the button’s Touch Up Inside event, which
means this method will be called when we “touch” the Greet Me button

• You can verify this by putting a simple NSLog() statement in the method
body, running the app, and clicking the button

51

© Kenneth M. Anderson, 2012

Getting Ready to Speak (I)

• Before we can make our button event handlers do more than just log that
they have been called, we need to prepare our app to actually speak our
greeting text

• To do this, we have to import a 3rd party library called OpenEars

• It’s available here: <http://www.politepix.com/openears/>

• We first add the following frameworks to our application

• AudioToolbox and AVFoundation

• We do this the same way we added WebKit to our WebBrowser application
on Slide 30

• We then drag the Framework folder from the OpenEars distribution into our
Supporting Files group and have XCode copy the files into our project

52

http://www.politepix.com/openears/
http://www.politepix.com/openears/

© Kenneth M. Anderson, 2012

Getting Ready to Speak (II)

• Now we add the following code to our View Controller

• import statements

• #import <Slt/Slt.h>

• #import <OpenEars/FliteController.h>

• properties (in the class extension; will discuss next lecture)

• @property (strong, nonatomic) FliteController *fliteController;

• @property (strong, nonatomic) Slt *slt;

• in the viewDidLoad method

• self.slt = [[Slt alloc] init];

• self.fliteController = [[FliteController alloc] init];

53

This creates the text to
speech engine and gets it
ready to be used.

© Kenneth M. Anderson, 2012

Speaking

• We’re now ready to tie everything together to make our application greet us

• When the handleSpeak method gets called we need to do the following

• Get the text contained in the text view

• Pass it to the say:withVoice: method of the fliteController

• That’s it! The code looks like this:

- (IBAction)handleSpeak:(UIButton *)sender {

 [self.fliteController say:[self.greeting.text] withVoice:self.slt];

}

• The text is retrieved using the text property of the text view. Since the text
view is stored in our greeting property, we access the text with the phrase
“self.greeting.text”

54

© Kenneth M. Anderson, 2012

Let’s polish the text view

• We need to make sure that the Greet Me button is enabled only when the
user has entered text

• We also need to make sure that the keyboard goes away when we are done
editing

• The keyboard shows up whenever there is a “first responder”: a widget
that can respond to keystrokes

• When we are done editing, we want the text view to stop being the first
responder to make the keyboard go away

• Programmatically, we need to invoke the method resignFirstResponder
on the text view

• The trick is where do we make this call?

55

© Kenneth M. Anderson, 2012

Handling the text view, part one (I)

• To make the keyboard go away when we click outside of the text view, we
need to create an invisible button that sits at the very bottom of the view
hierarchy

• If it gets clicked, it tells the text view to stop being the first responder

• Drag a push button out onto the view

• make it as large as the view

• Set it’s type to custom

• send it to the back of the view hierarchy

• (Editor ⇒ Arrange ⇒ Send to Back)

56

© Kenneth M. Anderson, 2012

Handling the text view, part one (II)

• Create a new action method called dismissKeyboard: and connect this new
button to that action via its Touch Up Inside event.

• The dismissKeyboard: event will initially look like this:

• - (IBAction) dismissKeyboard: (UIButton*) sender {

• [self.greeting resignFirstResponder];

• }

• You can now run the app, click in the text view, edit the text, and then click
outside of the text view, and the keyboard will go away

• Done with the first task; now we want to make sure that the Greet Me button
is only enabled when there is text in the text view

57

© Kenneth M. Anderson, 2012

Handling the text view, part two (I)

• Now we need to handle enabling and disabling of the Greet Me button

• We will update the dismissKeyboard: method to check the length of the
string in the text value after it calls resignFirstResponder

• If the length is greater than zero, then we’ll enable the button

• otherwise, we’ll disable it

• A really polished app would make sure that the entered name is not all
spaces.

58

© Kenneth M. Anderson, 2012

Add a new event handler

• The new version of dismissKeyboard: looks like this

• - (IBAction)dismissKeyboard:(UIButton *)sender {

• [self.greeting resignFirstResponder];

• self.speak.enabled = ([self.greeting.text length] > 0);

• }

• Here we are setting the enabled property of the Greet Me button by passing
either YES (true) or NO (false) after checking the length of the greeting

• We also have to configure our button to use light gray text when put in the
disabled state. I’ll show how to do that in Interface Builder during my demo.

59

© Kenneth M. Anderson, 2012

Wrapping Up

• Introduction to Interface Builder (XCode’s XIB Editor)

• Powerful, object-based GUI creation

• Basic introduction to iOS programming

• iPhone application template

• views and view controllers

• hooking up code and widgets

• dismissing keyboards when they are not needed

• adding/using a third party framework

60

© Kenneth M. Anderson, 2012

Coming Up Next

• Lecture 17: Intermediate iOS

• Lecture 18: Intermediate Android

61

