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What does OO mean? 
• “Object-Oriented”: 

• begs several questions: 

• How do mainstream languages {Java, C++, Python, ...} support 

objects?  

• Why do we need to formalize OO languages? Is there even a 

need? 

• brings semantically unique changes “under the hood”: 

• Let’s look at these changes in detail. 



Formalisms? 
• It’s important to be formal about our ideas in order to prove them sound 

and correct.  

• “Soundness” iff all expressions w.r.t (with respect to) a feature F 

follow its inference rules truthfully.  

• “Correctness” iff all expressions that are true w.r.t F can be proved. 

• Otherwise, we wouldn’t be 100% sure that the features we rely on 

should not be relied on! 

• We wish to do this for the semantics of our programming language. 

Both soundness and completeness are converses of each other, but 

together they allow us to add features in our languages with 

confidence. 



A Programming Language 
• A programming language is a well-defined mechanism for communicating higher-

order instructions to a computer: 

• Every language has a syntax (grammar): In Backus-Naur Form (BNF), it can be 

expressed as a set of permissible tokens that can together express a program in 

that language: 

• Ex: p ::= int | char | boolean | short | long | byte | double | float 

• What values can p take on? What is p? 

• Every language is defined by its semantics. They convey the meaning behind 

expressions formed by the syntax of the language.  

• Three types of semantics studied: {Denotational, Operational, Axiomatic} 

• I won’t define them, but most of this discussion revolves around the semantics 

of OO languages. 



OO Features 

• From a high level, we take a lot of OO features for granted: 

• {Subtyping, Inheritance, Polymorphism, Generics, …} 

• Formalizing these ideas concretely can be a lot to swallow (and is 

obviously not exhaustive), but it enables us to see how these high-

level OO language features are constructed. 

• We’ll start by building some concepts of objects and their related 

features. 

• Then, we will examine subtyping, polymoprhism, and inheritance 

features in formal detail. We’ll also draw from some relevant literature 

to reinforce our understanding of them. 



What is an Object? 
• OOA&D: A representation of data with responsibility that exhibits a specific behavior! 

• A little more concretely: A data structure with representation (encapsulation) of 

internal state, access to that state via methods (functions), and a type. All of this 

specifies behavior. 

• A type is a parameterization to describe an object as a first-class entity within a 

program. If we want to pass an object around, we need to define its type. 

• Type systems are used within programming languages to define type 

hierarchies where OO functionality (i.e. polymorphism) is possible. 

• What happens when an object is casted to a wrong type during runtime? 

• IllegalCastException in Java. However, if we didn’t have these 

boundaries, languages like Java wouldn’t be type safe! 



An Abstraction for the Object 
• Let’s restrict our view of what an object is, which can be represented in a number 

of different ways. 

• One way to model an object is to describe it as a record of attributes, which is a 

data structure with an aggregate type of all of its fields: 

• R = {a := 5, b:= true, c:= λx:Int.x} : {a: Int, b: Bool, 

c: Int->Int} 

• Generally, “a : T” denotes the variable “a” having the type “T”. 

• The attributes “a” and “b” are of type integer and boolean respectively, and “c” is a 

lambda function of type “Int -> Int”, since it accepts an Integer argument and 

returns it. 

• “Int -> Int” can be thought of as the type for the lambda expression λx.x, which is 

an idempotent function (“identity function”). It simply returns its own argument. 



Attribute Value 

a 5 

b True 

c λx.x 

R 

• So, with this object abstraction, we can do things with R just like we can do things 

with objects in Java, C++, or Python. For example: 

>> Let R = {a:= 5, b:= True, c:= λx:Int.x} in 

>> print R.a; 

>> Let d = (R.c)(R.a) in 

>> print d; 

• What does this program do? (don’t worry about program syntax) 

• We create a record R with three attributes (as shown previously) and then print 

“a” to the output stream. 

• Then, we create a local variable “d” that is assigned to the function application 
(function call) of R.c with R.a, which will yield 5. Then, we print “d” to the output 

stream. 



Functions 
• What’s this lambda function? 

• The lambda function is a mathematical notation used in the lambda calculus 

invented by Church in the 1920’s to reason about computable expressions (i.e. 

functions). It is a Turing-complete language. 

• A lambda function (λx.t) is the basic lambda abstraction, which is the core 

value of the lambda calculus grammar: 

t ::=    x     variable  

     | t t      application 

     | λx.t     abstraction 

• The lambda calculus is like a “computational substrate” that allows us to reason 

about functions in our programming languages [4]. 



• Lambda functions can be assigned to variables, assuming we have 

function references: 

 >> Let R.c = λn . If (n == 0) return 1 else return n * 

 factorial (n – 1) in 

 >> print (R.c) (R.a); 

• What does this program do? 

• We access the field “c” within our record object R and assign it to 

have the value of a new lambda function, which computes the 

factorial of the input argument n. 

• In this case, we know from the previous example that R.a = 5, so 

the function application of (R.c)(R.a) can be expressed as (λn 

. Factorial) (R.a), which returns factorial (5) = 120. We print 

the answer to the output stream. 



• We treat our object R like a record, but objects and records are subtly different. 

• Records are compound data structures that hold fields and functions (as we have seen with the 

lambda calculus). They are accessible and modifiable, and objects are essentially implementations of 

a record. Think of records as C-style structs. 

• But what makes an object different than a record? 

• An object is constructed from a class, a blueprint that defines all of its instance variables and 

methods that are accessible in the scope where the object was constructed. Records are not 

constructed from a class. 

• Records do not have a uniform type. Instead, their type is constructed from the sum of its parts 
(ex. R={a:int, b:Bool, c: Int -> Int}). Behind the scenes, objects mimic types like 

records [5], but in practice their class defines their type. 

• Furthermore, object attributes are accessed at runtime using a lookup algorithm called dynamic 

dispatching. It maps the message call (such as R.c) with the actual attribute found within the 

object and returns it, a technique that cannot be done at compile-time. Therefore, it is a run-time 

mapping. 

Objects vs. Records 



Dynamic Dispatching 
• Dynamic Dispatching allows for polymorphic behavior, when an object B extends 

A (B : A), and a call is made to a function in B’s class that is implemented in A.  

newA = λ_:Unit . let x = ref in {doFunctionA() := (λ_:Unit.return 1)}; 

newB = λ_:Unit . let x = ref in {doFunctionA() := (λ_:Unit.return 1), 

doFunctionB() := (λ_:Unit.return 2)}; 

>> let b = newB in print b.doFunctionA(); 

• This shows that we initialize an object “b” of type B (b: B) via a lambda function 

that generates objects of type B (called a constructor). Then, with “b”, we call a 

method found in B’s parent class A. The print command will print out “1” to the 

output stream. 

• The underscore (“_”) accounts for any arbitrary input parameter of type Unit. 

Since our constructor functions newA and newB don’t account for any input 

parameters, we don’t have to care about them. 



• Since the newB constructor extends the newA constructor by including a 

doFunctionB(), we can say that B <: A. In other words,  B is a subtype of A. 

• Subtyping (also known as polymorphism) is an OO feature that allows the 

programmer to instantiate types that can be upcasted to higher types. This gives 

power to the programmer to treat in the same way instances of classes that may 

exhibit different behavior because their types vary along the type hierarchy. 

• In our previous example, we had our object b : B call a function in its parent class A 

because B <: A. Subtyping allows the safe handling of type casting of B to A 

because the type system recognized that the types did in fact match! 

• In Java, our object hierarchy defines the type hierarchy of all types. The top of the 
hierarchy is the Object, and the bottom is void. In C++, there is no type hierarchy. 

How about in Python? 

Subtyping 



• In [3], Felleisen and Flatt describe a subset of the Java language called MiniJava, 

which makes it easier to understand how OO features like subtyping and inheritance 

are implemented. 

• Suppose we wanted to create a class for Fish and an extension of that class called 

ColoredFish. The class structure is represented in the next slide. 

P = c c .... M      Program 

c = class c extends c {f f ... m m}  Class Declaration 

f = T f = V      Field Declaration 

m = T m (T X, ... ,T X) { M }   Method Declaration 

c = A class name or Object, f = A field name, m = A method name, X = A variable 

name or  this, T = A type, M = An expression, such as X, null, M:c.f (field access), 

M:c.M (M,… M) (method call), (c)M (cast), etc… 

More familiar ways to abstract objects? 



 

• MiniJava Syntax: 

class Fish extends Object { 

 num size = 1 

 num getWeight(){this:Fish.size} 

 num grow(num a){this:Fish.size := (+ a this:Fish.size)} 

 num eat(Fish f){this:Fish.grow(f:Fish.getWeight())} 

}//end class 

Class ColoredFish extends Fish { 

 num color = 7 

 num getWeight(){* super:Fish.getWeight() this:ColoredFish.color}  

}//end class 

 



• A Program P in MiniJava consists of class declarations c1, c2, c3, … cN, 

followed by program expressions to be run. There is no main method in MiniJava. 

Fish f  = new Fish(); 

ColoredFish coloredF = new ColoredFish(); 

F.eat(coloredF); 

• After the class declarations, we instantiate two new variables f and coloredF of 

type Fish and ColoredFish, and then we call f’s method eat(), which accepts a 

Fish type and thus increments the size of the underlying Fish (f). 

• Subtyping is precisely shown here; MiniJava accepted the coloredF : 

ColoredFish into the eat() method because coloredF : ColoredFish <: 

Fish. Inheritance allows the reuse of superclass functionality when getWeight() 

was called from the ColoredFish class. Method overriding was shown when 

ColoredFish implemented getWeight() again. 



• Among some of the properties that are proved sound in [4], here are a few that are straightforward: 

𝐶𝑙𝑎𝑠𝑠𝑒𝑠𝑂𝑛𝑐𝑒 𝑃  𝑖𝑓𝑓 
 𝑐1, 𝑐2, … , 𝑐𝑛  ∈ 𝑃 → 𝑐𝑖  ≠ 𝑐𝑗  

 
𝑂𝑏𝑗𝑒𝑐𝑡𝐵𝑢𝑖𝑙𝑡𝐼𝑛 𝑃  𝑖𝑓𝑓  

𝑐𝑙𝑎𝑠𝑠 Object ∉ 𝑃 

 

𝐶𝑙𝑎𝑠𝑠𝑒𝑠𝐷𝑒𝑓𝑖𝑛𝑒𝑑 𝑃  𝑖𝑓𝑓  
𝑐 ∈ 𝑃 → 𝑐 = Object 𝑜𝑟 (𝑐𝑙𝑎𝑠𝑠 𝑐 ∈ 𝑃) 

• The ClassesOnce property shows that for all classes defined in a program P, there should not be any 

duplicate classes. 

• ObjectBuiltIn is the property that ensures the class Object is not defined within P. Object is a built-in 

type in MiniJava, so there’s no need to define it again. 

• ClassesDefined is the property ensuring that, for every class defined in P, that is either the Object 

class or is in P. 

MiniJava Rules 



• To wrap things up: 

• We learned the importance of formalizing our programming languages. 

• We looked a little deeper at what a programming language is (syntax and semantics). 

• We have a better idea of what an object is, and how it’s different than a record.  

• We learned a little bit about functions and how they are formally represented with the lambda 

calculus. 

• We saw some neat programs that utilized these features and demonstrated several OO concepts 

like subtyping and object construction. 

• We learned about dynamic dispatching, and how polymorphism can be shown through types. 

• We looked at a micro-language called MiniJava that demonstrated inheritance and subtyping 

features. We also examined only a subset of rules that are important to verify for MiniJava. 

 

Conclusion 



• Hopefully, this discussion has informed you of the importance in formalizing our OO 

programming languages. 

• Programming Languages are designed and implemented all of the time, always 

pushing the envelope for developer usability and more advanced features. 

• Imagine proving properties (like shown in MiniJava) for a giant system (10 

KLOC). In [2], Andronick did this for a microkernel written in Haskell!  

• One of the big debates in programming languages is between formal verification 

of software and software testing. On one hand, formal verification will ensure that 

the software is 100% correct, but it gets extremely hard to verify large systems. 

On the other hand, with testing, there are tools that help us do it with ease, you 

never really know when you’re done… 

Final Notes 



• There’s just so much more to discover about OO programming languages and their 

formal details. 

• Abadi and Cardelli [1] have developed the object calculus to formally explain 

objects and classes in their own terms. 

• Remy [5] extends the object calculus with a more flexible type structure for 

objects, but it’s a good reference for understanding the difference between 

objects and records. 

• Harper [4] gives a very well-rounded overview of programming languages, type 

theory, lambda calculus, classes and objects, and much more. 

But wait, there’s more! 
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- Wikipedia, only for general overview and confirmation of understanding. 

 


