4. Code cments

\ | \ S. d)rganiz tior* [

2=
A\ e Beme

8. Conclusmn

1/8:Introduction

This presentation is part of the requirements for
this (stated below) class.

Student Name: Adnan Reza

Class: Object Oriented Analysis and Design
Instructor: Ken Anderson

Semester: Fall 2011

School: University of Colorado at Boulder

1/8:Introduction

Topic: .NET Framework and C#

Details: This presentation describes some
elementary features of .NET Framework and
C#.

Organization: The index that contains the
chapters of this document is found in the first
slide. On the top-left corner of every slide
show the name of the chapter, sub-chapter
etc. The titles are at top-right

2/8:.NEilr Basics

The .NET Framework is a framework for
developing and implementing software for
personal computer, web etc.

It was designed and is maintained by
Microsoft Corporation.

It came out around the year 2000, even

though Microsoft started its development in
early 90s.

.NET has a rich collection of class library
(called the Base Class Library) to implement
GUI, query, database, web services etc.

2/8:.NEilr Basics

Programs developed with .NET needs a
virtual machine to run on a host. This virtual
machine is called Common Language
Runtime (CLR).

Since the compiler doesn’ t produce native
machine code, and its product is interpreted
by the CLR, there’s much security.

.NET allows using types defined by one .NET
language to be used by another under the
Common Language Infrastructure (CLI)
specification, for the conforming languages.

2/8:.NEilr Basics

. Any language that conforms to the Common
Language Infrastructure (CLI) specification of
the .NET, can run in the .NET run-time.
Followings are some .NET languages.

e Visual Basic

e C#

o C++ (CLI version)

e J# (CLI version of Java)

e A# (CLI version of ADA)

e L# (CLI version of LISP)

e IronRuby (CLI version of RUBY)

2/8:.NEilr Basics

Microsoft provides a comprehensive Integrated
Development Environment (IDE) for the
development and testing of software with .NET.

Some IDEs are as follows
e Visual Studio
e Visual Web Developer
e Visual Basic
o Visual C#
e Visual Basic

3/8:C# Basics
1/3:What Is C#

C# Is a general purpose object oriented
programming language developed by Microsoft
for program development in the .NET
Framework.

It’ s supported by .NET s huge class library that
makes development of modern Graphical User
Interface applications for personal computers
Very easy.

It's a C-like language and many features resemble
those of C++ and Java. For instance, like Java,
it too has automatic garbage collection.

3/8:C# Basics
1/3:What is C#

It came out around the year 2000 for the .NET
platform. Microsoft”s Anders Hejlsberg is the
principal designer of C#.

The “#” comes from the musical notation
meaning C# is higher than C.

The current version (today’ s date is Nov 2, 2011)
iIs 4.0 and was released on April, 2010

More information about C#, tutorial, references,
support and documentation can be found in
the Microsoft Developers Network website.

3/8:C# Basics
2/ 30y pes oft Application

The product of the C# compiler is called the
“Assembly”. It' s either a “.dll” or a “.exe
file. Both run on the Common Language
Runtime and are different from native code
that may also end with a “.exe” extension.

77

C# has two basic types of application.
e Windows From Application
This is GUI based, runs in a window of some sort

e Console Application
This application runs in the command prompt

3/8:C# Basics
3/3:ypical and Irivial

using System;
namespace typical trivial{
class House{
private int location;
protected string name;
public House(){
name = "No Name Yet!";

¥

// every class inherits ‘object’ that has ToString()
public override string ToString(){
string disp = "Name is " + name + ", location= " +
location.ToString();

return disp;

}

Continues to the next slide ...

3/8:C# Basics
3/3:lypical and Trivial

... continuing from the previous slide

class Program{
static void Main(string[] args){
House h = new House();
for (int 1 = 0; i < 4; i++){
System.Console.WritelLine("i={@}, house says:

{1}", i, h.ToString());

¥
System.Console.Read();

cv file://IC:/Documents and Settings -ocal Settings/Application Dataf/Temporar... !EB
i=B, house says: Name is No Name Yet?!, location= 0 u
i=1, house says: Name is No Name Yet?, location= 0
i=2, house says: Name is No Name Yet?!, location= 0 .
i=3, house says: Name is No Name Yet?, location= 0

4/8:Code Elements

1/12: 0y pes

1. Value type

1.
2.
3.

Variable name contains the actual value
int, double and other primitive types
Structure, Enumeration, etc.

2. Reference Type

1.

2.
3.

Variable name contains the reference or
pointer to the actual value in memory

Array, derived from class Array
Class, Interface, Delegate, String, etc.

4/8:Code Elements
1/12: 0y pes

The value types are derived from
System.Valuelype

All types in C# are derived from
System.Object which is also accessed
by the alias keyword ‘object’

This type hierarchy is called Common
Type System (CTS)

4/8:Code Elements
1/12: 0y pes

Nullable

The value types can’ t be assigned a null. To
enable regular primitive value types to take a
null value, C# uses nullable types using “?
with type name. Following example shows
how.

int? a; a = null; int b; b = a ?? -99;
// the ?? operator picks -99 if null

System.Console.WritelLine("this is null. {@}",b);
= 23; // not null
System.Console.WriteLine("this is not null. {@}", a ?? -99);

this is null. —-99

cv file:/fIC:/Documents and Settings ocal SettingsfApplication DatafTemporar... !EB
this is not null. 23 =

4/8:Code Elements
1/12: 0y pes

Anonymous

Variables can be defined without an explicit name
and to encapsulate a set of values. This is
useful for C# s Language Integrated Query
(which will not be discussed in this
presentation)

var a = 3; // the type is automatically inferred by compiler
var b = new { id = 21, name = "Tito" };

System.Console.WritelLine("a={0@}, b.id={1}, b.name={2}", a,
b.id, b.name);

a=3, b.id=21, b.name=Tito

cv file:/ffC:/Documents and Settings _ocal Settings/Application DatafTemporar... !EB
1)
|

4/8:Code Elements
2/ 12 Array.

Following is an example of declaring and
using a simple array.

int[] items = new int[]{5,19,41,1,9};
foreach (int i in items)

{
}

System.Console.WriteLine("{@}\n", i-1);

cv file://IC:/Documents and Settings,

4/8:Code Elements
2/ 12 Array.

The ‘foreach’ , in” keywords are used to
provide read only (recommended)
access to members of an array or any.
object implementing the IEnumerable
interface (more about this is discussed
in the section ‘Iterator’).

4/8:Code Elements
3/12:Property.

Properties are members of a class that
allows for easy and simplified getters
and setters implementation of its
private field variables.

The next slide has an example.

4/8:Code Elements
3/12:Property.

class Client{
private string name ;
public string Name{
get{
return name;
}

set{
name=value;

}
}

static void Main(string[] args)

{

Client ¢ = new Client();

c.Name = "Celia";
System.Console.WritelLine(c.Name);
System.Console.ReadlLine();

cv file:/MIC:/Docu

Celia

4/8:Code Elements
3/12:Property.

Automatically Implemented

C# also has a feature to automatically implement the getters
and setter for you.

Users have direct access to the data members of the class.

Following example does the same thing as the previous
example, but using automatically implemented properties

class Client2{
public string Name { get; set; }
static void Main(string[] args){
Client2 c = new Client2();

c.Name = "Cruz";
System.Console.WriteLine(c.Name);
System.Console.ReadLine();

cv file:/{fC:/Documents and Settings Desktop/ooad_presentation/source/Prope... HEB

Cruz n-l

4/8:Code Elements
4/12:Indexer

Indexers allow a class to be used as an array. For
instance the “[]” operator can be used and the
‘foreach”, ‘in” keywords can also be used on a
class that has indexers.

The internal representation of the items in that class
are managed by the developer.

Indexers are defined by the following expression.
public int this[int idx]<{
get{/* your code*/}; set{/*code here*/};

y

4/8:Code Elements
5/12:Nested Class

C# supports nested class which defaults
to private.

class Program

{

public class InsiderClass

{

private int a;

}

static void Main(string[] args)

{
}

4/8:Code Elements
6/12:Inheritance and Interface

A class can directly inherit from only one base class and
can implement multiple interfaces.

To override a method defined in the base class, the
keyword ‘override is used.

An abstract class can be declared with the keyword
‘abstract’ .

A static class is a class that is declared with the ‘static’
keyword. It can not be instantiated and all
members must be static.

4/8:Code Elements
6/12:Inheritance and Interface

class BaseClass{
public virtual void show(){
System.Console.WritelLine("base class");}

}

interface Interfacel{void showMe();}
interface Interface2{void showYou();}
class DerivedAndImplemented: BaseClass,Interfacel,Interface2{
public void showMe() { System.Console.WritelLine("Me!"); }
public void showYou() { System.Console.WriteLine("You!"); }
public override void show(){
System.Console.WriteLine("I'm in derived Class");}
static void Main(string[] args){
DerivedAndImplemented de = new DerivedAndImplemented();
de.show();
System.Console.Read();}

cv file://IC:/Documents and Settings Desktop/ooad_presentation/source/inheri...

I’'m in derived Class

4/8:Code Elements
7/12:Class Access & Partial

The class access modifiers are public, private,
protected and internal. ‘internal’ is an
intermediate access level which only allows
access to classes in the same assembly.

The ‘partial” keyword can be used to split up a
class definition in to multiple location (file
etc). Can be useful when multiple developers
are working on different parts of the same
class.

4/8:Code Elements
8/12:Delegate

Delegates are types that describe a method
signature. This is similar to function pointer
in C.

At runtime, different actual methods of same
signature can be assigned to the delegate
enabling encapsulation of implementation.

These are extensively used to implement GUI
and event handling in the .net framework
(will be discussed later).

4/8:Code Elements
8/12:Delegate

class Program
{
delegate int mydel(int aa);
int myfunc(int a){ return a*a; }
int myfunc2(int a) { return a + a; }
static void Main(string[] args)

{

Program p=new Program();

mydel d=p.myfunc; System.Console.WriteLine(d(5));
d = p.myfunc2; System.Console.WriteLine(d(5));
System.Console.Read();

cv file:/ffC:/Documents and Settings Jesktop/ooad_presentation/source/Delega... !EB
A
10 =

4/8:Code Elements
8/12:Delegate

Lambda Expression

In C#, implementors (functions) that are targeted by a
delegate, can be created anonymously, inline and on
the fly by using the lambda operator “=>".

class Program {
delegate int mydel(int aa, int bb);
static void Main(string[] args) {
mydel d = (a, b) => a + 2 * b;

// in above line, read a,b go to a+b*2 to evaluate
System.Console.WriteLine(d(2,3));
System.Console.Read();

cv file:/ffC:/Documents and Settings Jesktop/ooad_presentation/source/Delega... !E B{
8)

4/8:Code Elements
Q/12:Generic

Generics are a powerful feature of C#. These
enable defining classes and methods without
specifying a type to use at coding time. A
placeholder for type <T> is used and when
these methods or classes are used, the client
just simply has to plug in the appropriate

type.

Used commonly in lists, maps etc.

4/8:Code Elements
O/12:GENEFIC

class Genclass<T>{
public void genfunc(int a, T b){
for (int i = 0; i < a; i++){
System.Console.WriteLine(b);

}
}
}

class Program{
static void Main(string[] args){
Genclass<float> p = new Genclass<float>();
p.genfunc(3, (float)5.7);
System.Console.Read();

cv file://fC:/MDocuments and Settings _ocal Settings/Application DatafTemporar... !Eu
P
I n
5.7 il

4/8:Code Elements
10/12:0bject Initializer

Using automatically implemented properties
(discussed earlier), object initializers allow for
initializing an object at creation time without
explicit constructors. It can also be used with
anonymous types (discussed earlier).

The following slide has an example.

4/8:Code Elements
10/12:0bject Initializer

class Client2

{
public string Name { get; set; }
static void Main(string[] args)

{

Client2 c¢ = new Client2 {Name="Adalbarto"};
// above is the object initializer
System.Console.WriteLine(c.Name);
System.Console.ReadlLine();

Adalbarto

cv file:/fC:/Documents and Settings# ical Settings/Application DatafTemporar... !EB
E

4/8:Code Elements
11/12:1terator

Any class implementing the interface
IEnumerable can be invoked by client code
using the ‘foreach’, ‘in” statements. The
code loops through the elements of the class
and provides access to its elements. This
class defines the GetEhumerator method,
where, individual elements are returned by

the ‘yield” keyword.

4/8:Code Elements
11/12:1terator

public class MyBooks : System.Collections.IEnumerable {
string[] books = { "Linear Systems", "Design Patterns
Explained", "The Now Habbit", "The DeVinci Code" };
public System.Collections.IEnumerator GetEnumerator() {
for (int i = @; i < books.Length; i++) {
yield return books[i];

}
}
¥

class Program {
static void Main(string[] args) {
MyBooks b = new MyBooks();
foreach (string s in b) {
System.Console.Write(s + " ");

}

System.Console.Read();

cv file:/fC:/Documents and Settings -ocal Settings/Application DatafTemporar...
Linear Systems Design Patterns Explained The Now Habbit The DeUinci Code

4/8:Code Elements
12/12:Sturcture

Structures are value types that can in some
respect act similar to a class.

It has fields, methods, constructors (no
argument constructors are not allowed) like a
class.

Structures can’t take part in inheritance,
meaning that they can’t inherit from a type
and be a base from which other types can
inherit.

4/8:Code Elements
12/12:Sturcture

struct Rectangle{
public int length; public int width;
public Rectangle(int length,int width){
this.length=1length; this.width=width;

}
public int getArea(){
return length*width;
}
}

class Program{
static void Main(string[] args){
Rectangle r=new Rectangle(2,5);

System.Console.WriteLine("The area is: {0}",r.getArea());
System.Console.Read();

5/8:@rganization
1/4:Namespaces

Names in C# belong to namespaces. They
prevent name collision and offers a
manageable code and libraries.

In the previous examples, ‘System’ is a
namespace. System.Console.Write() is a
method of a class defined in that namespace.
So, the name of the namespace is put in
front to fully qualify a name.

With the statement “using System;”, we can skip
the System part and just write
Console.Write().

5/8:@rganization
1/4:Namespaces

using System;
namespace spacel{
class MyClassi1{
public void show(){
System.Console.WriteLine("MyClassl");

}
}

}

namespace space2{
class Program{
static void Main(string[] args){
spacel.MyClassl c=new spacel.MyClassl();
c.show(); Console.Read();

5/8:@rganization
2/4 Attribute

Attributes add metadata to the code entities such
as assembly, class, method, return value etc
about the type.

This metadata describes the type and it’s
members

This metadata is used by the Common Runtime
Environment or can also be used by client
code.

Attributes are declared in square brackets above
the class name, method name etc.

5/8:@rganization
2/4 Attribute

[Obsolete("Do not use this")]
public class Myclass {
public void disp() {
System.Console.WriteLine("..");

}
}

class Program {
[STAThread] // means thread safe for COM

static void Main(string[] args) {
Myclass mc = new Myclass(); mc.disp();
System.Console.Read();

5/8:@rganization
3/4:0ihe IDE

Microsoft provides Visual Studio for the
development of applications, web services etc
using the .NET Framework with it"s
supported languages.

Microsoft Visual C# Express is a free Microsoft
product that can be used to develop C#
applications for evaluation purposes.

The examples provided in this presentation were
developed using this software.

5/8:@rganization
4/4:Qther Misc

Use of pointers: C# can be configured to allow pointer
declaration and arithmetic.

XML comments: It' s possible to follow the XML
comments syntax in code and the compiler will
generate a documentation for you based of those
comments and their location.

Threading: It s possible to write multi-threaded
programs using the System.Threading class library.

C# allows easy integration to unmanaged code (outside
of .NET) such as Win32Api, COM,C++ programs etc to
it’s own.

5/8:@rganization
4/4:;0ther Misc

C# allows editing the file system and the Windows
System Registry.

Exception: Exceptions can be handled using C#'s try,
throw, catch.

Collection Classes: These provide support for various
data structures such as list, queue, hash table etc.

Application Domain: The context in which the assembly
IS run is known as the application domain and is usually
determined by the Common Language Runtime (it is
also possible to handle this in code). This isolates
individual programs and provides security.

6/8:GUI
1/3:Introduction

The .NET framework provides a class library of
various graphical user interface tools such as
frame, text box, buttons etc. that C# can use
to implement a GUI very easily and fast.

The .NET framework also equips these classes
with events and event handlers to perform
action upon interacting with these visual
items by the user.

6/8:GUI
2/3:Visual Items

The following are some of the visual items.
Form: displays as a window.

Button: displays a clickable button

Label: displays a label

TextBox: displays an area to edit
RadioButton: displays a selectable button

6/8:GUI
2/3:\Visual Items

The containing
window is
called the ~ (] checkBoxt
“Frame”. 2
Inside are
some other
GUI
elements,
such as
Button, =
TextBox etc -' =

6/8:GUI
3/3:Events
1/4:1ntro

When anything of interest occurs, it’s called an
event such as a button click, mouse pointer
movement, edit in a textbox etc.

An event is raised by a class. This is called
publishing an event.

It can be arranged that when an event is raised,

a class will be notified to handle this event,
I.e. perform required tasks. This is called
subscribing to the event. This is done via:

e Delegates or

e Anonymous function or

e |Lambda expression.

These will be discussed shortly

6/8:GUI
3/3:Events
1/4:1ntro

The .NET Framework has many built-in events
and delegates for easily subscribing to these
events by various classes.

For example, for Button class, the click event is
called “Click” and the delegate for handler is
called “System.EventHandler”. These are
already defined in the .NET class library.

To tie the event with the handler, the operator
“+="is used. (Will be discussed shortly)

Then, when the Button object is clicked, that
function will execute.

6/8:GUI
3/3:Events
2/4:With Delegates

The following code segment shows the
subscription of the event Button.Click by the
method button_Click(...) which matches the
System.EventHandler delegate signature.

Class Forml:Form{
private System.Windows.Forms.Button buttonl;

J00 500
Void init(){
this.buttonl.Click += new System.EventHandler(this.buttonl Click);

}
private void buttonl Click(object sender, EventArgs e){
buttonl.Text = "clickedl";
}
}

6/8:GUI
3/3:Events
3/4:With Lambda

The following code segment shows the
subscription of the event Button.Click by
inline code which is defined using the lambda
operator.

This program does the same thing as the last.

Class Forml:Form{
private System.Windows.Forms.Button buttonl;

T Err
Void init(){

// the arguments a,b are just to satisfy the delegate signature.
// they do nothing useful in this simple example.
this.buttonl.Click += (a,b) => { this.buttonl.Text = "clickedl"; };

}
}

6/8:GUI
3/3:Events
4/4:\With Anonymous Method

An anonymous method is declared with the
keyword “delegate”. It has no name in
source code level.

After the delegate keyword, the arguments need
to be put in parenthesis and the function
body needs to be put in braces.

It is defined in-line exactly where it" s instance is
needed.

Anonymous methods are very useful in event
programming in C# with .NET Framework.

6/8:GUI
3/3:Events
4/4:\With Anonymous Method

The following example does the same thing as
the previous two examples but uses
anonymous methods to handle that event.

Class Forml:Form{
private System.Windows.Forms.Button buttonl;

TV
Void init(){

this.buttonl.Click += delegate(object oo, System.EventArgs ee) {
this.buttonl.Text = "clickedl";

7/8:Demo

For this section, please see the attached video
demonstration of the following.
e Basic use of Visual C# IDE
e Showing of how easily GUI can be created
e Creation of a simple web browser

3/8:Conclusion

This presentation described in short some
interesting and important features of
the .NET and C#.

However, the .NET and C# are not without their
trade offs such as the followings.

e The .NET currently doesn’t support optimized
Single Instruction Multiple Data (SIMD) support for
parallel data processing.

e Since it's run in a virtual machine, the demands on
system resources are higher than native code of
comparable functionality.

3/8:Conclusion

Overall, .NET and C# are very robust, flexible,
object oriented, with large library support,
secure means of software design and
development.

Some of the features that were discussed in this
presentation, are as follows

e Virtual Machine provides security and isolation

e Common Runtime Infrastructure enables any
language to adapt to the run time

0/0:Conclusion

The Common Language Infrastructure and Common
Type System makes it possible for multiple
languages to use each others defined types and
libraries.

It has extensive class library for easily developing
GUI and web application.

C# has many very nice and flexible features such
as partial class/method, nullable type, anonymous
method, indexers, generics, iterators, properties
etc.

L W T B A B A
AT)/

VoL

