
© Kenneth M. Anderson, 2011

ADVANCED ANDROID
CSCI 4448/5448: OBJECT-ORIENTED ANALYSIS & DESIGN

LECTURE 18 — 10/20/2011

1

© Kenneth M. Anderson, 2011

Goals of the Lecture

Present more examples of the Android Framework

Passing Information between Activities

Reading and Writing Files

2D Graphics and Touch Events

Application Preferences

Working with a Database

2

© Kenneth M. Anderson, 2011

Passing Information

In our examples so far

we’ve seen one activity launch another activity

but each activity has been independent of the other

Let’s see how one activity can send information to
another activity

We’ll also take a look at storing data that persists
between sessions of using the application

3

© Kenneth M. Anderson, 2011

Profile Viewer

Our application is going to show a list of user names

We can choose to add and delete user names

We can also edit a user to launch a new activity that
will then display that user’s profile

Our program will use Java serialization to persist a data
structure that stores user names and profiles

The data structure will be a Map<String, ProfileData>

We’ll discuss ProfileData in a moment

4

© Kenneth M. Anderson, 2011

Java Serialization (I)

Java serialization is a technology that can both

persist a set of objects, and

later retrieve that set such that all objects are recreated
and all connections between them are reestablished

java.io provides two classes to help with this

ObjectOutputStream and ObjectInputStream

You use the former to save and the latter to load

5

© Kenneth M. Anderson, 2011

Java Serialization (II)

Most Java types, including collections, can be serialized

User-defined types can also be serialized

You need to implement java.io.Serializable

And, you need to implement two methods

readObject(java.io.ObjectInputStream stream)

writeObject(java.io.ObjectOutputStream stream)

6

© Kenneth M. Anderson, 2011

Java Serialization (III)

In writeObject(), you place code that writes each internal
attribute of your object on to the output stream

In readObject(), you place code that reads each attribute
off of the input stream in the same order they were
written by writeObject

Then, when it comes time for your class to be persisted,
Java’s serialization framework will call readObject and
writeObject as needed passing the appropriate IO stream

7

© Kenneth M. Anderson, 2011

ProfileData (I)

For our Profile Viewer application, our ProfileData class
stores a user’s first name, last name, and e-mail address

ProfileData is implemented as a data holder with getter
and setter methods for each attribute

It implements java.io.Serializable as needed

It also contains a serialVersionUID that was
autogenerated by Eclipse that is used to add support
for versioning. If we ever change the ProfileData class,
we’ll need to update the UID.

8

© Kenneth M. Anderson, 2011

Profile Data (II)

Our writeObject Method looks like this

private void writeObject(java.io.ObjectOutputStream
stream) throws IOException {

	

 	

 stream.writeObject(firstName);

	

 	

 stream.writeObject(lastName);

	

 	

 stream.writeObject(email);

}

9

© Kenneth M. Anderson, 2011

Profile Data (III)

Our readObject Method looks like this

private void readObject(java.io.ObjectInputStream stream)
throws IOException, ClassNotFoundException {

	

 	

 firstName = (String)stream.readObject();

	

 	

 lastName = (String)stream.readObject();

	

 	

 email = (String)stream.readObject();

	

 }

10

© Kenneth M. Anderson, 2011

Java Serialization (IV)

Having configured ProfileData in this way, then the code to
write a Map<String, ProfileData> data structure is:

ObjectOutputStream output =

	

 new ObjectOutputStream(new FileOutputStream(f));

output.writeObject(profiles);

Two lines of code! (Ignoring exception handlers)

11

© Kenneth M. Anderson, 2011

Java Serialization (V)

The code to read a Map<String, ProfileData> is:

ObjectInputStream input =

	

 new ObjectInputStream(new FileInputStream(f));

profiles = (TreeMap<String,ProfileData>)
input.readObject();

Just two more lines of code!

12

© Kenneth M. Anderson, 2011

Java Serialization (VI)

Hiding in those two lines of code was a reference to a
variable named “f ”; Here’s the relevant part:

new FileInputStream(f) or new FileOutputStream(f)

As an aside: java.io is based on the Decorator pattern

In both cases, we were passing an instance of java.io.File to
the IO streams to specify where our persistent data is
stored

So, now we need to look at how we deal with files in
Android

13

© Kenneth M. Anderson, 2011

Dealing With Files (I)

Each Android application has a directory on the file system

You can verify this by launching an emulator and then
invoking the “adb -e shell” command

adb is stored in $ANDROID/tools (2.x) or
$ANDROID/platform_tools (3.x)

This command provides you with a command prompt
to your device; recall that Android runs on linux

cd to data/data to see a list of application directories

14

© Kenneth M. Anderson, 2011

Dealing With Files (II)

For Profile Viewer, cd into the com.example.profileviewer
directory (you’ll need to compile and install Profile Viewer onto
your device first!)

The directory contains two subdirectories

files and lib

Whenever you ask for access to your application’s directory
and create a file, it will be stored in the “files” subdirectory

Application directories are nominally private; other apps can’t
access them

15

© Kenneth M. Anderson, 2011

Dealing With Files (III)

Android provides several useful methods for accessing your
application’s private directory

getFilesDir() - returns a java.io.File that points at the directory

fileList() - returns list of file names in app’s directory

openFileInput() - returns FileInputStream for reading

openFileOutput() - returns FileOutputStream for writing

deleteFile() - deletes a file that is no longer needed

16

© Kenneth M. Anderson, 2011

Profile Viewer’s Use of Files

In Profile Viewer, all we need to use is getFilesDir()

We use that to create a java.io.File object that points at
a file called “profiles.bin” in our app’s directory

We then pass that file to our save/load methods

That code looks like this

profiles.load(new File(getFilesDir(), "profiles.bin"));

17

© Kenneth M. Anderson, 2011

Back to “Passing Information”

When we select a user and click Edit, we switch from the
initial activity to an “edit profile” activity

We want that second activity to display the profile of
the selected user

How do we pass that information?

In Android, that information gets passed via the
Intent that is used to launch the second activity

18

© Kenneth M. Anderson, 2011

Passing Information (II)

Each intent has a map associated with it that can store
arbitrary Java objects

The Map is updated via putExtra(key, value)

The Map is accessed via get*Extra(key) where “*” can
be one of several type names

In Profile Viewer, we use getStringExtra(key) because
the user name we store is a string

An activity can get access to the intent that launched it via a
call to getIntent() which is an inherited method

19

© Kenneth M. Anderson, 2011

Passing Information (III)

So, to pass information we do this in the Main activity

Intent intent = new Intent(this, EditProfile.class);

intent.putExtra("name", username);

startActivity(intent);

To retrieve it, we do this in the Edit Profile activity

username = getIntent().getStringExtra("name");

Simple!

20

© Kenneth M. Anderson, 2011

Other Highlights

Profile Viewer also shows

how to create/invoke a custom dialog

how to monitor the text entered into a text field

how to use a table view in a layout

how to save/load data in onResume() and onPause() to
ensure that data is synced between activities

how to enable/disable widgets based on list selections

21

Demo

© Kenneth M. Anderson, 2011

2D Graphics and Touch Events

The Simple Paint program takes a look at how to do
simple 2D graphics in Android

and how to handle touch events

Whenever you want to do your own drawing, you need
access to a canvas

If you create a subclass of View and then override the
onDraw(Canvas) method, you gain access to a canvas

Essentially, a view IS-A canvas

22

© Kenneth M. Anderson, 2011

Key Concepts (I)

We draw on a canvas

In order to draw a shape, we first need a Paint object; it
specifies a wide range of attributes that influences
drawing

We then invoke one of canvas’s draw methods, passing
in the shape info and our paint object

In our program, we create one Paint object called
background which we use to paint the canvas white

and a second Paint object used to paint Rectangles

23

© Kenneth M. Anderson, 2011

Key Concepts (II)

Draw on Demand

As with most frameworks, drawing in Android is done
on demand when the framework determines that an
update is needed

say if our view gets exposed because a window on
top of it moves

or when our own code calls invalidate()

onDraw is then called and we draw the current state of the
view as determined by our program’s data structures

24

© Kenneth M. Anderson, 2011

OnDraw (I)

Our SimplePaint program allows rectangles to be drawn in
four different colors

We have a data structure that keeps track of the
rectangles that have been created and the Paint object
used to draw each one

If we are in the middle of handling a touch event, a
rectangle called motionRect exists and we will draw it
as well

Our onDraw method is shown on the next slide

25

© Kenneth M. Anderson, 2011

OnDraw (II)
protected void onDraw(Canvas canvas) {

	

 canvas.drawRect(0, 0, getWidth(), getHeight(), background);

	

 for (Rectangle r : rects) {

	

 	

 canvas.drawRect(r.r, r.paint);

	

 }

	

 if (motionRect != null && motionRect.bottom > 0 && motionRect.right > 0) {

	

 	

 canvas.drawRect(motionRect, current);

	

 }

}

26

© Kenneth M. Anderson, 2011

Handling Touch Events (I)

To handle a touch event on our custom view

we override the onTouchEvent method

process the MotionEvent instance that we are passed

and return true to ensure that we get all of the events
related to the touch event

There are three stages:

DOWN (the start), MOVE (updates), UP (the end)

27

© Kenneth M. Anderson, 2011

Handling Touch Events (II)
An ACTION_DOWN event means that the user has just touched the
screen

In our program, we create motionRect and set its top, left corner

An ACTION_MOVE event means the user is moving their finger
across the screen

we update the bottom, right corner and invalidate

An ACTION_UP event means the user has lifted their finger from the
screen

We update motionRect with the last x, y coordinate, add
motionRect to our data structures and then set motionRect to null

28

© Kenneth M. Anderson, 2011

Handling Touch Events (III)

Finally, to actually receive touch events, we need to do
three things

In the constructor of our View subclass, we need to call

setFocusable(true);

setFocusableInTouchMode(true);

In the constructor of our activity, we get a handle to our
View subclass and call requestFocus();

That ensures that Android sends events to the view

29

© Kenneth M. Anderson, 2011

Other Highlights

Simple Paint also demonstrates the use of

a radio group to keep track of the current paint color

Android’s preference mechanism to let the current
paint color persist between runs of the application

You call getSharedPreferences to gain access to a
map that contains your apps preferences

You can read and write preference values in a
straightforward manner

30

Demo

© Kenneth M. Anderson, 2011

Android’s support for SQLite

Android makes it straightforward to interact with SQLite
databases

SQLite is a public domain SQL library that stores a
database as a text file and provides standard CRUD
operations on that text file

as if you were actually talking to a database server

Android provides a class to make creating/opening a database
a snap, a class that allows standard select, insert, update and
delete statements to be executed and a Cursor class for
processing result sets

31

© Kenneth M. Anderson, 2011

SQL Example

For this example, I recreated Profile Viewer and

dropped our custom Profiles / ProfileData classes that
made use of Java serialization

and incorporated the use of an SQLite database

As you will see, all of the original functionality could be
recreated and the resulting program is just a tad simpler

IF you are comfortable with database programming and
SQL; if not, it will seem confusing!

32

© Kenneth M. Anderson, 2011

SQLiteOpenHelper

To create a database, you make a subclass of
SQLiteOpenHelper

It takes care of creating and opening a SQLite database
for you at run-time

All you need to do is to supply the CREATE TABLE
statement needed to create the table you’ll be using

I created a table whose columns correspond to
Profile Viewer’s profile name, first name, last name,
and e-mail address attributes

33

© Kenneth M. Anderson, 2011

Accessing the Database

In your activity, creating an instance of your OpenHelper
subclass, automatically creates (if needed) your database
and opens it

In your onStop() method, you need to remember to
close the database

You then can acquire the database for reading or writing
as needed with calls to getReadableDatabase() or
getWriteableDatabase()

34

© Kenneth M. Anderson, 2011

CRUD Support

In databases, you can create, read, update or delete rows
in a table

In Android’s database object these correspond to

insert, query, update, delete

These are methods, you supply snippets of SQL to these
methods; they create the full SQL statement in the
background and then execute it against the database

35

© Kenneth M. Anderson, 2011

Selected Snippets (I)

Getting a list of profile names from the database

SQLiteDatabase db = profileDB.getReadableDatabase();

Cursor cursor =

db.query("profiles", new String[] { "profile" }, null, null, null, null, "profile");

while (cursor.moveToNext()) {

adapter.add(cursor.getString(0));

}

cursor.close();

36

© Kenneth M. Anderson, 2011

Selected Snippets (II)

Deleting a profile from the database

 	

SQLiteDatabase db = profileDB.getWritableDatabase();

 	

db.delete("profiles", "profile = ?", new String[] { name });

The “profile = ?” is part of an SQL WHERE clause;

the ? mark is a placeholder

It gets replaced by the value of the variable “name” which is passed in
via a String array: “new String[] { name }” is a string array literal in Java

37

© Kenneth M. Anderson, 2011

Selected Snippets (III)

Inserting a new profile into the database

 	

 SQLiteDatabase db = profileDB.getWritableDatabase();

 	

 ContentValues values = new ContentValues();

 	

 values.put("profile", name);

 	

 values.put("first", "Mr.");

 	

 values.put("last", "Nobody");

 	

 values.put("email", "nobody@example.com");

 	

 db.insertOrThrow("profiles", null, values);

38

mailto:nobody@example.com
mailto:nobody@example.com

© Kenneth M. Anderson, 2011

Selected Snippets (IV)
Checking to see if a profile already exists

SQLiteDatabase db = profileDB.getReadableDatabase();

Cursor cursor =

db.query("profiles", new String[] { "profile" }, "profile like ?", new String[] { name}, null, null, "profile");

if (cursor.getCount() > 0) {

error.setText("User name already exists!!");

} else {

error.setText("");

}

cursor.close();

39

© Kenneth M. Anderson, 2011

Selected Snippets (IV)

Updating a row with new values

 	

SQLiteDatabase db = profileDB.getWritableDatabase();

 	

ContentValues values = new ContentValues();

 	

values.put("first", first_name.getText().toString());

 	

values.put("last", last_name.getText().toString());

 	

values.put("email", email.getText().toString());

 	

db.update("profiles", values, "profile = ?", new String[] { name });

40

© Kenneth M. Anderson, 2011

Wrapping Up
Learned more about the Android framework

Passing Information between Activities

Reading and Writing Files

2D Graphics and Touch Events

Application Preferences

Working with a Database

This ends our woefully incomplete review of the
Android Framework; however, our three lectures
should be enough to get you started!

41

© Kenneth M. Anderson, 2011

Coming Up Next

Homework 5: Assigned Tomorrow

Lecture 19: Advanced iOS

42

