
© Kenneth M. Anderson, 2011

PRINCIPLES OF DESIGN PATTERNS
CSCI 4448/5448: OBJECT-ORIENTED ANALYSIS & DESIGN

LECTURE 21 — 11/01/2011

1

© Kenneth M. Anderson, 2011

Goals of the Lecture

Cover the material in Chapters 14 of our textbook

Principles of Design Patterns

2

© Kenneth M. Anderson, 2011

Principles of Design Patterns (I)
One benefit of studying design
patterns is that they are based
on good object-oriented
principles

learning the principles
increases the chance that
you will apply them to your
own designs

We’ve encountered
several principles this
semester already

Code to an interface

Encapsulate What Varies

Only One Reason to
Change

Classes are about
behavior

Prefer delegation over
inheritance

Dependency Inversion
Principle

3

© Kenneth M. Anderson, 2011

Principles of Design Patterns (II)

Code to an interface

If you have a choice between coding to an interface or
an abstract base class as opposed to an implementation
or subclass, choose the former

Let polymorphism be your friend

Pizza store example

Two abstract base classes: Pizza and Pizza Store

There were a LOT of classes underneath, all hidden

4

© Kenneth M. Anderson, 2011

Principles of Design Patterns (III)

Encapsulate What Varies

Identify the ways in which your software will change

Hide the details of what can change behind the public
interface of a class

Combine with previous principle for powerful results

Need to cover a new region? New PizzaStore subclass

Need a new type of pizza? New Pizza subclass

5

© Kenneth M. Anderson, 2011

Principles of Design Patterns (IV)

Only One Reason to Change

Each class should have only one design-related reason
that can cause it to change

That reason should relate to the details that class
encapsulates/hides from other classes

The FeatureImpl class discussed during last lecture has
only one reason to change

a new CAD system requires new methods in order
to fully access its features

6

© Kenneth M. Anderson, 2011

Principles of Design Patterns (V)

Classes are about behavior

Emphasize the behavior of classes over the data of classes

Do not subclass for data-related reasons; It’s too easy in such
situations to violate the contract associated with the behaviors of
the superclass

Think back to our Square IS-A/HAS-A Rectangle example

Related: Prefer Delegation over Inheritance; to solve the
Square/Rectangle problem, we resorted to delegation; it provides a LOT
more flexibility, since delegation relationships can change at run-time

7

© Kenneth M. Anderson, 2011

Principles of Design Patterns (VI)

Dependency Inversion Principle

“Depend upon abstractions. Do not depend upon
concrete classes.”

Normally “high-level” classes depend on “low-level” classes;

Instead, they BOTH should depend on an abstract
interface

We saw this when discussing the Factory Method back in
lecture 9

8

Dependency Inversion Principle: Pictorially

9

Level 1

Level 2

Client

Concrete
Service

Here we have a client class in an “upper”
level of our design depending on a
concrete class that is “lower” in the design

Dependency Inversion Principle: Pictorially

10

Level 1

Level 2

Client

Concrete
Service

Service
Interface

Instead, create an interface that lives in
the upper level that hides the concrete
classes in the lower level; “code to an
interface”

Dependency Inversion Principle: Pictorially

11

Level 1

Level 2

Client

Concrete
Service

Service
Interface

Now, instead of Client depending on a
Concrete service, they BOTH depend
on an abstract interface defined in the
upper level

© Kenneth M. Anderson, 2011

Principles of Design Patterns (VII)

Let’s learn about a few more principles

Open-Closed Principle

Don’t Repeat Yourself

Single Responsibility Principle

Liskov Substitution Principle

Some of these just reinforce what we’ve seen before

This is a GOOD thing, we need the repetition…

12

© Kenneth M. Anderson, 2011

Open-Closed Principle (I)

Classes should be open for extension and closed for modification

Basic Idea:

Prevent, or heavily discourage, changes to the behavior of existing
classes

especially classes that exist near the root of an inheritance
hierarchy

You’ve got a lot of code that depends on this behavior

It should not be changed lightly

13

© Kenneth M. Anderson, 2011

Open-Closed Principle (II)

If a change is required, one approach would be to create a
subclass and allow it to extend/override the original
behavior

This means you must carefully design what methods
are made public and protected in these classes

private methods cannot be extended

14

© Kenneth M. Anderson, 2011

Is this just about Inheritance? (I)

Inheritance is certainly the easiest way to apply this
principle

but its not the only way

Think about the delegate pattern we saw in iOS

We can customize a class’s behavior significantly by
having it assume the existence of a delegate

If the delegate implements a delegate method, then call
it, otherwise invoke default behavior

15

© Kenneth M. Anderson, 2011

Is this just about Inheritance? (II)

In looking at Design Patterns, we see that composition
and delegation offer more flexibility in
extending the behavior of a system

Inheritance still plays a role but we will try to rely on
delegation and composition first

16

© Kenneth M. Anderson, 2011

Open-Closed Principle (III)

Returning to the open-closed principle, the key point is to
get you to be reluctant to change working code

look for opportunities to extend, compose and/or
delegate your way to achieve what you need first

17

© Kenneth M. Anderson, 2011

Don’t Repeat Yourself (I)

Avoid duplicate code by abstracting out things that are
common and placing those things in a single location

Basic Idea

Duplication is Bad!

… at all stages of software engineering: analysis,
design, implement, and test

18

© Kenneth M. Anderson, 2011

Don’t Repeat Yourself (II)
We want to avoid duplication in our requirements & use cases

We want to avoid duplication of responsibilities in our code

We want to avoid duplication of test coverage in our tests

Why?

Incremental errors can creep into a system when one copy is
changed but the others are not

Isolation of Change Requests (a benefit of Cohesion)

We want to go to ONE place when responding to a
change request

19

© Kenneth M. Anderson, 2011

Duplication of Code: Imagine the following system

Suppose we had the responsibility for closing the door
live in the Remote class (which was implemented first)

When we add the BarkRecognizer, the first time we use
it we’ll discover that it won’t auto-close the door

Example (I)

20

recognize(bark: string)
BarkRecognizer

pressButton()
Remoteopen()

close()
isOpen(): boolean

open: boolean
DogDoor

© Kenneth M. Anderson, 2011

We then have a choice:

we could add the code from Remote for closing the
door automatically to the BarkRecognizer

But that would violate Don’t Repeat Yourself

Example (II)

21

recognize(bark: string)
BarkRecognizer

pressButton()
Remoteopen()

close()
isOpen(): boolean

open: boolean
DogDoor

© Kenneth M. Anderson, 2011

OR

we could remove the auto-close code from Remote
and move it to DogDoor

now, the responsibility lives in one place

Example (III)

22

recognize(bark: string)
BarkRecognizer

pressButton()
Remoteopen()

close()
isOpen(): boolean

open: boolean
DogDoor

© Kenneth M. Anderson, 2011

Don’t Repeat Yourself (III)

DRY is really about ONE requirement in ONE place

We want each responsibility of the system to live in a
single, sensible place

To aid in this, you must make sure that there is no
duplication hiding in your requirements

23

© Kenneth M. Anderson, 2011

Example (I)
New Requirements for the Dog Door System: Beware of Duplicates

The dog door should alert the owner when something inside the
house gets too close to the dog door

The dog door will open only during certain hours of the day

The dog door will be integrated into the house’s alarm system to make
sure it doesn’t activate when the dog door is open

The dog door should make a noise if the door cannot open because of
a blockage outside

The dog door will track how many times the dog uses the door

When the door closes, the house alarm will re-arm if it was active
before the door opened

24

© Kenneth M. Anderson, 2011

Example (II)
New Requirements for the Dog Door System: Beware of Duplicates

The dog door should alert the owner when something inside the
house gets too close to the dog door

The dog door will open only during certain hours of the day

The dog door will be integrated into the house’s alarm system to make
sure it doesn’t activate when the dog door is open

The dog door should make a noise if the door cannot open because of
a blockage outside

The dog door will track how many times the dog uses the door

When the door closes, the house alarm will re-arm if it was active
before the door opened

25

© Kenneth M. Anderson, 2011

Example (III)

New Requirements for the Dog Door System

The dog door should alert the owner when something is
too close to the dog door

The dog door will open only during certain hours of the day

The dog door will be integrated into the house’s alarm
system

The dog door will track how many times the dog uses the
door

Duplicates Removed!

26

© Kenneth M. Anderson, 2011

Example (IV)
Ruby on Rails makes use of DRY as a core part of its design

focused configuration files; no duplication of information

for each request, often single controller, single model update, single view

But, prior to Ruby on Rails 1.2, there was duplication hiding in the URLs used
by Rails applications

POST /people/create # create a new person

GET /people/show/1 # show person with id 1

POST /people/update/1 # edit person with id 1

POST /people/destroy/1 # delete person with id 1

27

© Kenneth M. Anderson, 2011

Example (V)
The duplication exists between the HTTP method name and the operation
name in the URL

POST /people/create

Recently, there has been a movement to make use of the four major “verbs” of
HTTP

PUT/POST == create information (create)

GET == retrieve information (read)

POST == update information (update)

DELETE == destroy information (destroy)

These verbs mirror the CRUD operations found in databases

Thus, saying “create” in the URL above is a duplication

28

© Kenneth M. Anderson, 2011

Example (VI)
In version 1.2, Rails eliminates this duplication; Now URLs look like this:

POST /people

GET /people/1

PUT /people/1

DELETE /people/1

And the duplication is logically eliminated

Disclaimer : … but not actually eliminated… Web servers do not universally support
PUT and DELETE “out of the box”. As a result, Rails uses POST

POST /people/1
Post-Semantics: Delete

29

© Kenneth M. Anderson, 2011

Single Responsibility Principle (I)

Every object in your system should have a single
responsibility, and all the object’s services should be
focused on carrying it out

This is obviously related to the “One Reason to
Change” principle

If you have implemented SRP correctly, then each class
will have only one reason to change

30

© Kenneth M. Anderson, 2011

Single Responsibility Principle (II)

The “single responsibility” doesn’t have to be “small”, it
might be a major design-related goal assigned to a package
of objects, such as “inventory management” in an
adventure game

We’ve encountered SRP before

SRP == high cohesion

“One Reason To Change” promotes SRP

DRY is often used to achieve SRP

31

© Kenneth M. Anderson, 2011

Textual Analysis and SRP (I)

One way of identifying high cohesion in a system is to do the following

For each class C

For each method M

Write “The C Ms itself ”

Examples

The Automobile drives itself

The Automobile washes itself

The Automobile starts itself

32

© Kenneth M. Anderson, 2011

Textual Analysis and SRP (II)

If any one of the generated sentences doesn’t make sense
then investigate further.

“The Automobile puts fuel in itself.”

You may have discovered a service that belongs to a
different responsibility of the system and should be moved
to a different class (Gas Station)

This may require first creating a new class before
performing the move

33

© Kenneth M. Anderson, 2011

Liskov Substitution Principle (I)

Subtypes must be substitutable for their base types

Basic Idea

Instances of subclasses do not violate the behaviors
exhibited by instances of their superclasses

They may constrain that behavior but they do not
contradict that behavior

34

© Kenneth M. Anderson, 2011

Liskov Substitution Principle (II)
Named after Barbara Liskov who co-authored a paper with
Jeannette Wing in 1993 entitled Family Values: A Behavioral
Notion of Subtyping

Let q(x) be a property provable about objects x of type T.
Then q(y) should be true for objects y of type S where S
is a subtype of T.

Properties that hold on superclass objects, hold on subclass objects

Return to Rectangle/Square:
WidthAndHeightMayBeDifferent(Rectangle) equals true
for Rectangles and equals false for Square

35

© Kenneth M. Anderson, 2011

Well-Designed Inheritance

LSP is about well-designed inheritance

When I put an instance of a subclass in a place where I
normally place an instance of its superclass

the functionality of the system must remain correct

(not necessarily the same, but correct)

36

© Kenneth M. Anderson, 2011

Bad Example (I)

Extend Board to produce Board3D

Board handles the 2D situation

so it should be easy to extend
that implementation to handle
the 3D case, right? RIGHT?

Nope

getTile(int, int): Tile
addUnit(Unit, int, int)
removeUnit(Unit, int int)
removeUnits(int, int)
getUnits(int, int): List

width: int
height: int
tiles: Tile [*][*]

Board

getTile(int, int, int): Tile
addUnit(Unit, int, int, int)
removeUnit(Unit, int int, int)
removeUnits(int, int, int)
getUnits(int, int, int): List

zpos: int
3dTiles: Tile [*][*][*]

Board3D

37

© Kenneth M. Anderson, 2011

Bad Example (II)
But look at an instance of Board3D…

Each attribute and method in bold is
meaningless in this object

Board3D is getting nothing useful from
Board except for width and height!!

We certainly could NOT create a Board3D
object and hand it to code expecting a
Board object!

As a result, this design violates the LSP
principle; How to fix?

getTile(int, int): Tile
addUnit(Unit, int, int)
removeUnit(Unit, int int)
removeUnits(int, int)
getUnits(int, int): List
getTile(int, int, int): Tile
addUnit(Unit, int, int, int)
removeUnit(Unit, int int, int)
removeUnits(int, int, int)
getUnits(int, int, int): List

width: int
height: int
zpos: int
tiles: Tile [*][*]
3dTiles: Tile [*][*][*]

: Board3D

38

© Kenneth M. Anderson, 2011

Delegation to the Rescue! (Again)

You can understand why a designer thought they could extend Board
when creating Board3D

Board has a lot of useful functionality and a Board3D should try to
reuse that functionality as much as possible

However, the Board3D has no need to CHANGE that functionality
and the Board3D doesn’t really behave in the same way as a board

For instance, a unit on “level 10” may be able to attack a unit on
“level 1”; such functionality doesn’t make sense in the context of a
2D board

39

© Kenneth M. Anderson, 2011

Delegation to the Rescue! (Again)

Thus, if you need to use functionality in another class, but
you don’t want to change that functionality, consider using
delegation instead of inheritance

Inheritance was simply the wrong way to gain access to
the Board’s functionality

Delegation is when you hand over the responsibility for
a particular task to some other class or method

40

© Kenneth M. Anderson, 2011

New Class Diagram

getTile(int, int): Tile
addUnit(Unit, int, int)
removeUnit(Unit, int int)
removeUnits(int, int)
getUnits(int, int): List

width: int
height: int
tiles: Tile [*][*]

Board

getTile(int, int, int): Tile
addUnit(Unit, int, int, int)
removeUnit(Unit, int int, int)
removeUnits(int, int, int)
getUnits(int, int, int): List

zpos: int
Board3D

boards *

Board3D now maintains a list of Board objects for each
legal value of “zpos”

It then delegates to the Board object as needed

public Tile getTile(int x, int y, int z) {
 Board b = boards.get(z);
 return b.getTile(x,y);
}

41

© Kenneth M. Anderson, 2011

Summary of New Principles
Open-Closed Principle (OCP)

Classes should be open for extension and closed for modification

Don’t Repeat Yourself (DRY)

Avoid duplicate code by abstracting out things that are common and placing
those things in a single location

Single Responsibility Principle (SRP)

Every object in your system should have a single responsibility, and all the
object’s services should be focused on carrying it out

Liskov Substitution Principle (LSP)

Subtypes must be substitutable for their base types

42

© Kenneth M. Anderson, 2011

Use of Principles in Design Patterns
When you look at a pattern, you’ll see evidence of these principles everywhere

Strategy Pattern

Code to an interface (the algorithm)

Prefer delegation over inheritance

Inheritance used between the abstract algorithm and the concrete algorithms
because they will all behave similarly; Liskov Substitution Principle

Dependency Inversion Principle (everything depends on algorithm)

Encapsulate What Varies (concrete algorithms hidden behind abstract)

Open Closed Principle; client object is not modified directly, new behavior
comes from a new concrete algorithm subclass

43

So simple yet so powerful!

© Kenneth M. Anderson, 2011

The Principle of Healthy Skepticism

Chapter 14 ends with a warning not to depend on patterns for
everything

“Patterns are useful guides but dangerous crutches…”

Patterns are useful in guiding/augmenting your thinking during design

use the ones most relevant to your context

but understand that they won’t just hand you a solution…
creativity and experience are still key aspects of the design process

44

© Kenneth M. Anderson, 2011

Problems (I)

Problems that can occur from an over reliance on patterns

Superficiality: selecting a pattern based on a superficial
understanding of the problem domain

Bias: When all you have is a hammer, everything looks like
a nail; a favorite pattern may bias you to a solution that is
inappropriate to your current problem domain

Incorrect Selection: not understanding the problem a
pattern is designed to solve and thus inappropriately
selecting it for your problem domain

45

© Kenneth M. Anderson, 2011

Problems (II)

Problems that can occur from an over reliance on patterns

Misdiagnosis: occurs when an analyst selects the wrong
pattern because they don’t know about alternatives; has
not had a chance to absorb the entire range of patterns
available to software developers

Fit: applies a pattern to a set of objects that do not quite
exhibit the range of behaviors the pattern is supposed to
support; the objects don’t “fit” the pattern and so the
pattern does not provide all of its benefits to your system

46

© Kenneth M. Anderson, 2011

Wrapping Up

Principles of Design Patterns

We’ve now encountered ten OO design principles

Looked at how they are applied in certain patterns

Cautioned against an over reliance on patterns

They are useful but they can’t be your hammer

They are one tool among many in performing
OO A&D

47

© Kenneth M. Anderson, 2011

Coming Up Next

Presentations due this Friday

Homework 5 due on Monday

Lecture 22: Advanced iOS

Lecture 23: Commonality and Variability Analysis & The
Analysis Matrix

Chapters 15 and 16

Lecture 24: Decorator, Observer, Template Method

Chapters 17, 18 and 19

48

