
Douglas C. Schmidt

University of California, Irvine, CA

6th USENIX C++ Conference, Cambridge, MA

Presented by Venkat

OOAD – CSCI 5448

Prof. Kenneth Anderson

• Distributed Computing and role of ASX
• Structure and functionality of the ASX framework
• ASX based implementations (TCP/IP protocol)
• Performance experiment results
• Concluding remarks

•Collaboration through connectivity and
interworking
• Performance through parallel processing
• Reliability and availability through replication
• Scalability and portability through modularity
• Extensibility through dynamic (re)configuration
• Cost effectiveness through resource sharing

•Limitations with conventional tools and
techniques used to develop distributed application
software (more on next slide)

• Conventional application development
environments (such as UNIX, Windows NT, and
OS/2) lack type-safe, portable, re-entrant, and
extensible system call interfaces and component
libraries.

• Techniques based upon algorithmic
decomposition, which limit the extensibility,
reusability, and portability of distributed
applications.

• Adaptive Service eXecutive (ASX) ASX is an
object-oriented framework containing automated
tools and reusable components that collaborate to
simplify the development, configuration, and
reconfiguration of distributed applications on
shared memory multi-processor platforms.

• Facilitates application extensibility, component
reuse, and performance enhancement

• ASX decouples application independent components
from application specific components making it more
extensible and portable (For example, it is possible to
dynamic reconfigure one or more services in an ASX-
based application without requiring the modification,
recompilation, re-linking, or restarting of a running
system).

• “Service” - primary unit of configuration in the ASX
framework

• Services may be simple (such as returning the current
time-of-day) or highly complex (such as a real-time
distributed PBX event traffic monitor).

• A framework is an integrated collection of
components that collaborate to produce a reusable
architecture for a family of related applications

• The components in a framework typically include
classes, class hierarchies, class categories and object

• Object-oriented frameworks are becoming
increasingly popular as a means to simplify and
automate the development and configuration process
associated with complex application domains such as
graphical user interfaces, databases, operating system
kernels, and communication subsystems.

• ASX provides the following class categories
• Stream class category
• Reactor class category
• Service Configurator class category
• Concurrency class category
• IPC SAP class category

• A complete distributed application may be
formed by combining components in each of the
following class categories via C++ language
features such as inheritance, aggregation, and
template instantiation

• Solid rectangles indicate class categories
• Solid clouds indicate objects
• Nesting indicates composition relationships
between objects
• Undirected edges indicate some type of link
exists between two objects
• Dashed clouds indicate classes
• Directed edges indicate inheritance relationships
between classes
• Undirected edge with a small circle at one end
indicates either a composition or uses relation
between two classes

• Responsible for coordinating one or more
Streams (Stream is an object used to configure and
execute application-specific services into the ASX
framework)

• Primary components of the ASX Stream class
category

• Stream Class
• Module Class
• Task Class
• Multiplexer Class

• Stream class object:
• Provides a bi-directional get/put-style interface
• Allows applications to access a stack of one or more
hierarchically-related service Modules.
• Applications send and receive data and control messages
through the inter-connected Modules that comprise a
particular Stream object.

• Module class:

• A Stream is formed by inter-connecting a series of Module
objects.
• Module objects in a Stream are loosely coupled, and
collaborate with adjacent Module objects by passing typed
messages.
• Each Module object contains a pair of pointers to objects
that are service-specific subclasses of the Task class

• Task class:
• One Task subclass handles read-side processing for messages
sent upstream to its Module layer
•Other Task subclass handles write-side processing messages send
downstream to its Module layer.
• Defines four pure virtual methods (open, close, put, and svc).

• open() and close() for performing service-specific Task
initialization and termination activities.
• put() is invoked when a Task at one layer in a Stream passes a
message to an adjacent Task in another layer.
• svc() method is used to perform service-specific processing
asynchronously with respect to other Tasks in its Stream.

• Multiplexer class:

• Multiplexors are used to route Message Blocks between inter-
related streams (such as those used to implement complex
protocol families in the Internet and the ISO OSI reference
models).

• Responsible for de-multiplexing
(1) temporal events generated by a timer driven
callout queue
(2) I/O events received on communication ports,
and
(3) signal events

and dispatching the appropriate pre-registered
handler(s) to process these events.

• Reactor encapsulates the functionality of the select
and poll I/O de-multiplexing mechanisms within a
portable and extensible C++ wrapper

• The Reactor contains a set of methods(refer previous
slide):

• Certain methods register, dispatch, and remove I/O
descriptor-based and signal-based handler objects from
the Reactor.
• Other methods schedule, cancel, and dispatch timer-
based handler objects.
• These handler objects all derive from the Event
Handler abstract base class(which specifies an interface
for event registration and service handler dispatching).

•When an application instantiates and registers a
composite I/O descriptor-based service handler object, the
Reactor extracts the underlying I/O descriptor from the
object. This descriptor is stored in a table along with I/O
descriptors from other registered objects.

• Responsible for explicitly linking or unlinking services
dynamically into or out of the address space of an
application at run-time.

• The Service Configurator components include …

• Service Object Inheritance hierarchy (flexibility in
inserting and removing services from an application at
runtime)

• Service Repository class (collectively control and
coordinate the Service Objects that comprise an
application’s currently active services)

• Service Config class (uses a configuration file to guide
its configuration and reconfiguration activities)

• Responsible for spawning, executing,
synchronizing, and gracefully terminating services
at run-time via one or more threads of control
within one or more processes

• The concurrency class category includes ..

• The Synch class (Mutex, Condition, etc.)
• The thread manager class (suspend_all,
resume_all, etc.)

• Encapsulates standard OS local and remote IPC
mechanisms (such as sockets and TLI) within a type-
safe and portable object-oriented interface.

• IPC SAP stands for “Inter-Process Communication
Service Access Point.”

• Forest of class categories are rooted at the IPC SAP
base class (next slide)

• Class categories includes SOCK SAP (encapsulates
the socket API), TLI SAP (encapsulates the TLI API),
SPIPE SAP (encapsulates the UNIX SVR4 STREAM
pipe API), and FIFO SAP (encapsulates the UNIX
named pipe API).

• Communication subsystem comprises of …
• Protocol functions (e.g. routing)
• Operating system mechanics (e.g. memory
management)

•Three basic elements for a process architecture
• Control & data messages between applications
• Protocol processing task units
• Processing elements executing above task units

• Two basic process architectures (next slide)
• Task-based
• Message-based

• Multiprocessor platform used for testing:

• Sun 690MP SPARCserver, which contains 4
SPARC 40 MHz processing elements (PEs),
each capable of performing at 28MIPs.

• The operating system used for the
experiments is release 5.3 of SunOS, which
provides a multi-threaded kernel that allows
multiple system calls and device interrupts to
execute in parallel

• Communication protocols
•Two types of protocol stacks were used
 1) connectionless UDP transport protocol
 2) connection oriented TCP protocol

• The protocol stacks developed contain the data-link,
transport, and presentation layers

• Protocol stacks were developed by specializing
existing components in the ASX framework via
techniques involving inheritance and parameterized
types

• Task-based Process Architecture (Fig. 8 next slide)

• Protocol-specific processing for the data-link and
transport layer are performed in two Modules
clustered together into one thread.

• Presentation layer and application interface
processing is performed in two Modules clustered
into a separate thread.

• These threads cooperate in a producer/consumer
manner, operating in parallel on the header and
data fields of multiple incoming and outgoing
messages

• Message-based Process Architecture (Fig. 9)

• An incoming message is handled by the MP DLP::svc
method, which manages a pool of pre-spawned threads.

• Each message is associated with a separate thread that
escorts the message synchronously through a series of
interconnected Tasks in a Stream.

• Each layer of the protocol stack performs its protocol
functions and then makes an up-call to the next
adjacent layer in the protocol stack by invoking the
Task::put method in that layer.

• The put method executes the protocol tasks
associated with its layer.

• Three types of measurements were obtained for
each combination of process architecture and
protocol stack

• Total throughput
• Context switching overhead, and
• Synchronization overhead

• The charts in the next few slides depict these
results (they are self explanatory).

• CO – connection oriented
• CL - Connectionless

• Developing distributed applications that effectively
utilize parallel processing remains a complex and
challenging task

• ASX provides an extensible object-oriented
framework that simplifies the development of
distributed applications on shared memory multi-
processor platforms

• A key aspect of concurrent distributed application
performance involves the type of process architecture
selected

• Task-based process architectures incur relatively high
levels of context switching and synchronization overhead
when compared to message-based architectures

• Components in the ASX framework have been ported to
both UNIX and Windows NT and are currently being
used in a number of commercial products

• More on this topic?
http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.4
3.4884

http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.43.4884
http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.43.4884

