TEST DRIVEN DEVELOPMENT

Red, Green, and Refactor to Rule them All




THE DARK LORD SAURON HAS A PROBLEM!

Now that all those mean old elves, dwarves and
humans have rings of power, they feel like they can
run around doing whatever they want.

That’s not very fairl Why can’t Sauron rule the world
for a change?




BUT THEN, HE HAS AN IDEA!

«  Why not create...




ONE RING TO RULE THEM ALL!

Bet you couldn’t see that one coming

But how to build it?




JUMPING RIGHT IN!

Never being the most patient of dark lords, Sauron decides to get coding straight away.

Taking out his laptop of ultimate doom, he codes well into the night, until he over nine
thousand classes and eleventy billion functions.

Finally, he is ready to test his code. With eager anticipation, he presses the play button in
his trusty IDE of Ultimate Doom.

| can’t wait to
run this awesome




BUT THERE'S A PROBLEM!

Instead of ruling them all as anticipated, Sauron’s ruleAll() function spews out an angry
red exception!

Jaggregator-admin
L basiclucene
] homework4-piano-lessons
> luceninator public static void main( [] args )
nering
¥ (& src/main/javal
v £} edu.colorag
» |J] App.jav
» |J] LesserRi
» |J] Ring.jav|
> (B src/test/java
» =, JRE System LiH
» £, Maven Depend
> = src
> (=target
M pom.xml —wusole &3 History | 4 Search | Ju Junit
L] ScrewingWithSe| . p by
Caservers \ .«ated> App (1) [Java Application] /System/Library/Frameworks /JavaVM.framework/Versions/1.6.0/Home /bin/java (|
- ! _eption in thread n Lang ut 3
] videostore - - -

oneRing = Ring();
oneRing.ruleall(

Nl




UNFORTUNATELY, SAURON HATES UML
DIAGRAMS

Sauron starts making some diagrams, but he finds the process tedious and bureaucratic

He gets so frustrated he sets fire to an innocent hobbit village

ruleAll()




SUDDENLY, GANDALF APPEARS!










s
0p)
<C
LL]
@
—
<C
1
—




SURE, WHY NOT?













TEST DRIVEN DEVELOPMENT

Test driven development means understanding what you want your code to do before you
actually write it

Write tests for the functionality you want your code to have, not the code you have
already.

There are many languages and frameworks that support test driven development, but for
this demonstration, we will be using Elvish Java with Numenorian J-Unit.

The first thing you want to do is make a failing test.




A SIMPLE FAILING TEST

import org.junit.¥;
public class

@Test
public void ring_test{) {

{2 Problems &l console =/ History ,v"'Search @ U JUnit 23
Finished after 0.042 seconds

Runs: 1/1 B Errors: 0 B Failures: 1

¥ gt edu.colorado.mcnultym.onering.RingTest [Runne = Failure Trace
g ring_test (0.025 s) J0 java.lang.AssertionError:

= at edu.colorado.mcnultym.onering.RingTest.ring_test(RingTest.java:11)







)
-
©

©
i e

Py

—

o
w

T

(5]
£
iy

O
=2
(am]
x







THE TDD CYCLE

« To understand TDD, you must understand the following cycle:

«  Write a small, failing test
» Make the smallest possible change to make the test pass

» Refactor mercilessly










SO WHERE TO START?

«  The most obvious first step is to make a list of the things we want our code to accomplish.
In our case:

* The One Rina shall bear the followina inscription:;

4|Three Rings for the Elven-kings under the sky,

5|Seven for the Dwarf-lords in their halls of stone,
6|Nine for Mortal Men doomed to die,

7|0ne for the Dark Lord on his dark throne

g/In the Land of Mordor where the Shadows lie.

910ne Ring to rule them all, One Ring to find them,

18|/0ne Ring to bring them all and in the darkness bind them
11]In the Land of Mordor where the Shadows lie.

« The One Ring shall have control of the following:

* The Three Elven Rings
« The Seven Dwarven Rings

« The Nine Human Rings










OUR FIRST (REAL) TEST

» First let’s test that the code has the inscription

public class

el @Test

16 public void ring_should_have_correct_inscription{} {
ring = new {};
inscription = ring.getInscription();

assertTrue(inscription.contains{"One Ring to rule them all"));










A RUDIMENTARY RING CLASS

cage edu.colorado.mchultym.onering;

getInscription{) {

mEimn e
pti1ion,







FAILING TEST

a 23 |J] OneRing.java

edu.colorado.mchultym.onering;
static org.junit.Assert.*;

org.junit.*;

@Test
public void ring uld_haw :Drrect_inscription() {
ring = new OneRing();
inscription = ring.getl ription{);
"One Ring to rule them all"));

(U

{2 Problems Console | & History | ) Search | U JUnit 23
Finished after 0.059 seconds

Runs: 1/1 B Errors: 1 B Failures: 0

¥ gkl edu.colorado.mcnultym.onering.RingTest (R er: JUnit 4 = Failure Trace
g1 ring_should_have_correct_inscription (0.019 s 30 java.lang.NullPointerException

= at edu.colorado.mcnultym.onering.RingTest.ring_should_have_correct_inscription




ASSERTIONS

Assertions, as the name suggests assert whether a given condition holds or not

Our assertion makes sure that the inscription contains the text “One Ring to Rule them All”

Right now our assertion fails because inscription is null. If we fill inscription with a garbage
variable, we’ll get a more legitimate failure:

|J] RingTest.java |J] OneRing.java

package edu.colorado.mcnultym.onering;

n = "My Precious";

getInscription() {
nscription;

[2/ problems | El Console | [ History | 4 Search |gi! Junit &2
Finished after 0.013 seconds

Runs: 1/1 B Errors: 0 B Failures: 1

¥ @] edu.colorado.mcnultym.onering.RingTest [Runne Jnit 4] (0.000 s) = Failure Trace

g/ ring_should_have_correct_inscription (0.000 s) J java.lang.AssertionError:

= at edu.colorado.mcnultym.onering.RingTest.ring_should_have_correct_inscription







A PASSING TEST

(J] RingTest.java \J| OneRing.java &3

package edu.colorado.mchultym.onering;
nubli Ll r
public class {
inscription = "One Ring to rule them all";

public getInscription() {
return inscription;

(% Problems El Console @1 History | <) Search mU JUnit bX{
Finished after 0.008 seconds

Runs: 1/1 B Errors: 0 B Failures: 0

P Ft edu.colorado.mcnultym.onering.RingTest [Runner: JUnit 4] (0.000 s) = Failure Trace










FAILING ONCE MORE

package edu.colorado.mchultym.onerings;

rt stotic org.junit.Assert . *;

rt org.junit.*;
blic class

el | @Test
16 public void ring_s

ring 1ew OneRing();

Inscription = "Three Rin
for the Dwarf-lord

"One for the Dark Lord on h
"In the Land of Mordor where the
"One Ring to rule th

nould_have_correct_inscription

inscription = ring.getInscription{};

in their hal
"Nine for Mortal Men doomed to die

+

all, One Ring t My
"One Ring to bring them all and in the darkn
"In the Land of Mordor where the Sha

bind them " +
lie.

£ True(inscription.contains("One Ring to rule them all"));
erfIrue(inscription.equals(testInscription));

Problems E‘ Console 5] History | 4 Search g'l:,“JUnit =3

inished after 0.012 seconds

Runs: 1/1 B Errors: 0

¥ @l edu.colorado.mcnultym.onering.RingTest [R
g1 ring_should_have_correct_inscription (0.000 s)

B Failures:

Failure Trace

Jg java.lang.AssertionError:

= at edu.colorado.mcnultym.

ering.RingTest.ring_should_have_correct_inscription(Ri




NOW BACK TO GREEN

package edu.colorado.mchultym.onering;
public class {
ihscription;
public OneRing() {
NSCYr1ptlo
n for Dwarf-Le
Nine for Mortal Men doom
"One for the Dark Lord on h
"In the Land
"One Ring to rule them all, One Ring to find t

"One Ring to bring them all and in the darkn
"In the Land of Mordor where the Sh s lie.

Problems Console 5] History

lished after 0.007 seconds

)’ Search |gu JU

Runs: 1/1 B Errors: 0 B Failures: 0

Fjt] edu.colorado.mcnultym.onering.RingTest [Runne nit 4 s) = Failure Trace




REFACTOR MERCILESSLY!

Now that we're testing for the whole screen, we don'’t really need the first assertion
statement, so we’'ll remove it.

@Test

public void ring_ihmuld_hnve_cnrrect_inicriptimn{} {
ring = new OneRing();
inscription = ring.getInscription();

testlnscription = "Three Rings for the Elven-kings under the sky
"Seven for the Dwarf-lords in their halls of stone, " +
"Mine for Mortal Men doomed to die, " +
"One for the Dark Lord on his dark throne " +
"In the Land of Mordor where the Shadows lie. " +
"One Ring to rule them all, One Ring to find them, " +

"One Ring to bring them all and in the darkness bind them " +

"In the Land of Mordor where the Shadows lie.";

A
1)

asserfTrue{inscription.equals(testInscription));







WRITE ATEST AND GET IT TO COMPILE!

package edu.colorado.mchultym.onering;
import java.util.List; void r 1 ng_:izf'u:ll.l ldj'::':'r'f_"r':' L
ring = new OneRing()

<£ lvenRing= elvenRings =
o Y

tTrue(elvenRings.size()

I 3
L
“iptiong

£ lvenRing= elve
ic OneRing() {

nscription = "Three Rings for the Elven
n for the Dwarf-lords in their halls

"Nine for Mortal Men doomed to die, " +
"One for the Dark Lord on his dark throne
"In the Land of Mordor where the Shadow:
"One Ring to rule them all, One Ring to find them, " +
"One Ring to < bind them " + public class
"In the Land

package edu.colorado.mchultym.onering;

public void printMessage() {
out.printn{"I'm an elvish ring! I'm pretty and fair!");
£

getlnsc i
{"Sauron rules me!");

cription; out.println

public <E lvenRing> getElvenRings() {

return elvenRings;

1
J




WATCH IT FAIL

|J| OneRing.java |J| ElvenRing.java

je edu.colorado.mchultym.onering;

static org.junit.Assert.*;

java.util.List;

org.junit.*;

class {
public void ring_should_have_correct_inscription() {[]
@Test
public void ring_should_control_three_elven_rings() {

ring = new OneRing();

<E lvenRing= elvenRings = ring.getElvenRings();
assertTrus(elvenRings.size) == 3);

{2 Problems | E] Console | 5/ History | 4" Search |gu Junit 22
Finished after 0.039 seconds

Runs: 2/2 B Errors: 1 B Failures: 0
¥ pit] edu.colorado.mcnultym.onering.RingTest [Runne Init 4] s) = Failure Trace

gEiring_should_have_correct_inscription ) J-java.lang.NuIIPointer[xception
gi=iring_should_control_three_elven_rings (0.000 s) = at edu.colorado.mcnultym.onering.RingTest.ring_should_control_three_elven_rings(RingTest.java:32)




MAKE IT PASS

|J] RingTest.java |J] OneRing.java 23 |J] ElvenRing.java

package edu.colorado.mchultym.onering;

port java.util.ArrayList;
import java.util.List;

public class {

inscription;
<ElvenRing= elvenRings;

public OneRing() {

this.

"One for the

"In the Land S

"One Ring to them,

"One Ring to bring them all and in the darkn bind them " +
"In the Land of Mordor where the Sh

elvenRings new ArraylList<ElvenRing=();
for (int A3 1 < 35 i++) {
elvenRings .add{new ElvenRing{));

1
g

[2( Problems E'Console 51 History | 4y Search D'L
Finished after 0.011 seconds

Runs: 2/2 B Errors: 0 B Failures: 0

P Fit]edu.colorado.mcnultym.onering.RingTest = Failure Trace




REFACTOR MERCILESSLY

Notice that both of the tests start by instantiating a new OneRing object

Not only is this problematic, because it is the One Ring, not the Many Rings, but it also
looks a lot like duplicate code

Fear not, however, because the @Before annotation comes to the rescue

This method creates a new OneRing at the beginning of the test that can be used for all

the subsequent tests




SETUP METHOD WITH @BEFORE ANNOTATION

public class
private

@Before

public void forge_ring() {
this.ring = new Dneﬁing(};

1

J

@Test
public void ring_should_have_correct_inscription() {
inscription = ring.getInscription{);

testInscription = "Three Rings for the Elven-kings under the sky
'Seven for the Dwarf-lords in their halls of stone, " +

"Nine for Mortal Men doomed to die, " +

"One for the Dark Lord on his dark throne " +

"In the Land of Mordor where the Shadows lie. " +

"One Ring to rule them all, One Ring to find them, " +

"One Ring to bring them all and in the darkness bind them "

"In the Land of Mordor where the Shadows lie.";

N .
A

assertIrue(inscription.equals{testInscription

¥
@Test
public void ring_should_control . {
<£ lvenRing= elvenRings i
assertrue{elvenRings.size(













ALL THE TESTS PASS, BUT WHAT A MESS!

1 J package edu.colorado.mchultym.onering;

ava.util.ArrayList;
ava.util.List;

N
1

- i a0
| public I_Irn:Flng{; {

scription = "Three Rings for the Elven

en for the Dwarf-lor in their halls o
"Nine for Mortal Men doomed to die
"One for the Dark Lord on h
"In the Land
"One Ring to rule thi
"One Ring to bring them all and in the darkne
"In the Land of Mordor where the Sh 3

(List<E lvenRing=(
iv+)

v ElverRi ng{));

new Arraylist<DwarvenRing=();
i<7; i++) {
15 .add{new DwarvenRing());

new Arraylist<HumanRing={);
A3 1 < 9; 1++) {

manRings .add{new HumanRing());

getInscription() {

- getElvenRings() {










CLEANER CONSTRUCTOR

We really don’t need all the ring creation steps to take place in the constructor, so let’s put
that stuff in its own separate function.

public OneRing() {

this. inscription = "Three Rings for the Elven-kings under the sky, " +
"Seven for the Dwarf-lords in their halls of stone, " +

"Nine for Mortal Men doomed to die, " +

"One for the Dark Lord on his dark throne " +

"In the Land of Mordor where the Shadows lie. " +

"One Ring to rule them all, One Ring to find them, " +

"One Ring to bring them all and in the darkne: ind them " +

"In the Land of Mordor where the Shadows lie.";

gainControl0fRings{);

oid gainControlOfRings{) {
Rings = new ArrayList<ElvenRing={)
1t i= i < :i_: i++:| {
Rings.add{new ElvenRing{));

new ArraylList<DwarvenRing={);
< 73 i++) {

w ArraylList-HumanRing=();
int i=08;1<9; i++) [
manRings .add{new HumanRing{));

NSAY










THE RING OF POWER CLASS

By creating an abstract RingOfPower class, we are able to remove a lot of duplicate code.

public class ¢
package edu.colorado.mchultym.onering;
5@ @0verride
£ public void printMessage() {
out.printn{"I'm an elven ring! I'm pretty and fair!");
.out.print ln{this.getMessage
=zage = "Sauron rules me!"

b

getﬂeggage{} {

return this.message; ,J"“"’" class

@lverride

id print )RS

sage() {
cout.printin("I'm a Ven T should go mine some shiny objects now!");
.out.printn{this.get

void printMessage();

public class

&l | @verride

6 public void printMessage() {
out.printtn{"I'm a human ring! I corrupt the souls of men!");
.out.println{this.getMessage




NEW AND IMPROVED RING COLLECTION

Now we can remove the duplication in the OneRing class

gainControlOfRings();

v void gainControlOfRings{) {
=lvenRings = new st<RingOfPower={);
S = new Ar L<RingOf Power={);
ng0f Power={);

elvenRingTemplate = new ElvenRing();
dwarvenRingTemplate = new DwarvenRing();
humanRingTemplate = new HumanRing();

controlRings(elvenRings, 3, elvenRingTemplate);
controlRings{dwa Rings, 7, dwarvenRingTemplate);
controlRings{hunanRings, 9, humanRingTemplate);

private void controlRings( <Ring0fPower= rings, int numberToControl,
for (int 1 = 8; i < numberToControl; i++) {

rings.add{ringToAdd);

ringToAdd) {













RED

@Test
public void ring_s ':n_Jld_rl_IlEe_ull_ring:z:_u:xf_pu:ﬂ.v.'r:er{} {
<Ring0fPower= all = ring.getAlIRings();
ring.rulefall);
ro:all) {
erf True(r .ruled());

(% Problems E] Console 51 History | < Search g;'l; Junit 23
Finished after 0.08 seconds

Runs: 5/5 B Errors: 1 B Failures:

¥ gt] edu.colorado.mcnultym.onering.RingTest [Runner: JUnit 4] (0.001 s) = Failure Trace
FE] ring_should_have_correct_inscription s) Jo:




package edu.colorado.mchultym.onering;

public abstract class R fPow {

G REEN ) private boolean ruled = false;

protected getMessage() {
if (Ithis.ruled) {
public <Ring0fPower= getAllRings{) { C return "I am a free ring!";
<Ring0fPower= allRings = new ArraylList<RingOfPower={); L } else {
allRings.addAl L {elvenRings); return "I am ruled by Sauron!";
al lRings.addA | L {dwarvenRings);
allRings.addA L L {hunanRings);

Y
m 5

= SR (R
bt s

1
J

roturn al IRings: public abstract void printM ]E’(}.
public void setRuled{boolean ruled) {
this.ruled = ruled;
<RingOfPowers= all) { 19 this.printMessage();
ring : all) { -
ring.setRuled{true);

M SO

-J =J ;-] -] =J

o

N
r
I
L
return this.ruled;

i
J

L Problems 5 Console 5: History | 4 Search D"r
Finished after 0.013 seconds

Runs: 5/5 B Errors: 0 B Failures: 0

» Ft) edu.colorado.mcnultym.onering.RingTest [Runne nit 4] (O s) = Failure Trace




f’_ Problems onsole &3 51 History < Search D'L JUnit

<terminated> RingTest [JUnit] /System/Library/Frameworks/JavaVM.frame
I'man elven ring! I'm pretty and fair!

I am ruled by Sauron!
I'm an elven ring! I'm pretty and fair!
A I am ruled by Sauron!
I'm an alven rinal 'm pretty and fair!
‘ne some shiny objects now!
hiny objects now!
s how!
now!
now!
now!
_ shiny objects now!
f men!

"I'n a human ring! I corrupt men!
I am ruled by Sauron!
I'm a human ring! I corrupt the souls men!
I am ruled by Sauron!
I'm a human ring! I corrupt > souls of men!
I am ruled by Sauron!
I'm @ human ring! I corrupt souls of men!
I am ruled by Sauron!
I'm a human ring! I corrupt souls of men!
I am ruled by Sauron!
I'm a human ring! I corrupt souls men!
I am ruled by Sauron!
I'm a human ring! I corrupt souls of men!
I am ruled by Sauron!
I'm @ human ring! I corrupt 3. f men!
I am ruled by Sauron!










CONCLUSION

Test driven development leads to cleaner code

By writing tests before writing production code, we have a clearer idea of requirements
and only create code that fits within the requirements — no extra bloat

The refactoring step ensures duplicate code is removed, and that it is done often enough
that the amount of duplicate code never gets out of hand

In other words, TDD rules (them all)!




FURTHER READING

If you liked this presentation and would like to learn more, please check out the following

very excellent books:

JRIVEN

TEST-DRIVEN

Java Deovelopers

DEVELOPMENT - ke

l:' )

KenT BECK

J.R. R,

TOLKIEN
THE

SILMARILLTON.

EROTID BY CHIUSTOSHER TULKIEN

Iustrated by Ted Nasomith




