
Test-Driven Development

Kenneth M. Anderson
University of Colorado, Boulder

CSCI 4448/5448 — Lecture 28 — 12/01/11

© University of Colorado, 2011

2

Credit where Credit is Due

• Some of the material for this lecture is taken from “Test-Driven Development”
by Kent Beck

• as such some of this material is copyright © Addison Wesley, 2003

• In addition, some material for this lecture is taken from “Agile Software
Development: Principles, Patterns, and Practices” by Robert C. Martin

• as such some materials is copyright © Pearson Education, Inc., 2003

3

Goals for this lecture

• Introduce the concept of Test-Driven Development (TDD)

• Present several examples

4

Test-Driven Development

• The idea is simple

• No production code is written except to make a failing test pass

• Implication

• You have to write test cases before you write code

• Note: use of the word “production”

• which refers to code that is going to be deployed to and used by real users

• It does not say: “No code is written except…”

5

Test-Driven Design in One Slide or Less

• This means that when you first write a test case, you may be testing code
that does not exist

• And since that means the test case will not compile, obviously the test
case “fails”

• After you write the skeleton code for the objects referenced in the test
case, it will now compile, but also may not pass

• So, then you write the simplest code that will make the test case pass

Example (I)

• Consider writing a program to score the game of bowling
• You might start with the following test

public class TestGame extends TestCase {

public void testOneThrow() {

Game g = new Game();

g.addThrow(5);

assertEquals(5, g.getScore());

}
}

• When you compile this program, the test “fails” because the Game class
does not yet exist. But:
• You have defined two methods on the class that you want to use
• You are designing this class from a client’s perspective

6

Example (II)

• You would now write the Game class
public class Game {

public void addThrow(int pins) {

}

public int getScore() {

return 0;

}

}

• The code now compiles but the test will still fail: getScore() returns 0 not 5

• In Test-Driven Design, Beck recommends taking small, simple steps

• So, we get the test case to compile before we get it to pass

7

Example (III)

• Once we confirm that the test still fails, we would then write the simplest code
to make the test case pass; that would be

public class Game {

public void addThrow(int pins) {

}

public int getScore() {

return 5;

}

}

• The test case now passes!

8

Example (IV)

• But, this code is not very useful!

• Lets add a new test case to enable progress
public class TestGame extends TestCase {

public void testOneThrow() {
Game g = new Game();
g.addThrow(5);
assertEquals(5, g.getScore());

}
public void testTwoThrows() {

Game g = new Game()
g.addThrow(5)
g.addThrow(4)
assertEquals(9, g.getScore());

}
}

• The first test passes, but the second case fails (since 9 ≠ 5)
• This code is written using JUnit; it uses reflection to invoke tests

automatically

9

Example (V)

• We have duplication of information between the first test and the Game class

• In particular, the number 5 appears in both places

• This duplication occurred because we were writing the simplest code to
make the test pass

• Now, in the presence of the second test case, this duplication does more
harm than good

• So, we must now refactor the code to remove this duplication

10

Example (VI)

public class Game {

private int score = 0;

public void addThrow(int pins) {

score += pins;

}

public int getScore() {

return score;

}

}

11
Both tests now pass. Progress!

Example (VII)

• But now, to make additional progress, we add another test case to the
TestGame class
…

public void testSimpleSpare() {

Game g = new Game()

g.addThrow(3); g.addThrow(7); g.addThrow(3);

assertEquals(13, g.scoreForFrame(1));

assertEquals(16, g.getScore());

}

…

• We’re back to the code not compiling due to scoreForFrame()
• We’ll need to add a method body for this method and give it the simplest

implementation that will make all three of our tests cases pass

12

13

TDD Life Cycle

• The life cycle of test-driven development is

• Quickly add a test

• Run all tests and see the new one fail

• Make a simple change

• Run all tests and see them all pass

• Refactor to remove duplication

• This cycle is followed until you have met your goal;

• note that this cycle simply adds testing to the “add functionality; refactor”
loop covered in the our lecture on refactoring

14

TDD Life Cycle, continued

• Kent Beck likes to perform TDD using
a testing framework, such as JUnit.

• Within such frameworks

• failing tests are indicated with a
“red bar”

• passing tests are shown with a
“green bar”

• As such, the TDD life cycle is
sometimes described as

• “red bar/green bar/refactor”

JUnit: Red Bar...

• When a test fails:

• You see a red bar

• Failures/Errors are listed

• Clicking on a failure displays more
detailed information about what
went wrong

15

16

Example Background:
Multi-Currency Money

• Lets design a system that will allow us to perform financial transactions with
money that may be in different currencies

• e.g. if we know that the exchange rate from Swiss Francs to U.S. Dollars is
2 to 1 then we can calculate expressions like

• 5 USD + 10 CHF = 10 USD

• or

• 5 USD + 10 CHF = 20 CHF

17

Starting From Scratch

• Lets start developing such an example

• How do we start?

• TDD recommends writing a list of things we want to test

• This list can take any format, just keep it simple

• Example

• $5 + 10 CHF = $10 if rate is 2:1

• $5 * 2 = $10

18

First Test

• The first test case looks a bit complex, lets start with the second

• 5 USD * 2 = 10 USD

• First, we write a test case

public void testMultiplication() {

Dollar five = new Dollar(5);

five.times(2);

assertEquals(10, five.amount)

}

19

Discussion on Test Case

public void testMultiplication() {

Dollar five = new Dollar(5);

five.times(2);

assertEquals(10, five.amount)

}

• What benefits does this provide?

• target class plus some of its interface

• we are designing the interface of the Dollar class by thinking about how
we would want to use it

• We have made a testable assertion about the state of that class after we
perform a particular sequence of operations

20

What’s Next?

• We need to update our test list

• The test case revealed some things about Dollar that we will want to
address

• We are representing the amount as an integer, which will make it
difficult to represent values like 1.5 USD; how will we handle rounding
of factional amounts?

• Dollar.amount is public; violates encapsulation

• What about side effects?; we first declared our variable as “five” but
after we performed the multiplication it now equals “ten”

21

Update Testing List

• The New List

• 5 USD + 10 CHF = 10 USD

• $5 * 2 = $10

• make “amount” private

• Dollar side-effects?

• Money rounding?

• Now, we need to fix the compile errors

• no class Dollar, no constructor, no method: times(), no field: amount

22

First version of Dollar Class

public class Dollar {

public Dollar(int amount) {

}

public void times(int multiplier) {

}

public int amount;

}

• Now our test compiles and fails!

23

Too Slow?

• Note: we did the simplest thing to make the test compile;

• now, we are going to do the simplest thing to make the test pass

• Is this process too slow?

• YES, as you get familiar with the TDD life cycle you will gain confidence
and make bigger steps

• NO, taking small simple steps avoids mistakes;

• beginning programmers try to code too much before invoking the
compiler;

• they then spend the rest of their time debugging!

24

How do we make the test pass?

• Here’s one way

public void times(int multiplier) {

amount = 5 * 2;

}

• The test now passes, we received a “green bar”!

• Now, we need to “refactor to remove duplication”

• But where is the duplication?

25

Refactoring

• To remove the duplication of the test data and the hard-wired code of the
times method, we think the following

• “We are trying to get a 10 at the end of our test case and we’ve been given a
5 in the constructor and a 2 was passed as a parameter to the times method”

• So, lets connect the dots…

26

First version of Dollar Class

public class Dollar {

public Dollar(int amount) {

! this.amount = amount;

}

public void times(int multiplier) {

! amount = amount * multiplier;

}

public int amount;

}

• Now our test compiles and passes, and we didn’t have to cheat!

27

One loop complete!

• Before writing the next test case, we update our testing list

• 5 USD + 10 CHF = 10 USD

• $5 * 2 = $10

• make “amount” private

• Dollar side-effects?

• Money rounding?

28

One more example

• Lets address the “Dollar Side-Effects” item and then move on to another
example

• Lets write the next test case

• When we called the times operation our variable “five” was pointing at an
object whose amount equaled “ten”; not good

• the times operation had a side effect which was to change the value of
a previously created “value object”

• Think about it, as much as you might like to, you can’t change a 5 dollar
bill into a 500 dollar bill; the 5 dollar bill remains the same throughout
multiple financial transactions

29

Next test case

• The behavior we want is
public void testMultiplication() {

Dollar five = new Dollar(5);

Dollar product = five.times(2);

assertEquals(10, product.amount);

product = five.times(3);

assertEquals(15, product.amount);

assertEquals(5, five.amount);

}

30

Test fails

• The test fails because it won’t compile;

• We need to change the signature of the times method; previously it returned
void and now it needs to return Dollar

public Dollar times(int multiplier) {

amount = amount * multiplier;

return null;

}

• The test compiles but still fails; as Kent Beck likes to say “Progress!”

31

Test Passes

• To make the test pass, we need to return a new Dollar object whose amount
equals the result of the multiplication

public Dollar times(int multiplier) {

return new Dollar(amount * multiplier);

}

• Test Passes;

• Cross “Dollar Side Effects?” off the testing list; second loop complete!

• There was no need to refactor in this situation

32

Discussion of the Example

• There is still a long way to go
• only scratched the surface

• But
• we saw the life cycle performed twice
• we saw the advantage of writing tests first
• we saw the advantage of keeping things simple
• we saw the advantage of keeping a testing list to keep track of our

progress
• Plus, as we write new code, we will know if we are breaking things because

our old test cases will fail if we do;
• if the old tests stay green, we can proceed with confidence

33

Principles of TDD

• Testing List

• keep a record of where you want to go;

• Beck keeps two lists, one for his current coding session and one for
“later”; You won’t necessarily finish everything in one go!

• Test First

• Write tests before code, because you probably won’t do it after

• Writing test cases gets you thinking about the design of your
implementation;

• does this code structure make sense?

• what should the signature of this method be?

34

Principles of TDD, continued

• Assert First

• How do you write a test case?

• By writing its assertions first!

• Suppose you are writing a client/server system and you want to test an
interaction between the server and the client

• Suppose that for each transaction

• some string has to have been read from the server, and

• the socket used to talk to the server should be closed after the
transaction

• Lets write the test case

35

Assert First

public void testCompleteTransaction {

…

assertTrue(reader.isClosed());

assertEquals(“abc”, reply.contents());

}

• Now write the code that will make these asserts possible

36

Assert First, continued

public void testCompleteTransaction {

Server writer = Server(defaultPort(), “abc”)

Socket reader = Socket(“localhost”, defaultPort());

Buffer reply = reader.contents();

assertTrue(reader.isClosed());

assertEquals(“abc”, reply.contents());

}

• Now you have a test case that can drive development
• if you don’t like the interface above for server and socket, then write a

different test case
• or refactor the test case, after you get the above test to pass

37

Principles of TDD, continued

• Evident Data
• How do you represent the intent of your test data
• Even in test cases, we’d like to avoid magic numbers; consider this rewrite

of our second “times” test case
public void testMultiplication() {

Dollar five = new Dollar(5);

Dollar product = five.times(2);

assertEquals(5 * 2, product.amount);

product = five.times(3);

assertEquals(5 * 3, product.amount);

}

• Replace the “magic numbers” with expressions

38

Summary

• Test-Driven Design is a “mini” software development life cycle that helps to
organize coding sessions and make them more productive

• Write a failing test case

• Make the simplest change to make it pass

• Refactor to remove duplication

• Repeat!

39

Reflections

• Test-Driven Design builds on the practices of Agile Design Methods

• If you decide to adopt it, not only do you “write code only to make failing
tests pass” but you also get

• an easy way to integrate refactoring into your daily coding practices

• an easy way to introduce “integration testing/building your system
every day” into your work environment

• because you need to run all your tests to make sure that your new
code didn’t break anything; this has the side effect of making
refactoring safe

• courage to try new things, such as unfamiliar design pattern, because
now you have a safety net

But how does it integrate with life cycles?

• With traditional software life cycles, TDD can be “test-driven development”

• You’ll do requirements, use cases, class diagrams, etc. ➟ top down

• Then TDD, coding from scratch to test your design ➟ bottom up

• With agile life cycles, TDD can be “test-driven design”

• You create a new user story and use TDD to “discover” the classes that
will help you implement that feature ➟ bottom up

40

Testing Frameworks

• JUnit Tutorial: <http://clarkware.com/articles/JUnitPrimer.html>

• PyUnit: <http://wiki.python.org/moin/PyUnit>

• Unit testing in Objective-C and Xcode:

• <http://developer.apple.com/mac/articles/tools/
unittestingwithxcode3.html>

• Unit testing with C#: <http://www.csunit.org/tutorials/tutorial7/>

• Unit testing for Ruby:

• <http://www.ruby-doc.org/stdlib/libdoc/test/unit/rdoc/classes/Test/
Unit.html>

41

http://clarkware.com/articles/JUnitPrimer.html
http://clarkware.com/articles/JUnitPrimer.html
http://wiki.python.org/moin/PyUnit
http://wiki.python.org/moin/PyUnit
http://developer.apple.com/mac/articles/tools/unittestingwithxcode3.html
http://developer.apple.com/mac/articles/tools/unittestingwithxcode3.html
http://developer.apple.com/mac/articles/tools/unittestingwithxcode3.html
http://developer.apple.com/mac/articles/tools/unittestingwithxcode3.html
http://www.csunit.org/tutorials/tutorial7/
http://www.csunit.org/tutorials/tutorial7/
http://www.ruby-doc.org/stdlib/libdoc/test/unit/rdoc/classes/Test/Unit.html
http://www.ruby-doc.org/stdlib/libdoc/test/unit/rdoc/classes/Test/Unit.html
http://www.ruby-doc.org/stdlib/libdoc/test/unit/rdoc/classes/Test/Unit.html
http://www.ruby-doc.org/stdlib/libdoc/test/unit/rdoc/classes/Test/Unit.html

Coming Up Next

• Lecture 29: ORM and Hibernate

• Lecture 30: Dependency Injection and Spring; Semester Wrap Up

42

