
© Kenneth M. Anderson, 2011

INTERMEDIATE ANDROID
CSCI 4448/5448: OBJECT-ORIENTED ANALYSIS & DESIGN

LECTURE 16 — 10/13/2011

1

© Kenneth M. Anderson, 2011

Goals of the Lecture

Dig deeper into the Android Framework

Screen Orientation

Animation

Dialogs

Playing Sounds

(Simple) Networking

2

© Kenneth M. Anderson, 2011

Display Problems: Resolved

Back in Lecture 11, I encountered display problems where the
Android 3.2 emulator

appeared as a tablet-sized device too big to fit on the screen

and did not offer a way to resize or scale the window

The only way to fix this was to download Android 2.3.3 and
create an Android Virtual Device that was configured to run
2.3.3

I will primarily use this emulator for the remainder of the
semester

3

© Kenneth M. Anderson, 2011

Android Development Philosophy

As I learn more about Android development, I’m beginning
to understand the Android Development Philosophy

“Everything is a Resource”

or

“It’s resources all the way down…”

Many of the steps in Android programming depend on
creating resources and then loading them or referencing
them (in XML files) at the right time

4

© Kenneth M. Anderson, 2011

Screen Orientation

People can easily change the orientation by which they
hold their mobile devices

Mobile apps have to deal with changes in orientation
frequently

We saw iOS support for multiple orientations in our
last lecture

Let’s see how Android deals with this issue (hint:
resources)

5

© Kenneth M. Anderson, 2011

Start with Portrait Orientation

It is natural to start by designing the UI of your main
activity in portrait orientation

That is the default orientation in the Eclipse plug-in

Here’s a typical layout for the “main screen” of a game

6

© Kenneth M. Anderson, 2011 7

© Kenneth M. Anderson, 2011 8

Quick Interjection: Unit Sizes
Android supports a wide variety of unit sizes for specifying UI
layouts; here are all but two

px (device pixel), in, mm, pt (1/72nd of an inch)

All of these have problems creating UIs that work across multiple
types of devices

Google recommends using resolution-independent units

dp (or dip): density-independent pixels

sp: scale-independent pixels

In particular, use sp for font sizes and dip for everything else

© Kenneth M. Anderson, 2011 9

But switch to landscape mode in the emulator
(Ctrl+F12) and a problem becomes evident

© Kenneth M. Anderson, 2011 10

Resources to the Rescue!

To solve this problem, we create a new main.xml file that
has been created specifically for landscape orientation

This file will live in a new subfolder in the res folder of
our Android project: res/layout-land/

This folder is not created by default; right click on the
res folder and select New ⇒ Folder

Then you can right click on the existing main.xml and
select copy and then right click on layout-land and select
paste; Finally, you can edit the file for the new orientation

© Kenneth M. Anderson, 2011 11

This layout arranges
the buttons into two
rows and two
columns using a
TableLayout

© Kenneth M. Anderson, 2011 12

Problem solved. Android automatically
switches the layout behind the scenes when
the orientation of the device changes.

© Kenneth M. Anderson, 2011 13

Types of Layouts?

LinearLayout: Each child view is placed after the
previous one in a single row or column

RelativeLayout: Each child view is placed in relation to
other views in the layout or relative to its parent’s layout

FrameLayout: Each child view is stacked within a
frame, relative to the top-left corner. Child views may
overlap.

TableLayout: Each child view is a cell in a grid of rows
and columns

© Kenneth M. Anderson, 2011

Specifying the Size of a View

We’ve previously discussed the use of resolution-
independent measurements for specifying the size of a
view

These values go in the XML attributes

android:layout_width and android:layout_height

But, you can get more flexibility with

fill_parent: the child scales to the size of its parent

wrap_content: the parent shrinks to the size of the child

14

© Kenneth M. Anderson, 2011

Animating Views

Android offers four different ways of performing
animation

Support for Animated GIF images

Frame-by-Frame animation: developer supplies
images and specifies transitions between them

Tweened animation: simple animation effects that
can be programmatically applied to views

OpenGL ES: advanced 3D drawing, animation, etc.

15

© Kenneth M. Anderson, 2011

Tweened Animation

Tweened animations are specified (unsurprisingly) via resources

The basic process involves doing the following in the
onCreate() method of the Activity

get a handle to the view

load the animation resource: such as fade

apply it to the view: view.startAnimation(fade)

Android provides animation support for alpha, rotation, scaling
and translating; the first deals with transparency; the third deals
with a view’s size; the last deals with moving views around

16

© Kenneth M. Anderson, 2011

Our Plan

We’ll apply animations to the buttons defined on the
portrait layout of the previous example

We’ll make one fade in, one rotate, one scale, and one
that does all three at once!

We’ll also have each animation happen one after the
other

In a real application, this would get tedious, but for
illustration purposes, it’s fine

17

© Kenneth M. Anderson, 2011

The Process (I)

Step One: Use the New Folder command to create a
folder called anim in the res folder of our project

Step Two: Create a new Android XML File in the anim
subfolder, call it fade.xml

18

© Kenneth M. Anderson, 2011

The Process (II)

Step 3: Add the following code to the Main activity’s onCreate()
method

Button continue_button = (Button) findViewById(R.id.continue_button);

Animation fade = AnimationUtils.loadAnimation(this, R.anim.fade);

continue_button.startAnimation(fade);

You will need these import statements

import android.view.animation.Animation;

import android.view.animation.AnimationUtils;

import android.widget.Button;

19

© Kenneth M. Anderson, 2011

The Process (IV)

There are no additional steps… just run the program!

Demo of “Fun With Animation”

As you saw from the code, we used the attribute

android:startOffset

to control when particular animations start

So, Android makes it straightforward to perform simple
animations within Android apps

20

© Kenneth M. Anderson, 2011

Getting input from the user

Android provides several types of default dialog boxes

and provides a way to create custom dialogs as well

The dialog types

Dialog (the base class for all dialogs; you subclass this class
to create custom dialogs)

AlertDialog (a dialog with 1-3 buttons)

DatePicker and TimePicker

ProgressDialog (both determinate and indeterminate)

21

© Kenneth M. Anderson, 2011

Dialog Life Cycle (I)

Each activity manages the life cycle of the dialog boxes it
displays to its users

It calls showDialog()to display a dialog

That dialog gets added to its dialog window cache

It calls dismissDialog() to remove a dialog window and
keep it in the cache; subsequent display is faster

It calls removeDialog() to remove the dialog from the
cache

22

© Kenneth M. Anderson, 2011

Dialog Life Cycle (II)

Each dialog has an associated id; you pass that id to
showDialog()

This causes the method onCreateDialog() to be called
with that id. You then use a switch statement to create the
appropriate dialog based on the id

onCreateDialog() is typically called once; thereafter the
dialog is retrieved from the cache

The next method called is onPrepareDialog(); this method
is called whenever the dialog is about to be shown

23

© Kenneth M. Anderson, 2011

Example

Let’s create an app that shows how to use

AlertDialog

DatePicker

TimePicker

We’ll see the use of a ProgressDialog a little bit later

Demo of “Fun With Dialogs”

24

© Kenneth M. Anderson, 2011

Discussion

Code looks more complex than it actually is

In the onCreateDialog() method, we simultaneously
create the dialogs that we need PLUS the methods
that act as the dialog’s event handlers

In the onPrepareDialog() method, we either reuse the
previously set value (stored in attributes) or we set the
dialog to a default value (current day and current time)

25

© Kenneth M. Anderson, 2011

Playing Sounds

Android makes it very easy to play sounds

You copy supported sound files to res/raw

You create an instance of MediaPlayer

Such as MediaPlayer mp;

When you want the sound to play, you call mp.start
and pass in the resource id of the sound you want

When you want the sound to stop, you call mp.stop

Demo of SoundPlayer

26

© Kenneth M. Anderson, 2011

Networking (I)

Mobile apps will often need to access a web service or
web page to retrieve information that it then displays to
its user

In Android, accessing network resources must always
occur in a thread that is separate from the GUI thread

Otherwise, the GUI thread can be blocked waiting for
a remote server to respond and the user will think that
the application has crashed

27

© Kenneth M. Anderson, 2011

Networking (II)

There is nothing magic about Android’s networking

Your program can use any of Java’s IO packages to
access the internet

The trick is that you must run that code in a thread

Android offers two ways of running tasks asynchronously

AsyncTask and Thread/Handler

The latter requires the developer to do all the work, so
we will look at the former

28

© Kenneth M. Anderson, 2011

Networking (III)

AsyncTask is an abstract class that makes it straightforward
to run a task in the background that also updates the GUI

To use, you create a subclass of AsyncTask and override
the following methods

onPreExecute() - runs on the GUI thread before
the background process is started

doInBackground() - contains the code for the
background process

29

© Kenneth M. Anderson, 2011

Networking (IV)

To use, you create a subclass of AsyncTask and override

onProgressUpdate() - runs on the GUI thread
and contains information passed from the background
thread; to do this, the background thread, passes
information to a method called publishProgress()

onPostExecute() - runs on the GUI thread, once
the background process is done

30

© Kenneth M. Anderson, 2011

Networking (V)

So, for a standard hit on a web service, you would

set up a progress bar in onPreExecute()

call the web service in doInBackground()

when you receive a result, loop over the contents and
call publishProgress() with info

in onProgressUpdate() update the progress bar or update
the GUI with information from the web service or both

make the progress bar go away in onPostExecute()

31

© Kenneth M. Anderson, 2011

Java Feature: varargs

The AsyncTask class makes use of Java’s version of sending
a method a variable number of arguments

The syntax looks like this

public void process(String… args);

Inside the method, args acts just like a Java array but
defining it this way allows you to pass in any number of
strings to process, be it as an array or as individual string
arguments

32

© Kenneth M. Anderson, 2011

The progress indicator

We’ll create an instance of ProgressDialog to show let our
user know that data is being downloaded and processed

Since we don’t know how long the download will take,
we will use an indeterminate progress indicator

This type of progress bar displays a spinning image
to let the user know that the program hasn’t
crashed

33

© Kenneth M. Anderson, 2011 34

Demonstration

Let’s write a simple Android client that uses AsyncTask to hit the
Twitter Search API of to retrieve tweets that contain the word
“Android”

We will hit a URL that returns a list of tweets in JSON format

We’ll parse the JSON to get the text of the tweets

We’ll display the filters in a list

We’ll demonstrate the use of AsyncTask along the way

Note: must set android.permission.INTERNET to access the
network

© Kenneth M. Anderson, 2011

Discussion

Straightforward example

AsyncTask works as advertised

creating, displaying, and dismissing progress dialog was
a snap

very easy to send results from background thread to
GUI thread

Makes use of some advanced Java constructs to allow a
private class to access attributes and methods of its
surrounding class

35

© Kenneth M. Anderson, 2011

Wrapping Up

Learned more about the Android framework

How to handle multiple orientations

How to handle simple animations

How to handle simple dialogs

How to play sounds

How to handle a simple network request (with
progress bars!)

36

© Kenneth M. Anderson, 2011

Coming Up Next

Homework 5: Start of Semester Project

will be released on Monday

in-class students: please form project teams: 2-5 people

caete students are welcome to join teams as well

Lecture 17: Intermediate iOS

Lecture 18: Review of Midterm

37

