
© Kenneth M. Anderson, 2012

The Object-Oriented Paradigm

CSCI 4448/5448: Object-Oriented Analysis & Design
Lecture 2 — 08/30/2011

1

© Kenneth M. Anderson, 2012

Lecture Goals

• Introduce the object-oriented paradigm

• Contrast it with functional decomposition

• Discuss important concepts of object-oriented programming

• Discuss the difference between abstraction and encapsulation

• This is VERY important

• Address the problem of requirements and the need to deal with change

2

© Kenneth M. Anderson, 2012

Design Methods

• Ways of solving problems

• Structured Design/Programming (a.k.a. functional decomposition)

• “Think in terms of steps”

• Functional Programming (a.k.a. declarative programming)

• “Think in terms of functions and their composition”

• Object-Oriented Design/Programming

• “Think in terms of objects that do things”

3

© Kenneth M. Anderson, 2012

Simple Problem: Display Shapes

• Functional decomposition: break problem into small steps

• Connect to database

• Locate and retrieve shapes

• Sort the shapes (perhaps by z-order; draw background shapes first)

• Loop through list and display each shape

• Identify shape (circle, triangle, square?)

• Get location of shape

• Call function to display the shape at the given location

4

© Kenneth M. Anderson, 2012

Functional Decomposition

• Decompose big problems into the functional steps required to solve it

• For a very big problem, simply break it down to smaller problems

• then decompose smaller problems into functional steps

• Goal is to slice up the problems until they are at a level of granularity that is
easy to solve in a couple of steps

• Then arrange the steps into an order that solves all of the identified
subproblems and, presto, the big problem is solved along the way

• Extremely natural approach to problem solving; we do this almost without
thinking about it

5

© Kenneth M. Anderson, 2012

Functional Decomposition: Problems

• There are two main problems with this approach to design

• It creates designs centered around a “main program”

• This program is in control and knows all of the details about what needs
to be done and all of the details about the program’s data structures

• It creates designs that do not respond well to change requests

• These programs are not well modularized and so a change request
often requires modification of the main program; a minor change in a
data structure, for example, might cause impacts throughout the entire
main program

6

© Kenneth M. Anderson, 2012

With respect to change…

• A process-based approach to solving problems does not lead to program
structures that can gracefully react to change

• And change in software development often involves a variation on an
existing theme

• display new types of shapes

• change the way shapes are rendered

• add new functionality to the program such as being able to move the
shapes after they have been displayed

• In “main programs,” these types of changes typically cause complexity to
increase and require that lots of files have to be recompiled

7

© Kenneth M. Anderson, 2012

Why do these problems exist?

• These problems occur with the functional decomposition approach because
the resulting software exhibits

• poor use of abstraction

• poor encapsulation (a.k.a. information hiding)

• poor modularity

• If you have poor abstractions and you want to add another one, it’s often not
clear how to do it (easily)

• If you have poor encapsulation and poor modularity, changes tend to
percolate through the code since nothing prevents dependencies from
forming throughout the code

8

© Kenneth M. Anderson, 2012

Why should we care?

• As the book says

• “Many bugs originate with changes to the code”

• and

• “Things change. They always do. And nothing you can do will stop
change [from occurring to your software system].”

• We need to ensure that we do not get overcome by change requests; that we
create designs that are resilient to change;

• Indeed, we want software designs that are “designed” to accommodate
change in a straightforward manner; that is what OO A&D provides!

9

© Kenneth M. Anderson, 2012

Start of a Journey (I)

• What is the difference between abstraction and encapsulation?

• Any takers?

• How would you interpret the following statements if you heard them in casual
(admittedly nerdy) conversation?

• “That sound processing package offers a great set of abstractions!”

• “Wow, that Employee class is horrible! There is no encapsulation!”

10

© Kenneth M. Anderson, 2012

Start of a Journey (II)

• Identify which concept applies to the following statements

• “I wonder if Java’s Map class will do what I need?”

• “I wonder if I can prevent users of my library from finding out that
MyClass.id is implemented as a floating point number?”

• “I like how I can decide at run time whether my List variable will point at an
instance of LinkedList or ArrayList! I mean List’s API is fine but it’s nice to
know that I have the flexibility of picking the more efficient implementation
when my list size is small”

11

© Kenneth M. Anderson, 2012

Start of a Journey (III)

• Simple Definitions

• Abstraction refers to the set of concepts that some entity provides you
in order for you to achieve a task or solve a problem

• Simple Example: the public methods of Java’s String class

• Encapsulation refers to a set of language-level mechanisms or design
techniques that hide implementation details of a class, module, or
subsystem from other classes, modules, and subsystems

• Simple Example: In most OO programming languages, marking an
instance variable “private” ensures that other classes cannot access
the value of that variable directly

• They need to make use of a method in order to retrieve or update
that particular internal variable

12

© Kenneth M. Anderson, 2012

Start of a Journey (IV)

• So, why do we want these things?

• Why do we want good abstractions?

• Why do we want good use of encapsulation?

• Let’s transition back to design methods

• Discussion of Analysis and Requirements

• Additional Problems with Functional Decomposition

• Cohesion and Coupling

• The OO Approach

13

© Kenneth M. Anderson, 2012

Analysis

• Analysis is the phase of software development that occurs

• before design when starting from scratch

• that occurs first when responding to a change request during the
maintenance of an existing system

• Its primary goal is to answer the following question

• What is the problem that needs to be solved?

• Design is the phase that comes after analysis and its goal is:

• How am I going to solve the problem?

14

© Kenneth M. Anderson, 2012

Requirements

• Requirements for a software system are initially generated during the analysis
phase of software development and are, typically:

• simple statements of desired functional capabilities

• “the system should allow its users to sort records by priority”

• statements of non-functional capabilities

• “the system should support 10,000 simultaneous users”

• statements of constraints that must be met

• “the system will comply with regulation XYZ at all times”

15

© Kenneth M. Anderson, 2012

The Problem of Requirements (I)

• The problem? Experienced developers will tell you that

• Requirements are incomplete and do not tell the whole story

• Requirements are typically wrong

• factually wrong or become obsolete

• Requirements and users are misleading

• In addition, users may be non-technical and may not understand the range of
options that could solve their problem

• their ill informed suggestions may artificially constrain the space of
solutions

16

© Kenneth M. Anderson, 2012

The Problem of Requirements (II)

• The other problem with requirements is

• “requirements always change”

• They change because

• a user’s needs change over time

• as they learn more about a new problem domain, a developer’s ability to
generate better solutions to the original problem (or the current problem
if it has evolved) will increase

• the system’s environment changes

• new hardware, new external pressures, new techniques

17

© Kenneth M. Anderson, 2012

The Problem of Requirements (III)

• Many developers view changing requirements as a bad thing

• and few design their systems to be resilient in the face of change

• Luckily, this view is changing

• agile software methods tell developers to welcome change

• they recommend a set of techniques, technologies and practices for
developers to follow to remove the fear of change

• OO analysis, design and programming techniques provide you with
powerful tools to handle change to software systems in a
straightforward manner

18

© Kenneth M. Anderson, 2012

The Problem of Requirements (IV)

• However, this does not mean that we stop writing requirements

• They are incredibly useful despite these problems

• The lesson here is that we need to improve the way we design our
systems and write our code such that change can be managed

• Agile methods make use of “user stories”; other life cycle methods make use
of requirements documents or use cases (dressed-up scenarios that describe
desired functional characteristics of the system)

• Once we have these things, and the understanding of the problem
domain that they convey, we then have to design our system to address
the requirements while leaving room for the requirements to change

19

© Kenneth M. Anderson, 2012

The Problem with Functional Decomposition

• The book highlights a problem with code developed with functional
decomposition

• such code has weak cohesion and tight coupling

• translation: “it does too many things and has too many dependencies”

• Example

• void process_records(records: record_list) {

• // sort records, update values in records, print
records, archive records and log each operation as it
is performed …

• }

20

© Kenneth M. Anderson, 2012

Cohesion

• Cohesion refers to “how closely the operations in a routine are related”

• A simplification is to say “we want this method to do just one thing” or “we
want this module to deal with just one thing”

• We want our code to exhibit strong cohesion (a.k.a. highly cohesive)

• methods: the method performs one operation

• classes: the class achieves a fine-grain design or implementation goal

• packages: the package achieves a medium-grain design goal

• subsystems: this subsystem achieves a coarse-grain design goal

• system: the system achieves all design goals and meets its requirements

21

Code Complete by Steve McConnell;
Microsoft Press, 1993

© Kenneth M. Anderson, 2012

Coupling

• Coupling refers to “the strength of a connection between two routines”

• It is a complement to cohesion

• weak cohesion implies strong coupling

• strong cohesion implies loose coupling

• With strong or tight coupling, a single change in one method or data structure
will cause ripple effects, that is, additional changes in other parts of the
system

• We want systems with parts that are highly cohesive and loosely coupled

22

Code Complete by Steve McConnell;
Microsoft Press, 1993

© Kenneth M. Anderson, 2012

Ripple Effects

• Ripple effects cause us to spend a long time doing debugging and system
understanding tasks

• We make a change and unexpectedly something breaks

• This is called an unwanted side effect

• If we have tightly coupled code we discover that many parts of the system
depended on the code that changed

• It takes time to discover and understand those relationships

• Once understanding is achieved, it often takes very little time to actually fix
the bug

23

© Kenneth M. Anderson, 2012

Transitioning to the OO Paradigm

• Rather than having a main program do everything

• populate your system with objects that can do things for themselves

• Scenario: You are an instructor at a conference. Your session is over and now
conference attendees need to go to their next session

• With functional decomposition, you would develop a program to solve this
problem that would have you the instructor do everything

• get the roster, loop through each attendee, look up their next session,
find its location, generate a route, and, finally, tell the attendee how to
get to their next class

• You would do everything, attendees would do (almost) nothing

24

© Kenneth M. Anderson, 2012

Transitioning to the OO Paradigm

• The book asks

• Would you do this in real life?

• And the answer is (hopefully) NO!

• What would you do instead?

• You would assume that everyone has a conference program, knows
where they need to be next, and will get their on their own

• All you would do is end the session and head off to your next activity

• At worst, you would have a list of the next sessions at the front of the
class and you would tell everyone “use this info to locate your next
session”

25

© Kenneth M. Anderson, 2012

Compare / Contrast

• In the first scenario,

• you know everything, you are responsible for everything, if something
changes you would be responsible for handling it

• you give very explicit instructions to each entity in the system

• In the second scenario,

• you expect the other entities to be self sufficient

• you give very general instructions and

• you expect the other entities to know how to apply those general
instructions to their specific situation

26

© Kenneth M. Anderson, 2012

Benefits of the second scenario

• The biggest benefit is that entities of the system have their own
responsibilities

• indeed this approach represents a shift of responsibility away from a
central control program to the entities themselves

• Suppose we had attendees and student volunteers in our session and that
volunteers needed to do something special in between sessions

• First approach: the session leader needs to know about the special case
and remember to tell volunteers to do it before going to the next session

• Second approach: the session leader tells each person “Go to your next
session”; volunteers will then automatically handle the special case
without the session leader needing to know anything about it

• We can add new types of attendees without impacting the leader

27

© Kenneth M. Anderson, 2012

Revisiting the Shape system

• Recall our “display shapes” program from earlier in the lecture

• How would you rearrange it to follow this new approach?

28

© Kenneth M. Anderson, 2012

Foreshadowing

• The benefits we’ve been discussing are inherent in the OO approach to
analysis, design and implementation that we will be learning this entire
semester

• self-sufficient entities ➡ objects

• “give general instructions to” ➡ code to an interface

• “expect entities to apply those general instructions to their specific
situation” ➡ polymorphism and subclasses

• “add new attendees without impacting session leader” ➡ code to an
interface, polymorphism, subclasses

• shift of responsibility ➡ functionality distributed across network of objects

29

© Kenneth M. Anderson, 2012

As an aside...

• OO main programs tend to be short

• On the order of create an object and send a message to it

• See next slide…

30

© Kenneth M. Anderson, 2012 31

import wx1
2

from ACE.GUI.Managers.RepositoryManager import RepositoryManager3
4

class ACEApp(wx.App):5
6

 def OnInit(self):7
 8
 bmp = wx.Image("images/ace_logo.png").ConvertToBitmap()9
 wx.SplashScreen(bmp, wx.SPLASH_CENTRE_ON_SCREEN | wx.SPLASH_TIMEOUT, 500, None, -1)10
 wx.SafeYield(None,True)11
 self.repoman = RepositoryManager()12
 return self.repoman.HandleAppStart(self)13
 14
 def OnExit(self):15
 self.repoman.HandleAppQuit()16

17
if __name__ == '__main__':18
 app = ACEApp(redirect=False)19
 app.MainLoop()20

21

Create an object
Send a message to it

© Kenneth M. Anderson, 2012

iOS Main Program

• Here’s the main program (roughly) of every iOS application in existence

• It has roughly the same bootstrap code that we saw for the OS X application
that we saw in Lecture 1

• The latest version of XCode generates slightly different code but the intent
is still the same: bootstrap out of the procedural world and into OO

32

Page 1 of 1

main.m 8/25/11 8:38 AM

#import <UIKit/UIKit.h>

int main(int argc, char *argv[]) {
 NSAutoreleasePool *pool = [[NSAutoreleasePool alloc] init];
 int retVal = UIApplicationMain(argc, argv, nil, nil);
 [pool release];
 return retVal;
}

© Kenneth M. Anderson, 2012

Android Main Program

• The main program of an Android app is even shorter in that it is completely
hidden from the Android developer

• Instead, in the application manifest, you specify your initial activity

• and when your application launches, your activity’s onCreate() method is
automatically called

33

© Kenneth M. Anderson, 2012

The Object-Oriented Paradigm

• OO Analysis & Design is centered around the concept of an object

• It produces systems that are networks of objects collaborating to fulfill
the responsibilities (requirements) of the system

• Objects are conceptual units that combine both data and behavior

• The data of an object is referred to by many names

• attributes, properties, instance variables, etc.

• The behavior of an object is defined by its set of methods

• Objects inherently know what type they are. Its attributes allows it to keep
track of its state. Its methods allow it to function properly.

34

a.k.a. features

Return to Slide 41

© Kenneth M. Anderson, 2012

Object Responsibilities

• In OO Analysis and Design, it is best to think of an object as “something with
responsibilities”

• As you perform analysis (What’s the problem?), you discover
responsibilities that the system must fulfill

• You will eventually find “homes” for these responsibilities in the objects
you design for the system; indeed this process can help you “discover”
objects needed for the system

• The problem domain will also provide many candidate objects to
include in the system

• This is an example of moving from a conceptual perspective to
the specification and implementation perspectives

• Our book delves further into these three types of perspectives

35

© Kenneth M. Anderson, 2012

Objects

• Conceptual — a set of responsibilities

• Specification — a set of methods

• Implementation — a set of code and data

• Unfortunately, OO A&D is often taught only at the implementation level

• if previously you have used OO programming languages without doing
analysis and design up front, then you’ve been operating only at the
implementation level

• as you will see, there are great benefits from starting with the other
levels first

36

© Kenneth M. Anderson, 2012

Objects as Instances of a Class

• If you have two Student objects, they each have their own data

• e.g. Student A has a different set of values for its attributes than Student B

• But they both have the same set of methods

• This is true because methods are associated with a class that acts as a
blueprint for creating new objects

• We say “Objects are instances of a class”

• Classes define the complete behavior of their associated objects

• what data elements and methods they have and how these features are
accessed (whether they are public or private)

37

© Kenneth M. Anderson, 2012

Classes (I)

• The most important thing about a class is that it defines a type with a legal
set of values

• Consider these four types

• Complex Numbers ➡ Real Numbers ➡ Integers ➡ Natural Numbers

• Complex numbers is a class that includes all numbers; real numbers are a
subtype of complex numbers and integers are a subtype of reals, etc.

• in each case, moving to a subtype reduces the set of legal values

• The same thing is true for classes; A class defines a type and subclasses can
be defined that excludes some of the values from the superclass

38

© Kenneth M. Anderson, 2012

Classes (II)

• Classes can exhibit inheritance relationships

• Behaviors and data associated with a superclass are passed down to
instances of a subclass

• The subclass can add new behaviors and new data that are specific to
it; it can also alter behaviors that are inherited from the superclass to
take into account its own specific situation

• It is extremely desirable that any property that is true of a superclass is
true of a subclass; the reverse is not true: it is okay for properties that are
true of a subclass not to be true of values in the superclass

• For instance, the property isPositive() is true for all natural numbers but is
certainly not true of all integers

39

© Kenneth M. Anderson, 2012

Classes (III)

• Inheritance relationships are known as is-a relationships

• Undergraduate IS-A Student

• This phrase is meant to reinforce the concept that the subclass represents a
more refined, more specific version of the superclass

• If need be, we can treat the subclass as if it IS the superclass.

• It has all the same attributes and all the same methods as the superclass

• so code that was built to process the superclass can equally apply to the
subclass

40

© Kenneth M. Anderson, 2012

Classes (IV)

• Classes can control the accessibility of the features of their objects

• That is they can typically specify whether an attribute or method has an
accessibility of public, protected, or private.

• This ability to hide features of a class/module is referred to as
encapsulation or information hiding;

• however, encapsulation is a topic that is broader than just data hiding,
as we will discuss later in the semester

41

© Kenneth M. Anderson, 2012

Accessibility, continued

• Assume

• Object A is an instance of class X

• Object B is an instance of class Y which is a subclass of X;

• Object C is an instance of class Z which is unrelated to X and Y

• See next slide

42

© Kenneth M. Anderson, 2012

UML Model of Previous Statements

43

X

Y

Z A: X B: Y

C: Z

© Kenneth M. Anderson, 2012

Accessibility, continued

• Public visibility of a feature of class X means that A, B and C can access that
feature

• Protected visibility of a feature of class X means that A and B can access the
feature but C cannot.

• Private visibility of a feature of class X means that only A can access the
feature

• Note: these are the general definitions; different programming languages
implement these accessibility modifiers in different ways

• Consult the documentation for details specific to your favorite OO
programming language

44

© Kenneth M. Anderson, 2012

Accessibility: Quick Example

• The example code for this lecture has a simple Java program

• Classes X, Y, & Z, split between two packages foo and bar

• Test program instantiates A, B, and C and then has them call each other in
various ways

• Note: I had to split X and Y across two packages because the “protected”
modifier only follows the general definition on the previous slide when classes
are in different packages

• In Java, the protected modifier acts like “public” for classes in the same
package (!!!)

45

© Kenneth M. Anderson, 2012

Classes (V)

• Classes can control how their objects are created and destroyed

• OO Programming languages will (typically) provide “special methods”
known as constructors and destructors (a.k.a. finalizers) to handle these
two phases in an object’s life cycle

• Constructors are useful for ensuring that an object is properly initialized
before any other object makes use of it

• Destructors are useful for ensuring that an object has released all of the
resources it consumed while it was active

• Destructors can be tricky; in languages with garbage collection, an
inactive object might hang around for a significant amount of time
before the garbage collector gets around to reclaiming its space

46

© Kenneth M. Anderson, 2012

One benefit of superclasses

• Treat all instances of a superclass-subclass hierarchy as if they were all
instances of the superclass even if some are instances of subclasses

• Example

• Suppose we have the classes, Undergraduate, MastersStudent and
PhDStudent in a software system

• Problem: We may have a need for acting on all instances of these three
classes at once, for instance, storing them all in a collection, sorting by
last name and displaying a roster of the entire university

• Solution: Make all three of these classes a subclass of the class Student;
You can then add all of the students to a single collection and treat them
all the same

47

© Kenneth M. Anderson, 2012

Example rendered in UML

48

Student

Undergraduate MastersStudent PhDStudent

List *

Note: UML Notation will be discussed in Lecture 3

© Kenneth M. Anderson, 2012

Another benefit of superclasses

• Not only can you group all instances of an object hierarchy into a single
collection, but you can apply the same operations to all of them as well

• In our example, any method defined in the superclass, Student, can be
applied to all instances contained in our collection (the List of Students)

• On the following slide:

• Student has a method called saySomething() which is overridden by
each subclass to say something different

• Yet look how clean the code is…

49

© Kenneth M. Anderson, 2012 50

import java.util.LinkedList;1
import java.util.List;2

3
public class Test {4

5
 public static void main(String[] args) {6

7
 List<Student> students = new LinkedList<Student>();8

9
 students.add(new Undergraduate("Bilbo Baggins"));10
 students.add(new MastersStudent("Aargorn"));11
 students.add(new PhDStudent("Gandalf the White"));12

13
 for (Student s: students) {14
 System.out.println("" + s);15
 }16

17
 System.out.println();18

19
 for (Student s: students) {20
 s.saySomething();21
 }22

23
 }24

25
}26

27

© Kenneth M. Anderson, 2012 51

The True Power: Clean Code!

• The most powerful code in the previous example was

• Why?

• You can add as many subclasses to the Student hierarchy as you want
and this code never has to change!

• It doesn’t even have to be recompiled (demo)

• Indeed, given the right techniques, a server running this code doesn’t even
need to be “brought down”; the new subclass can be dynamically loaded
and this code will recognize instances of that subclass and do the right
thing

for (Student s: students) {
 s.saySomething();
}

© Kenneth M. Anderson, 2012

Not just Java

• The benefits of polymorphism can be realized in any OO language

• Here’s a quick demo of the same example in Objective-C

52

© Kenneth M. Anderson, 2012

Polymorphism (I)

• The previous example demonstrated polymorphism

• which literally means “many forms”

• in OO A&D it means that we can treat objects as if they were instances
of an abstract class but get the behavior that is required for their
specific subclass

• The “many forms” refers to the many different behaviors we get as we
operate on a collection of objects that are instances of subclasses of a
generic, abstract class

• We will see many examples of polymorphism as we move forward in the
semester and you will get a chance to try it out for yourself in Homework 1

53

© Kenneth M. Anderson, 2012

Polymorphism (II)

• In the book, polymorphism is defined specifically as

• “Being able to refer to different derivations of a class in the same
way, but getting the behavior appropriate to the derived class being
referred to”

• As you can see, it is not an easy thing to define! But, it is very powerful and
the “clean code” example should show why we as designers should strive to
design OO hierarchies that allow us to write polymorphic code

• There are other variations on polymorphism to learn, we will get to those in
future lectures

54

© Kenneth M. Anderson, 2012

Abstract Classes

• The classes that sit at the top of an object hierarchy are typically abstract
classes while the classes that sit near the bottom of the hierarchy are called
concrete classes

• Abstract classes

• define a set of generic behaviors for a related set of subclasses;

• act as placeholders for other classes defining method signatures that they
must implement, defining method bodies for behaviors that should be the
same across all subclasses, defining data that will be useful for all
subclasses

• In OO programming languages, abstract classes cannot be instantiated

• instead you instantiate concrete classes but access them via the
interface defined by the abstract class

55

© Kenneth M. Anderson, 2012

Summary

• In this lecture, we have touched on a variety of OO concepts

• Functional Decomposition vs. the OO Paradigm

• Requirements and Change in Software Development

• Objects, Classes (Abstract and Concrete)

• Polymorphism and Encapsulation

56

© Kenneth M. Anderson, 2012

Coming Up Next

• Homework 1: To be assigned today

• Lecture 3: UML

• Read Chapter 2 of the Textbook

• Lecture 4: More review of fundamental OO A&D concepts

57

