ADVANCED ANDROID

CSCl 4448/5448: OBJECT-ORIENTED ANALYSIS & DESIGN
LECTURE |8 — [0/20/201 |

© Kenneth M. Anderson, 201 |

Goals of the Lecture

® Present more examples of the Android Framework
® Passing Information between Activities
® Reading and Writing Files
® 2D Graphics and Touch Events
® Application Preferences

® Working with a Database

© Kenneth M. Anderson, 201 |)

assing Information

® |n our examples so far
® we've seen one activity launch another activity
® but each activity has been independent of the other

® |ets see how one activity can send information to
another activity

® Well also take a look at storing data that persists
between sessions of using the application

© Kenneth M. Anderson, 201 | 3

Crofile Viewer

® Our application is going to show a list of user names
® \We can choose to add and delete user names

® We can also edit a user to launch a new activity that
will then display that user’s profile

® Our program will use Java serialization to persist a data
structure that stores user names and profiles

® [he data structure will be a Map<5tring, ProfileData>

® We'll discuss ProfileData in a moment

© Kenneth M. Anderson, 201 | 4

Java Serialization (I)

® Java serialization is a technology that can both

® persist a set of objects, and

® [ater retrieve that set such that all objects are recreated
and all connections between them are reestablished

® java.lo provides two classes to help with this
® ObjectOutputStream and ObjectinputStream

® You use the former to save and the latter to load

© Kenneth M. Anderson, 201 | 5

Java Serialization (Il)

® [Most Java types, Including collections, can be serialized
® User-defined types can also be serialized
® You need to implement java.io.Serializable
® And, you need to implement two methods
® readObject(java.l0.ObjectinputStream stream)

® writeObject(java.l0.ObjectOutputStream stream)

© Kenneth M. Anderson, 201 | 6

Java Serialization (lll)

® |n writeObject(), you place code that writes each internal
attribute of your object on to the output stream

® |n readObject(), you place code that reads each attribute
off of the Input stream In the same order they were
written by writeObject

® [hen, when it comes time for your class to be persisted,
Java's serialization framework will call readObject and
writeObject as needed passing the appropriate |O stream

© Kenneth M. Anderson, 201 | i

’rofileData (I)

® [or our Profile Viewer application, our ProfileData class
stores a user’s first name, last name, and e-mail address

® ProfileData i1s implemented as a data holder with getter
and setter methods for each attribute

® [t implements java.io.5erializable as needed

® |t also contains a serialVersionUID that was
autogenerated by Eclipse that 1s used to add support
for versioning. It we ever change the ProfileData class,
we'll need to update the UID.

© Kenneth M. Anderson, 201 | 8

’rofile Data (Il

® Our writeObject Method looks like this

® private void writeObject(java.lo0.ObjectOutputStream
stream) throws |OException {

’ stream.writeObject(firstName);
’ stream.writeObject(lastName);
’ stream.writeObject(emaill);

°)

© Kenneth M. Anderson, 201 | 9

’rofile Data (lII)

® Our readObject Method looks like this

® private void readObject(java.l0.ObjectinputStream stream)
throws |OException, ClassNotFoundException {

’ firstName = (String)stream.readObject();
’ lastName = (String)stream.readObject();
’ emall = (String)stream.readObject();
* }

© Kenneth M. Anderson, 201 | 10

Java Serialization (1V)

® Having configured ProfileData in this way, then the code to
write a Map<String, ProfileData> data structure Is:

8 ObjectOutputStream output =
’ new ObjectOutputStream(new FileOutputStream(f));

® outputwriteObject(profiles);

® [wo lines of code! (Ignoring exception handlers)

© Kenneth M. Anderson, 201 | | |

Java Serialization (V)

® [he code to read a Map<String, ProfileData> Is:
® ObjectinputStream input =
® new ObpjectinputStream(new FilelnputStream(Y));

® profiles = (TreeMap<StringProfileData>)
input.readObject();

® |ust two more lines of codel

© Kenneth M. Anderson, 201 | |2

Java Serialization (V)

® Hiding in those two lines of code was a reference to a
variable named “1"; Here's the relevant part:

® new FilelnputStream(f) or new FileOutputStream(f)
® As an aside: java.lo Is based on the Decorator pattern

® |n both cases, we were passing an instance of java.lo.fFile to

the |O streams to specify where our persistent data Is
stored

® So, now we need to look at how we deal with files in
Android

© Kenneth M. Anderson, 201 | |3

Dealing With Files (1)

® [Fach Android application has a directory on the file system

® You can verify this by launching an emulator and then
iInvoking the “adb -e shell” commandad

® adb is stored in PANDROID/tools (2.x) or
PANDROID/platform_tools (3.x)

® [his command provides you with a command prompt
to your device; recall that Android runs on linux

® cd to data/data to see a list of application directories

© Kenneth M. Anderson, 201 | | 4

Dealing With Files (II)

® [or Profile Viewer, cd into the com.example.profileviewer
directory (you'll need to compile and install Profile Viewer onto
your device firstl)

® T[he directory contains two subdirectories

® files and lib

® Whenever you ask for access to your application’s directory
and create a file, it will be stored in the “files” subdirectory

® Application directories are nominally private; other apps can't
access them

© Kenneth M. Anderson, 201 | |5

Dealing With Files (II1)

® Android provides several useful methods for accessing your
application’s private directory

® getFilesDir() - returns a java.io.file that points at the directory
® fileList() - returns list of file names in app’s directory

® openFilelnput() - returns FilelnputStream for reading

® openFileOutput() - returns FileOutputStream for writing

® deleteFile() - deletes a file that is no longer needed

© Kenneth M. Anderson, 201 | | 6

°rofile Viewer's Use of Files

® |n Profile Viewer, all we need to use Is getFilesDir()

® \We use that to create a java.lo.rile object that points at
a file called “profiles.bin™ in our app’s directory

® \We then pass that file to our save/load methods
® [hat code looks like this

® profiles.load(new File(getFilesDir(), "profiles.oin™));

© Kenneth M. Anderson, 201 | |7

Back to “Passing Information”

® \When we select a user and click Edit, we switch from the
initial activity to an “edit profile™ activity

® VWe want that second activity to display the profile of
the selected user

® How do we pass that information?

® |n Android, that information gets passed via the
Intent that I1s used to launch the second activity

© Kenneth M. Anderson, 201 | |8

Passing Information (ll)

® [ach intent has a map associated with it that can store
arbitrary Java objects

® The Map Is updated via putExtra(key, value)

® The Map Is accessed via get*Extra(key) where “*" can
be one of several type names

® |n Profile Viewer, we use getStringbxtra(key) because
the user name we store Is a string

® An activity can get access to the intent that launched it via a
call to getintent() which is an inherited method

© Kenneth M. Anderson, 201 | 19

Passing Information (lll)

® 50, to pass Information we do this in the Main activity
® [ntent intent = new Intent(this, EditProfile.class);
® intent.putkxtra(‘name’, username);
® startActivity(intent);
® Jo retrieve It, we do this In the Edit Profile activity
® username = getintent().getStringbExtra("name™);

® Simplel

© Kenneth M. Anderson, 201 | 20

Other Highlights

® Profile Viewer also shows
® how to create/invoke a custom dialog
® how to monitor the text entered into a text field
® how to use a table view In a layout

® how to save/load data in onResume() and onPause() to
ensure that data Is synced between activities

® how to enable/disable widgets based on list selections

Demo

© Kenneth M. Anderson, 201 | 21

2D Graphics and Touch Events

® [he Simple Paint program takes a look at how to do
simple 2D graphics in Android

® and how to handle touch events

® \Whenever you want to do your own drawing, you need
access to a canvas

® |f you create a subclass of View and then override the
onDraw(Canvas) method, you gain access to a canvas

® Lssentially, a view IS-A canvas

© Kenneth M. Anderson, 201 |)

Key Concepts (I)

® \We draw on a canvas

® |n order to draw a shape, we first need a Paint object; It
specifies a wide range of attributes that influences

drawing

® \We then invoke one of canvas’'s draw methods, passing
in the shape info and our paint object

® |n our program, we create one Paint object called
background which we use to paint the canvas white

® and a second Paint object used to paint Rectangles

© Kenneth M. Anderson, 201 | 23

Key Concepts ()

® Draw on Demana

® As with most frameworks, drawing in Android Is done
on demand when the framework determines that an
update Is needed

® say If our view gets exposed because a window on
top of it moves

® or when our own code calls invalidate()

® onDraw is then called and we draw the current state of the
view as determined by our program’s data structures

© Kenneth M. Anderson, 201 | 24

OnDraw (1)

® Our SimplePaint program allows rectangles to be drawn In
four different colors

® Ve have a data structure that keeps track of the
rectangles that have been created and the Paint object
used to draw each one

® |[f we are In the middle of handling a touch event, a
rectangle called motionRect exists and we will draw 1t
as well

® Our onDraw method is shown on the next slide

© Kenneth M. Anderson, 201 | 25

OnDraw (Il

® protected void onDraw(Canvas canvas) {

’ canvas.drawRect(0, O, getWidth(), getHeight(), background);

’ for (Rectangle r: rects) {

D canvas.drawRect(rr, rpaint);

.)

R if (motionRect = null && motionRect.bottom > 0 && motionRect.right > 0) {
D canvas.drawRect(motionRect, current);

°)

s |

© Kenneth M. Anderson, 201 | 26

Handling Touch Events (1)

® Jo handle a touch event on our custom view
® we override the onlouchkvent method
® process the Motionkvent instance that we are passed

® and return true to ensure that we get all of the events
related to the touch event

® [here are three stages:

® DOWN (the start), MOVE (updates), UP (the end)

© Kenneth M. Anderson, 201 | 27

Handling Touch Events ()

® An ACTION_DOWN event means that the user has just touched the
screen

® In our program, we create motionRect and set its top, left corner

® An ACTION_MOVE event means the user is moving their finger
across the screen

® we update the bottom, right corner and invalidate

® An ACTION_UP event means the user has lifted their finger from the
screen

® We update motionRect with the last x, y coordinate, add
motionRect to our data structures and then set motionRect to null

© Kenneth M. Anderson, 201 | 28

Handling Touch

~vents (lII)

® Finally, to actually receive touch events, we need to do

three things

® |n the constructor of ourView subclass, we need to call

® setFocusable(true);

® setrocusableln TouchMode(true);

® |n the constructor of our activity, we get a handle to our
View subclass and call requestFocus();

® [hat ensures that Android sends events to the view

© Kenneth M. Anderson, 201 | 29

Other Highlights

® Simple Paint also demonstrates the use of
® a radio group to keep track of the current paint color

® Android’s preference mechanism to let the current
paint color persist between runs of the application

® You call getSharedPreferences to gain access to a
map that contains your apps preferences

® You can read and write preference values in a
straightforward manner

Demo

© Kenneth M. Anderson, 201 | 30

Android’s support for SQLite

® Android makes It straightforward to interact with SQLite
databases

® SQLlite 1s a public domain SQL library that stores a

database as a text file and provides standard CRUD
operations on that text file

® as if you were actually talking to a database server

® Android provides a class to make creating/opening a database
a snap, a class that allows standard select, insert, update and

delete statements to be executed and a Cursor class for
processing result sets

© Kenneth M. Anderson, 201 | 31

SQL Example

® For this example, | recreated Profile Viewer and

® dropped our custom Profiles / ProfileData classes that
made use of Java serialization

® and incorporated the use of an SQLite database

® As you will see, all of the original functionality could be
recreated and the resulting program is just a tad simpler

® | you are comfortable with database programming and
SQL; if not, it will seem confusing!

© Kenneth M. Anderson, 201 | 32

SQLiteOpenHelper

® Jo create a database, you make a subclass of
SOQLiteOpenHelper

® [t takes care of creating and opening a SQLite database
for you at run-time

® All you need to do is to supply the CREATE TABLE
statement needed to create the table you'll be using

® | created a table whose columns correspond to
Profile Viewer's profile name, first name, last name,
and e-mall address attributes

© Kenneth M. Anderson, 201 | 33

Accessing the Database

® |n your activity, creating an instance of your OpenHelper
subclass, automatically creates (if needed) your database
and opens It

® |n your onStop() method, you need to remember to
close the database

® You then can acquire the database for reading or writing
as needed with calls to getReadableDatabase() or
setVWriteableDatabase()

© Kenneth M. Anderson, 201 | 34

CRUD Support

® |n databases, you can create, read, update or delete rows
in a table

® |n Android's database object these correspond to
® insert, query, update, delete

® [hese are methods, you supply snippets of SQL to these
methods; they create the full SQL statement in the
background and then execute it against the database

© Kenneth M. Anderson, 201 | 35

Selected Snippets (1)

® Getting a list of profile names from the database
® SOQLiteDatabase db = profileDB.getReadableDatabase();
® Cursor cursor =
8 db.query("profiles’, new String[] { "profile” }, null, null, null, null, "profile™;
® while (cursormove ToNext()) {
® adapteradd(cursor.getString(0));
*)

® cursor.close();

© Kenneth M. Anderson, 201 | 36

Selected Snippets (I

® Deleting a profile from the database
® SQLiteDatabase db = profileDB.getWritableDatabase();
> db.delete("profiles”, "profile = ", new String[] { name });
® [he 'profile = {"is part of an SOL WHERE clause;
® the ! mark is a placeholder

® [t gets replaced by the value of the variable “name” which is passed in
via a String array: ‘new String[] { name }" Is a string array literal in Java

© Kenneth M. Anderson, 201 | 37

Selected Snippets (lll)

® [nserting a new profile into the database

’ SQLiteDatabase db = profileDB.getWritableDatabase();
2 | ContentValues values = new ContentValues();

’ values.put("profile”, name);

’ values.put("first", "Mr");

’ values.put(“last”, "Nobody");

’ values.put("email”, "nobody@example.com”);

’ db.insertOrThrow("profiles”, null, values);

© Kenneth M. Anderson, 201 | 38

mailto:nobody@example.com
mailto:nobody@example.com

Selected Snippets (V)

Checking to see if a profile already exists

SQLiteDatabase db = profileDB.getReadableDatabase();

Cursor cursor =

® db.query("profiles”, new String[] { "profile" }, "profile like ?", new String[] { name}, null, null, "profile™);
if (cursorgetCount() > 0) {

® errorsetlext("User name already exists!!");

} else {

® errorsetlext(™);

)

cursor.close();

© Kenneth M. Anderson, 201 | 55

Selected Snippets (V)

® Updating a row with new values

’ SQLiteDatabase db = profileDB.getVWritableDatabase();

’ ContentValues values = new ContentValues();

’ values.put("first’, first_name.get Text().toString());

’ values.put(“last’, last_name.get Text().toString());

’ values.put("email”, email.get Text().toString());

’ db.update("profiles”, values, "profile = ", new String[] { name });

© Kenneth M. Anderson, 201 | 40

Wrapping Up

® [earned more about the Android framework
® Passing Information between Activities
® Reading and Writing Files
8 2D Graphics and Touch Events
® Application Preferences

® Working with a Database

® This ends our woefully incomplete review of the
Android Framework; however, our three lectures
should be enough to get you started!

© Kenneth M. Anderson, 201 | 4|

Coming Up Next

® Homework >:Assigned Tomorrow

® |ecture |9: Advanced 1OS

© Kenneth M. Anderson, 201 | 42

