
Red, Green, and Refactor to Rule them All

TEST DRIVEN DEVELOPMENT

THE DARK LORD SAURON HAS A PROBLEM!
•  Now that all those mean old elves, dwarves and

humans have rings of power, they feel like they can
run around doing whatever they want.

•  That’s not very fair! Why can’t Sauron rule the world
for a change?

BUT THEN, HE HAS AN IDEA!
•  Why not create…

ONE RING TO RULE THEM ALL!
•  Bet you couldn’t see that one coming

•  But how to build it?

JUMPING RIGHT IN!
•  Never being the most patient of dark lords, Sauron decides to get coding straight away.

•  Taking out his laptop of ultimate doom, he codes well into the night, until he over nine
thousand classes and eleventy billion functions.

•  Finally, he is ready to test his code. With eager anticipation, he presses the play button in
his trusty IDE of Ultimate Doom.

BUT THERE’S A PROBLEM!
•  Instead of ruling them all as anticipated, Sauron’s ruleAll() function spews out an angry

red exception!

UNFORTUNATELY, SAURON HATES UML
DIAGRAMS
•  Sauron starts making some diagrams, but he finds the process tedious and bureaucratic

•  He gets so frustrated he sets fire to an innocent hobbit village

OneRing

ruleAll()

SUDDENLY, GANDALF APPEARS!

I know we are normally foes, but I
cannot stand by and let you burn
down any more hobbit villages, so

I’ll help you with your plight.

Do not despair, there is a better
way!

Why not write the tests before you
write the code?

HUH?

I appreciate the advice, but how
on Middle Earth am I supposed to
write tests for code I haven’t even

written yet?

THAT’S EASY!

That’s easy! You just have to use
…

Test Driven Development!

SURE, WHY NOT?

Well, if it will help me gain
supreme dominance over Middle
Earth, I suppose it’s worth a shot.

What’s that?

Nothing, nothing. Shall we get
started?

Very well then. Let’s begin.

TEST DRIVEN DEVELOPMENT
•  Test driven development means understanding what you want your code to do before you

actually write it

•  Write tests for the functionality you want your code to have, not the code you have
already.

•  There are many languages and frameworks that support test driven development, but for
this demonstration, we will be using Elvish Java with Numenorian J-Unit.

•  The first thing you want to do is make a failing test.

A SIMPLE FAILING TEST

Wait a second … why would we
want to do that? Don’t we want to

start with a test that passes?

YOU SHALL NOT PASS!!!

*Disclaimer: Sorry, I had to.

… Yet. The initial failing test is
just to confirm that the test is

being run properly. But now we
need to make sure it’s actually

testing something.

THE TDD CYCLE
•  To understand TDD, you must understand the following cycle:

•  Write a small, failing test

•  Make the smallest possible change to make the test pass

•  Refactor mercilessly

I like to do things mercilessly!

… Sigh. I know you do, Sauron.
Let’s continue, shall we?

SO WHERE TO START?
•  The most obvious first step is to make a list of the things we want our code to accomplish.

In our case:

•  The One Ring shall bear the following inscription:

•  The One Ring shall have control of the following:

•  The Three Elven Rings

•  The Seven Dwarven Rings

•  The Nine Human Rings

That looks a whole lot like a
Requirements Document.

Patience. It is acceptance
criteria. We will be writing actual

code soon.

OUR FIRST (REAL) TEST
•  First let’s test that the code has the inscription

Hey, that code doesn’t even
compile!

You are correct. The next step is
to write the minimum amount of

code necessary to make it
compile.

A RUDIMENTARY RING CLASS

Now that we run the test, it
should fail.

FAILING TEST

ASSERTIONS
•  Assertions, as the name suggests assert whether a given condition holds or not

•  Our assertion makes sure that the inscription contains the text “One Ring to Rule them All”

•  Right now our assertion fails because inscription is null. If we fill inscription with a garbage
variable, we’ll get a more legitimate failure:

Now let’s get that test to pass!

A PASSING TEST

Well sure, the test passes, but it
doesn’t do what I wanted it to do.
I want the ring to have the whole

inscription!

Of course. We’re getting to that.
The next step is to refactor and

remove duplicate code. We don’t
have any duplicate code yet, but

our test could use some more
assertions.

FAILING ONCE MORE

NOW BACK TO GREEN

REFACTOR MERCILESSLY!
•  Now that we’re testing for the whole screen, we don’t really need the first assertion

statement, so we’ll remove it.

And so the cycle continues.

WRITE A TEST AND GET IT TO COMPILE!

WATCH IT FAIL

MAKE IT PASS

REFACTOR MERCILESSLY
•  Notice that both of the tests start by instantiating a new OneRing object

•  Not only is this problematic, because it is the One Ring, not the Many Rings, but it also
looks a lot like duplicate code

•  Fear not, however, because the @Before annotation comes to the rescue

•  This method creates a new OneRing at the beginning of the test that can be used for all
the subsequent tests

SETUP METHOD WITH @BEFORE ANNOTATION

This is all a lot of fun, but so far
all our refactoring has been of the

test code itself. Is this normal?

The refactoring of the production
code is perhaps the most

important part, but so far we
haven’t needed to.

Let’s skip ahead to some hours
later, after we have dutifully test
driven the design of the other

rings.

ALL THE TESTS PASS, BUT WHAT A MESS!

This is terrible object oriented
code! I thought TDD was

supposed to give us good, clean
code!

That’s why the refactor step is so
important! Let’s get rid of that

duplicate code!

CLEANER CONSTRUCTOR
•  We really don’t need all the ring creation steps to take place in the constructor, so let’s put

that stuff in its own separate function.

Well, this is better, but all those
for loops look awfully similar. And

also, the three different ring
classes are really similar too!

You learn quickly! Yes, there’s a
lot of duplicate code here, so let’s

think of a way to clean it up.

THE RING OF POWER CLASS
•  By creating an abstract RingOfPower class, we are able to remove a lot of duplicate code.

NEW AND IMPROVED RING COLLECTION
•  Now we can remove the duplication in the OneRing class

Wow, that is a lot better! Thank
Morgoth for refactoring!

Now for the final phase of my
plan … Ruling them All!

All right, let’s do this one more
time!

RED

GREEN

Woo hoo! Look at my ring! It
rules them all! … I guess I could

still use to do some more
refactoring, though.

REFACTOR?

There is probably always more
refactoring to do, but it looks like

you’re on a good path!

Oh wait, did you say rule ALL the
rings? Well, that was a mistake.

Great, now I’d better go find
some hobbits…

CONCLUSION
•  Test driven development leads to cleaner code

•  By writing tests before writing production code, we have a clearer idea of requirements
and only create code that fits within the requirements – no extra bloat

•  The refactoring step ensures duplicate code is removed, and that it is done often enough
that the amount of duplicate code never gets out of hand

•  In other words, TDD rules (them all)!

FURTHER READING
•  If you liked this presentation and would like to learn more, please check out the following

very excellent books:

