
Refactoring

Kenneth M. Anderson
University of Colorado, Boulder

CSCI 4448/5448 — Lecture 27 — 11/29/11

© University of Colorado, 2011

Credit where Credit is Due

• Some of the material for this lecture is taken from “Refactoring: Improving the
Design of Existing Code” by Martin Fowler; as such, some material is
copyright © Addison Wesley, 1999

2

Goals for this lecture

• Introduce the concept of Refactoring and cover a few examples

• Present executive summaries of graduate student presentations (Part One)

3

What is Refactoring

• Refactoring is the process of changing a software system such that

• the external behavior of the system does not change

• e.g. functional requirements are maintained

• but the internal structure of the system is improved

• This is sometimes called

• “Improving the design after it has been written”

4

(Very) Simple Example

• Consolidate Duplicate Conditional Fragments (page 243); This
if (isSpecialDeal()) {

 total = price * 0.95;

 send()

} else {

 total = price * 0.98;

 send()

}

• becomes this
if (isSpecialDeal()) {

 total = price * 0.95;

} else {

 total = price * 0.98;

}

send();

5

(Another) Simple Example

• Replace Magic Number with Symbolic Constant

double potentialEnergy(double mass, double height) {
return mass * 9.81 * height;

}

• becomes this

double potentialEnergy(double mass, double height) {
return mass * GRAVITATIONAL_CONSTANT * height;

}
static final double GRAVITATIONAL_CONSTANT = 9.81;

6

In this way, refactoring formalizes good
programming practices

Refactoring is thus Dangerous!

• Manager’s point-of-view

• If my programmers spend time “cleaning up the code” then that’s less time
implementing required functionality (and my schedule is slipping as it is!)

• To address this concern

• Refactoring needs to be systematic, incremental, and safe

7

Refactoring is Useful Too

• The idea behind refactoring is to acknowledge that it will be difficult to get a
design right the first time and, as a program’s requirements change, the
design may need to change

• refactoring provides techniques for evolving the design in small
incremental steps

• Benefits

• Often code size is reduced after a refactoring

• Confusing structures are transformed into simpler structures

• which are easier to maintain and understand

8

A “cookbook” can be useful

• Refactoring: Improving the Design of Existing Code

• by Martin Fowler (and Kent Beck, John Brant, William Opdyke, and Don
Roberts)

• Similar to the Gang of Four’s Design Patterns

• Provides “refactoring patterns”

9

Principles in Refactoring

• Fowler’s definition

• Refactoring (noun)

• a change made to the internal structure of software to make it easier to
understand and cheaper to modify without changing its observable
behavior

• Refactoring (verb)

• to restructure software by applying a series of refactorings without
changing its observable behavior

10

Principles, continued

• The purpose of refactoring is

• to make software easier to understand and modify

• contrast this with performance optimization

• again functionality is not changed, only internal structure;

• however performance optimizations often involve making code harder to
understand (but faster!)

11

Principles, continued

• When you systematically apply refactoring, you wear two hats

• adding function

• functionality is added to the system without spending any time
cleaning the code

• refactoring

• no functionality is added, but the code is cleaned up, made easier to
understand and modify, and sometimes is reduced in size

12

Principles, continued

• How do you make refactoring safe?

• First, use refactoring “patterns”

• Fowler’s book assigns “names” to refactorings in the same way that the
GoF’s book assigned names to patterns

• Second, test constantly!

• This ties into the agile design paradigm

• you write tests before you write code

• after you refactor, you run the tests and check that they all pass

• if a test fails, the refactoring broke something but you know
about it right away and can fix the problem before you move on

13

Why should you refactor?

• Refactoring improves the design of software

• without refactoring, a design will “decay” as people make changes to a
software system

• Refactoring makes software easier to understand

• because structure is improved, duplicated code is eliminated, etc.

• Refactoring helps you find bugs

• Refactoring promotes a deep understanding of the code at hand, and this
understanding aids the programmer in finding bugs and anticipating
potential bugs

• Refactoring helps you program faster

• because a good design enables progress

14

When should you refactor?

• The Rule of Three

• Three “strikes” and you refactor

• refers to duplication of code

• Refactor when you add functionality

• do it before you add the new function to make it easier to add the function

• or do it after to clean up the code after the function is added

• Refactor when you need to fix a bug

• Refactor as you do a code review

15

Problems with Refactoring

• Databases

• Business applications are often tightly coupled to underlying databases

• code is easy to change; databases are not

• Changing Interfaces (!!)

• Some refactorings require that interfaces be changed

• if you own all the calling code, no problem

• if not, the interface is “published” and can’t change

• Major design changes cannot be accomplished via refactoring

• This is why agile design says that software devs. need courage!

16

Refactoring: Where to Start?

• How do you identify code that needs to be refactored?

• Fowler uses an olfactory analogy (attributed to Kent Beck)

• Look for “Bad Smells” in Code

• A very valuable chapter in Fowler’s book

• It presents examples of “bad smells” and then suggests refactoring
techniques to apply

17

Bad Smells in Code

• Duplicated Code

• bad because if you modify one instance of duplicated code but not the
others, you (may) have introduced a bug!

• Long Method

• long methods are more difficult to understand

• performance concerns with respect to lots of short methods are largely
obsolete

18

Bad Smells in Code

• Large Class

• Large classes try to do too much, which reduces cohesion

• Long Parameter List

• hard to understand, can become inconsistent if the same parameter chain
is being passed from method to method

• Divergent Change

• symptom: one type of change requires changing one subset of methods;
another type of change requires changing another subset

• Related to cohesion

19

Bad Smells in Code

• Shotgun Surgery

• a change requires lots of little changes in a lot of different classes

• Feature Envy

• A method requires lots of information from some other class

• move it closer!

• Data Clumps

• attributes that clump together (are used together) but are not part of the
same class

20

Bad Smells in Code

• Primitive Obsession

• characterized by a reluctance to use classes instead of primitive data
types

• Switch Statements

• Switch statements are often duplicated in code; they can typically be
replaced by use of polymorphism (let OO do your selection for you!)

• Parallel Inheritance Hierarchies

• Similar to Shotgun Surgery; each time I add a subclass to one hierarchy, I
need to do it for all related hierarchies

• Note: some design patterns encourage the creation of parallel
inheritance hierarchies (so they are not always bad!)

21

Bad Smells in Code

• Lazy Class

• A class that no longer “pays its way”

• e.g. may be a class that was downsized by a previous refactoring, or
represented planned functionality that did not pan out

• Speculative Generality

• “Oh I think we need the ability to do this kind of thing someday”

• Temporary Field

• An attribute of an object is only set/used in certain circumstances;

• but an object should need all of its attributes

22

Bad Smells in Code

• Message Chains

• a client asks an object for another object and then asks that object for
another object etc. Bad because client depends on the structure of the
navigation

• Middle Man

• If a class is delegating more than half of its responsibilities to another
class, do you really need it? Involves trade-offs, some design patterns
encourage this (e.g. Decorator)

• Inappropriate Intimacy

• Pairs of classes that know too much about each other’s implementation
details (loss of encapsulation; change one class, the other has to change)

23

Bad Smells in Code

• Data Class (information holder)

• These are classes that have fields, getting and setting methods for the
fields, and nothing else; they are data holders, but objects should be about
data AND behavior

• Refused Bequest

• A subclass ignores most of the functionality provided by its superclass

• Subclass may not pass the “IS-A” test

• Comments (!)

• Comments are sometimes used to hide bad code

• “…comments often are used as a deodorant” (!)

24

The Catalog

• The refactoring book has 72 refactoring patterns!

• I’m only going to cover a few of the more common ones, including

• Extract Method

• Replace Temp with Query

• Move Method

• Replace Conditional with Polymorphism

• Introduce Null Object

• Separate Query for Modifier

• Introduce Parameter Object

• Encapsulate Collection

• Replace Nested Conditional with Guard Clauses 25

Extract Method

• You have a code fragment that can be grouped together

• Turn the fragment into a method whose name explains the purpose of the
fragment

• Example, next slide

26

Extract Method, continued

void printOwing(double amount) {
 printBanner()
 //print details
 System.out.println(“name: ” + _name);
 System.out.println(“amount: ” + amount);
}

===

void printOwing(double amount) {
 printBanner()
 printDetails(amount)
}

void printDetails(double amount) {
 System.out.println(“name: ” + _name);
 System.out.println(“amount: ” + amount);
}

27

Replace Temp with Query

• You are using a temporary variable to hold the result of an expression

• Extract the expression into a method;

• Replace all references to the temp with the expression.

• The new method can then be used in other methods

• Example, next slide

28

Replace Temp with Query, continued

double basePrice = _quantity * _itemPrice;
if (basePrice > 1000)
 return basePrice * 0.95;
else
 return basePrice * 0.98;

==============================

if (basePrice() > 1000)
 return basePrice() * 0.95;
else
 return basePrice() * 0.98;
…
double basePrice() {
 return _quantity * _itemPrice;
}

29

Move Method (I)

• A method is using more features (attributes and operations) of another class
than the class on which it is defined

• Create a new method with a similar body in the class it uses most. Either
turn the old method into a simple delegation, or remove it altogether

30

Move Method (II)

A class to manage a bank
account. There are currently two
types of accounts: standard and
premium.

Currently we have only two
types of accounts, standard
and premium, but it is
anticipated that we will be
adding new account types and
that each type will have a
different rule for calculating an
overdraft charge.

As such, we'd like to move the
method overdraftCharge() to
the AccountType class.

class Account {1

 ...2

 double overdraftCharge() {3

 if (_type.isPremium()) {4

 double result = 10;5

 if (_daysOverdrawn > 7) {6

 result += (_daysOverdrawn - 7) * 0.85;7

 }8

 return result;9

 } else {10

 return _daysOverdrawn * 1.75;11

 }12

 }13

14

 double bankCharge() {15

 double result = 4.5;16

 if (_daysOverdrawn > 0) {17

 result += overdraftCharge();18

 }19

 return result;20

 }21

22

 private AccountType _type;23

 private int _daysOverdrawn;24

}25

26
31

Move Method (III)

• When moving a method to a new class, we examine its code to see if makes
use of internal attributes of its original class

• In this case, overdraftCharge() makes use of _daysOverdrawn

• All such attributes become parameters to the method in its new home. (If the
method already had parameters, the new parameters get tacked on to the
end of its existing parameter list.)

• In this case, _daysOverdrawn will stay in the Account class and be
passed as a parameter to AccountType.overdraftCharge().

• Note, also, that since we are moving this method to the AccountType class,
all calls to its methods that previously required a variable reference, can now
be made directly

• Thus, _type.isPremium() becomes simply isPremium() in the
method’s new home

32

Move Method (IV)

class AccountType {1

 ...2

 double overdraftCharge(int daysOverdrawn) {3

 if (isPremium()) {4

 double result = 10;5

 if (daysOverdrawn > 7) {6

 result += (daysOverdrawn - 7) * 0.85;7

 }8

 return result;9

 } else {10

 return daysOverdrawn * 1.75;11

 }12

 }13

 ...14

}15

16

Here is the method in its new home. It has a daysOverdrawn parameter,
which is used instead of _daysOverdrawn, throughout the method.
_type.isPremium() is now just isPremium(), as advertised.

33

Move Method (V)

class Account {1

 ...2

 double overdraftCharge() {3

 return _type.overdraftCharge(_daysOverdrawn);4

 }5

6

 double bankCharge() {7

 double result = 4.5;8

 if (_daysOverdrawn > 0) {9

 result += overdraftCharge();10

 }11

 return result;12

 }13

14

 private AccountType _type;15

 private int _daysOverdrawn;16

}17

18

Back in the Account class, we update overdraftCharge() to delegate to the
overdraftCharge() method in the AccountType class. Or, we could… 34

Move Method (VI)

class Account {1

 ...2

 double bankCharge() {3

 double result = 4.5;4

 if (_daysOverdrawn > 0) {5

 result += _type.overdraftCharge(_daysOverdrawn);6

 }7

 return result;8

 }9

10

 private AccountType _type;11

 private int _daysOverdrawn;12

}13

14

… get rid of the overdraftCharge() method in Account entirely. In that case,
we move the call to AccountType.overdraftCharge() to bankCharge()

35

Replace Conditional with Polymorphism (I)

• You have a conditional that chooses different behavior depending on the type
of an object

• Move each “leg” of the conditional to an overriding method in a subclass.
Make the original method abstract

36

Replace Conditional with Polymorphism (II)

double getSpeed() {

 switch (_type) {

 case EUROPEAN:

 return getBaseSpeed();

 case AFRICAN:

 return getBaseSpeed() - getLoadFactor() * _numberOfCoconuts;

 case NORWEGIAN_BLUE:

 return (_isNailed) ? 0 : getBaseSpeed(_voltage);

 }

 throw new RuntimeException(“Unknown Type of Bird”)

}

37

Replace Conditional with Polymorphism (III)
Bird

getSpeed()

European

getSpeed()

African

getSpeed()

Norwegian Blue

getSpeed()

With this configuration, you can now write code that looks like this:
void printSpeed(Bird[] birds) {
 for (int i=0; i < birds.length; i++) {
 System.out.println("" + birds[i].getSpeed());
 }
}
and everything will work correctly via polymorphism and will be easy to extend: just add a new
subclass to support a new type of bird 38

Introduce Null Object (I)

• Repeated checks for a null value (see below)
• Rather than returning a null value from findCustomer() return an instance of a

“null customer” object
...
Customer c = findCustomer(...);
...
if (customer == null) {
 name = “occupant”
} else {
 name = customer.getName()
}
if (customer == null) {
...

Customer

getName()

NullCustomer

getName()

39

Introduce Null Object (II)

public class NullCustomer {

! public String getName() { return “occupant”;}

}

===========================

Customer c = findCustomer(...);

name = c.getName();

• The conditional goes away entirely!!
• In Fowler’s book, this technique is presented as a refactoring; in other

contexts, its presented as a design pattern
• Either way, this technique is very useful!

40

Separate Query for Modifier

• Sometimes you will encounter code that does something like this

• getTotalOutstandingAndSetReadyForSummaries()

• It is a query method but it is also changing the state of the object being called

• This change is known as a “side effect” because it’s not the primary
purpose of the method

• It is generally accepted practice that queries should not have side effects so
this refactoring says to split methods like this into:

• getTotalOutstanding()

• setReadyForSummaries()

• Try as best as possible to avoid side effects in query methods

41

Introduce Parameter Object

• You have a group of parameters that go naturally together

• Stick them in an object and pass the object

• Imagine methods like

• amountInvoicedIn(start: Date; end: Date);

• amountOverdueIn(start: Date; end: Date);

• This refactoring says replace them with something like

• amountInvoicedIn(dateRange: DateRange)

• The new class starts out as a data holder but will likely attract methods to it

42

Encapsulate Collection

• A method returns a collection

• Make it return a read-only version of the collection and provide add/
remove methods

• Student class with

• getCourses(): Map;

• setCourses(courses: Map);

• Change to

• getCourses(): ReadOnlyList

• addCourse(c : Course)

• removeCourse(c : Course)

43

Changing the externally visible
collection, too, is a good idea to
protect clients from depending on the
internals of the Student class

Replace Nested Conditional with Guard Clauses

• This refactoring relates to the purpose of conditional code

• One type of conditional checks for a variation in “normal” behavior

• The system will either do A or B, both are considered “normal” behavior

• The other type of conditional checks for unusual circumstances that
require special behavior; if all of these checks fail then the system
proceeds with “normal behavior”

• We want to apply this refactoring when we discover the latter type of
conditional

• This refactoring is described in Fowler’s book as:

• “A method has conditional behavior that does not make clear the normal
path of execution; Use guard clauses for all special cases”

44

Example (I)

double getAmount() {
 double result;
 if (_isDead) {
 result = deadAmount();
 } else {
 if (_isSeparated) {
 result = separatedAmount();
 } else {
 if (_isRetired) {
 result = retiredAmount();
 } else {
 result = normalAmount();
 }
 }
 }
 return result;
}

45

Note: This type of code
may be the result of a
novice programmer or
due to a programming
constraint imposed by
some companies that a
method can only have a
single return.

Often this constraint
causes more confusion
than its worth

Example (II)

double getAmount() {
 if (_isDead) return deadAmount();
 if (_isSeparated) return separatedAmount();
 if (_isRetired) return retiredAmount();
 return normalAmount();
}

46

With this refactoring, all of the code trying to identify special
conditions are turned into one-line statements that determine
whether the condition applies and if so handles it

That’s why these statements are called “guard clauses”

Even though this method has four returns, its easier to
understand than the method before the refactoring

Common Situation: Need to reverse conditionals

• Sometimes complex compound conditionals can be converted into guard
clauses by reversing the condition that is being tested

• By reversing the conditionals and “failing early” you simplify the code

• See example on the next slide

47

Example (I)

double getAdjustedCapital() {
 double result = 0.0;
 if (_capital > 0.0) {
 if (_intRate > 0.0 && _duration > 0.0) {
 result = (_income / _duration) * ADJ_FACTOR;
 }
 }
 return result;
}
==============================
double getAdjustedCapital() {
 double result = 0.0;
 if (_capital <= 0.0) return result;
 if (_intRate > 0.0 && _duration > 0.0) {
 result = (_income / _duration) * ADJ_FACTOR;
 }
 return result;
}

48

Example (II)

double getAdjustedCapital() {
 double result = 0.0;
 if (_capital <= 0.0) return result;
 if (!(_intRate > 0.0 && _duration > 0.0)) return result;
 result = (_income / _duration) * ADJ_FACTOR;
 return result;
}
==============================
double getAdjustedCapital() {
 double result = 0.0;
 if (_capital <= 0.0) return result;
 if (_intRate <= 0.0 || _duration <== 0.0) return result;
 result = (_income / _duration) * ADJ_FACTOR;
 return result;
}

49

Example (III)

static double NO_ADJUSTMENT = 0.0;
double getAdjustedCapital() {
 if (_capital <= 0.0) return NO_ADJUSTMENT;
 if (_intRate <= 0.0 || _duration <= 0.0)) return NO_ADJUSTMENT;
 return (_income / _duration) * ADJ_FACTOR;
}

50

In this final step
we can eliminate the temporary variable altogether,
replace 0.0 with a constant that provides semantic meaning,
and just return the adjusted capital without storing it in a
temp first.

The resulting method is simpler, shorter, easier to understand

Wrapping Up

• Refactoring is a useful technique for making non-functional changes to a
software system that result in

• better code structures

• Example: There’s a book out there called “Refactoring to Patterns”

• less code

• Many refactorings are triggered via the discovery of duplicated code

• The refactorings then show you how to eliminate the duplication

• Bad Smells

• Useful analogy for discovering places in a system “ripe” for refactoring

51

Coming Up Next

• Lecture 28: Test-Driven Design

52

