
© Kenneth M. Anderson, 2011

INTRODUCTION TO IOS
CSCI 4448/5448: OBJECT-ORIENTED ANALYSIS & DESIGN

LECTURE 13 — 10/04/2011

1

© Kenneth M. Anderson, 2011

Goals of the Lecture

Present an introduction to the iOS Framework

Coverage of the framework will be INCOMPLETE

We’ll see the basics… there is a lot more to learn

2

© Kenneth M. Anderson, 2011

History

iOS is the name (as of version 4.0) of Apple’s platform for
mobile applications

The iPhone was released in the summer of 2007

According to Wikipedia, it has been updated 41 times
since then, with the 42nd update slated to occur when
version 5.0 is released (currently in private beta)

iOS apps can be developed for iPhone, iPod Touch and
iPad; iOS is used to run Apple TV but apps are not
currently supported for that platform

3

http://en.wikipedia.org/wiki/IOS_version_history
http://en.wikipedia.org/wiki/IOS_version_history

© Kenneth M. Anderson, 2011

iOS 4.2

I’ll be covering iOS 4.3.5 which is the current “official
version”

Version 4.3.5 was released on July 25, 2011; it was a
security-related update

Most significant update was 4.2 in November 2010
when iOS was unified across all three hardware
platforms (iPhone, iPad, Apple TV)

4

© Kenneth M. Anderson, 2011

Acquiring the Software

To get the software required to develop in iOS

Follow the instructions in Lecture 12

Installing XCode via the App Store installs all the
software you need to develop for OS X and iOS

5

© Kenneth M. Anderson, 2011

Tools

Xcode: Integrated Development Environment

Provides multiple iOS application templates

Provides drag-and-drop creation of user interfaces

iPhone Simulator

Provides ability to test your software on iPhone & iPad

Instruments: Profile your application at runtime

6

© Kenneth M. Anderson, 2011

iOS Platform (I)

The iOS platform is made up of several layers

The bottom layer is the Core OS

OS X Kernel, Mach 3.0, BSD, Sockets, File System, …

The next layer up is Core Services

Collections, Address Book, SQLite, Networking,
Core Location, Threading, Preferences, …

7

© Kenneth M. Anderson, 2011

iOS Platform (II)

The iOS platform is made up of several layers

The third layer is the Media layer

Core Audio, OpenGL and OpenGL ES, Video and Image
support, PDF, Quartz, Core Animation

The final layer is Cocoa Touch (Foundation/UIKit)

Views, Controllers, Multi-Touch events and controls,
accelerometer, alerts, web views, etc.

An app can be written using only layer 4 but advanced apps
can touch all four layers

8

© Kenneth M. Anderson, 2011

Introduction to Interface Builder

This slide used to say “Introduction to Interface Builder”

But Interface Builder is no more

9

© Kenneth M. Anderson, 2011

Introduction to Interface Builder

This slide used to say “Introduction to Interface Builder”

But Interface Builder is no more

So …

10

© Kenneth M. Anderson, 2011

Welcome to XCode’s XIB Editor!

Doesn’t quite have the same ring to it!

So, I’m going to continue to call it “Interface Builder”

even though technically that’s no longer its name

11

© Kenneth M. Anderson, 2011

Introduction to Interface Builder (I)

Interface Builder used to be a separate application

Now, it’s functionality is integrated into XCode

Regardless, its functionality is extremely powerful

It provides a drag and drop interface for constructing the
graphical user interface of your apps

The interface is stored in a .xib file: “XML Interface Builder”

When deployed, .xib is converted to .nib, a binary format

12

© Kenneth M. Anderson, 2011

Introduction to Interface Builder (II)

The GUIs created by Interface Builder are

actual instances of the underlying UIKit
classes

When you save a .xib file, you “freeze dry” the
objects and store them on the file system

When your app runs, the objects get reconstituted
and linked to your application logic

13

© Kenneth M. Anderson, 2011

Introduction to Interface Builder (III)

This object-based approach to UI creation is what
provides interface builder its power

To demonstrate the power of Interface Builder, let’s
create a simple web browser without writing a single
line of code

The fact that we can do this is testament to the
power of object-oriented techniques in general

14

© Kenneth M. Anderson, 2011

Step One: Create Project

Launch XCode and create a MacOS X application (we’ll
get to iOS in a minute)

Unlike last time, select Cocoa Application rather than
Command Line Tool

Name the project WebBrowser and save it to disk

Click Build and Run to see that the default template
produces a running application

It doesn’t do anything but create a blank window

15

© Kenneth M. Anderson, 2011

Step Two: Launch IB

Click on MainMenu.xib

As mentioned earlier, a .xib is an XML file that stores
the freeze dried objects that interface builder
creates;

You will never edit it directly

The .xib editor will open

16

© Kenneth M. Anderson, 2011 17

XIB Editor

© Kenneth M. Anderson, 2011 18

XIB EditorThe Dock

Web Browser’s Window

An actual instance of
NSWindow

The arrow that points to the
Dock just happens to point at
this Window’s icon in the
Dock

© Kenneth M. Anderson, 2011 19

The Dock

It holds “placeholders” and “instances”

Placeholders represent objects “outside” of
the .xib file

They exist before the .xib file is loaded and
get connected at run-time

Instances represent objects contained in this
particular .xib file

Some instances, like windows, are containers
and can contain many sub-instances

© Kenneth M. Anderson, 2011 20

The Dock can be expanded to show the
object hierarchy within the .xib file

© Kenneth M. Anderson, 2011 21

Object Connections (I)

The cool thing about Interface Builder is that you can

instantiate instances of objects (widgets, controllers, …)

and then

connect them together via drag and drop

© Kenneth M. Anderson, 2011 22

Object Connections (II)

Say a button should call a controller when clicked

You can drag from the button

to the controller’s dock icon

and then select the method the button should invoke

Equivalent to

[button setTarget: controller]

[button setAction: @selector(handleClick:)]

© Kenneth M. Anderson, 2011

Our default Window

23

This is the window you
saw when you first ran the
application

Exciting, isn’t it?

Try changing its size, save
the document and run the
program

You’ll see your changes
reflected; because the
window in the editor and
the window at run time
are THE SAME WINDOW!

© Kenneth M. Anderson, 2011

Step 3: Acquire Widgets

24

Invoke View ⇒ Utilities ⇒ Show Object Library to bring up

the widgets that can be dragged and dropped onto our
window

Type button in the search field and then drag two “push
buttons” on to the window

It doesn’t matter where you drag them just yet

Type text field in the search field and then drag a “text field”
on to the window (ignore “text field cell”)

Type “web” and drag a “web view” to the window

© Kenneth M. Anderson, 2011

Results of Step 3

25

Window now has four
widgets but they are not
yet placed where we
want them

© Kenneth M. Anderson, 2011

Step 4: Layout Widgets (I)

26

Put the buttons in the upper right corner

Use the guides to space them correctly

Double click on them and name one “Back” and one
“Forward”

Put the text field in the upper left corner and stretch it out so
it ends up next to the buttons

Again use the guides to get the spacing right

These guides help you follow Apple’s human interface
guidelines

© Kenneth M. Anderson, 2011

Step 4: Layout Widgets (II)

27

Expand the Web view so that it now fills the rest of the
window, following the guides to leave the appropriate
amount of space

Your window now looks like the image on the next
slide

© Kenneth M. Anderson, 2011 28

Everything is fine until you try to resize the window.
Invoke Editor ⇒ Simulate Document and try it out!

© Kenneth M. Anderson, 2011 29

Whoops!

Fortunately,
Interface Builder
makes it easy to
specify constraints
on how widgets
should behave
when resize events
occur

© Kenneth M. Anderson, 2011 30

With the Web View selected, select
View ⇒ Utilities ⇒ Show Size Inspector

The Autosizing section provides the
ability to specify resizing constraints

The outside brackets indicate whether
a widget should try to remain relative
to a particular side of the window
during a resize event

The internal arrows (currently
deselected) indicate whether a widget
should grow horizontally or vertically
during a resize event

For web view, we want all four
brackets on (stay locked in place) and
both arrows on (grow to fill all
available space)

Select the window and be sure to set
your window’s minimum size too

© Kenneth M. Anderson, 2011 31

Finish specifying autosizing behavior

The two buttons need to be anchored on top and on the
right hand side; they should not resize themselves during a
window resize event

The text field should be anchored on top, left and right; it
should resize horizontally during a window resize event

With these changes, your window should behave as
expected during a resize event

Without writing a single line of code!

© Kenneth M. Anderson, 2011

Step 5: Make Connections (I)

We want to establish connections between the various
widgets we’ve created

With Interface Builder, you do this via “Control Drags”

You hold down the control key, click on a widget and
hold, and then finally drag to another widget

A menu will pop-up allowing you to specify a
connection

32

© Kenneth M. Anderson, 2011

Step 5: Make Connections (II)

Establish the following connections

From Text Field to Web View: takeStringURLFrom:

From Back Button to Web View: goBack:

From Forward Button to Web View: goForward:

Note the colon symbol at the end of these names: “:”

these are Objective-C method names!

they are methods defined by Web View

they will be invoked when the source widget is triggered

33

© Kenneth M. Anderson, 2011

Step 6: Link the Framework

Save your .xib file

Click on the project icon; select the WebBrowser target

Select “Build Phases”

Expand “Link Binary with Libraries”

Click “+”

Scroll down to WebKit.framework

Select it and click Add

34

© Kenneth M. Anderson, 2011

Step 7: Run the App; Browse the Web

Type a URL and click Return

Watch the page load

Load another page

Click the Back button

Click the Forward button

A simple web browser without writing a single line of code

35

© Kenneth M. Anderson, 2011

Discussion

This example is relevant to iOS programming because it
shows all of the major mechanics of Interface Builder

We’ll see a few more things Interface Builder can do
when we link up code in XCode to widgets in Interface
Builder

Example demonstrates the power of objects; WebView is
simply an instance of a very powerful object that makes
use of Apple’s open source WebKit framework

We can establish connections to it and invoke methods

36

© Kenneth M. Anderson, 2011

Let’s create a Hello World iOS App

Select New Project from the File Menu

Click Application under iOS

Click View-based Application

Select iPhone

Click Choose and Name the App HelloWorld

Save the App

The project window opens

37

© Kenneth M. Anderson, 2011

iOS Project Structure

All iOS apps are instances of a class
called UIApplication

You will never create an instance
of that class

Instead, your application has an
“AppDelegate” that is associated
with UIApplication

The former will call your
AppDelegate at various points
in the application life cycle

38

© Kenneth M. Anderson, 2011

iOS Project Structure

Since this is a view-based
application, an instance of a class
called UIViewController was also
created for you

The application has a .xib file
called MainWindow; the view
controller has one too, it’s called
HelloWorldViewController.xib

How is this all connected?

39

© Kenneth M. Anderson, 2011

iOS Project Structure

The main.m file is straightforward

It creates an autorelease pool

Invokes UIApplicationMain()

This program reads in the .xib files, links up all the
objects, loads the view controller, and starts the
event loop, where it will remain until the application
is told to shutdown

It then deallocates the pool and returns

40

© Kenneth M. Anderson, 2011

iOS Project Structure

Select MainWindow.xib

41

Your app starts with three
objects created by the
MainWindow.xib file: Hello
World App Delegate, Hello
World View Controller and
Window

No need to create them in
code, they will be created
automatically when this file
is read by UIApplication

Cool!

Note: Screenshot is from
Interface Builder not from
XCode 4; the same objects
get created in both
applications

© Kenneth M. Anderson, 2011

iOS Project Structure

Bring up the Connections Inspector

42

This picture shows that not
only does the .xib file create
the Hello World App
Delegate, it also connects it
to the Hello World View
Controller object via the
“viewController” attribute
and the Window via the
“window” attribute

Take a look at the code to
see these attributes defined.

We also see that UIApplication (File’s
Owner) is wired to the App Delegate

© Kenneth M. Anderson, 2011

iOS Project Structure

Close the MainWindow.xib file without modifying it

Now select the HelloWorldViewController.xib file

Here we see that this file creates an instance of UIView

When MainWindow.xib creates the Hello World View
Controller object, that object will, in turn, load its .xib file
causing this view object to be created

The connection settings shows that this view will then
be connected to the view controller (File’s Owner)

43

© Kenneth M. Anderson, 2011

The Power of Interface Builder

All of this, once again, shows the power of Interface Builder

By creating objects in .xib files and specifying their
connections, we completely eliminate the init code that
would otherwise need to be written

UIApplication will load MainWindow.xib automatically
creating the window, delegate, and view controller

The view controller will then load its .xib file, creating
the view; the app will then display to the user

Click Build and Run to confirm; Quit the iPhone Simulator

44

© Kenneth M. Anderson, 2011

Add an interface

Back in Interface Builder

Change view’s background color to white

Add a label that says “What’s your name?”

Add a text field

Add a button that says “Say Hello”

Position them vertically and specify resize behavior

Test out the UI and test switching the phone from
portrait to landscape until the UI does what you want

45

© Kenneth M. Anderson, 2011

Our Simple UI

46

© Kenneth M. Anderson, 2011

Also…

47

Select the Button

Deselect the “Enabled” checkbox

We only want it enabled when the text field has
some text

In State Config pop-up, select Disabled

then change Text Color to Light Gray Color

© Kenneth M. Anderson, 2011

Configure the Code

48

We now need to modify the code of our view controller

We need properties that point at the text field and
button

because we are going to read the fields contents to
get a name and we have to enable/disable the
button

We also need a method that will get invoked when the
button is pressed

© Kenneth M. Anderson, 2011

Configuring the Code (I)

49

In HelloWorldViewController.h add two properties

@property (nonatomic, retain) IBOutlet UITextField* name;

@property (nonatomic, retain) IBOutlet UIButton* hello;

Add this method signature

- (IBAction) sayHello: (UIButton*) sender ;

IBOutlet and IBAction are clues to Interface Builder

© Kenneth M. Anderson, 2011

Configuring the Code (II)

50

IBOutlet tells Interface Builder that we will be linking a
widget in the interface to this property

IBAction tells Interface Builder that this method will be
invoked by one of the widgets in the interface

In this case, it will be invoked when we click our button

© Kenneth M. Anderson, 2011

Configuring the Code (III)

51

In HelloWorldViewController.m, synthesize your
properties

@synthesize name=_name;

@synthesize hello=_hello;

These will be assigned automatically at run-time after we
connect these properties to the appropriate widgets in
Interface Builder (stay tuned)

© Kenneth M. Anderson, 2011

Configuring the Code (IV)

52

Add the following method body

- (IBAction) sayHello: (UIButton*) sender {

 NSString* greeting = [[NSString alloc]

 initWithFormat:@"Hello, %@", self.name.text];

 UIAlertView*alert = [[UIAlertView alloc] initWithTitle:@"Hello
World!" message:greeting delegate:self cancelButtonTitle:@"Ok!"
otherButtonTitles:nil];

 [alert show];

 [greeting release];

 [alert release];

}

© Kenneth M. Anderson, 2011

Configuring the Code (V)

Set up auto-rotation: add this method

- (BOOL)shouldAutorotateToInterfaceOrientation:(UIInterfaceOrientation)orientation {

 return YES;

}

53

© Kenneth M. Anderson, 2011

Connect Code and Interface

In Interface Builder

Control drag from File’s Owner to Text Field, select
“name”

Control drag from File’s Owner to Button, select
“hello”

Control drag from button to File’s Owner, select
“sayHello:”

Save the file

54

© Kenneth M. Anderson, 2011

Let’s deal with the text field

We need to make sure that the button is enabled when
the user has entered text

We also need to make sure that the keyboard goes away
when we are done editing

The keyboard shows up whenever there is a “first
responder”: a widget that can respond to keystrokes

When we are done editing, we want the text field to
stop being the first responder to make the text field go
away

55

© Kenneth M. Anderson, 2011

Handling the text field, part one
Add to .h file

- (IBAction) doneEditing: (UITextField*) sender ;

Add to .m file

- (IBAction) doneEditing: (UITextField*) sender {

[self.name resignFirstResponder];

}

Connect text field’s Did End on Exit event to doneEditing:

Control-Click on the text field to see the events it can generate

56

© Kenneth M. Anderson, 2011

Build and Test

You’re almost done

Build and Run the App

Test that you can enter text and make the keyboard go
away by clicking return

Notice that keyboard won’t go away if you click
outside of text field (still have some work to do)

Quit the simulator

57

© Kenneth M. Anderson, 2011

Handling the text field, part two

To make the keyboard go away when we click outside of
the text field, we need to create an invisible button that
sits at the very bottom of the view hierarchy

If it gets clicked, it tells the text field to stop being the
first responder

58

© Kenneth M. Anderson, 2011

Handling the text field, part two

Drag a push button out onto the view

make it as large as the view

Set it’s type to custom

send it to the back of the view hierarchy

(Editor ⇒ Arrange ⇒ Send to Back)

Create a new action method called dismissKeyboard: and
connect this button to that action via its Touch Up Inside
event. Give it same body as doneEditing:

59

© Kenneth M. Anderson, 2011

Handling the text field, part three

Now we need to handle enabling and disabling the text
field

We will simply monitor the text field as it is being
editing and check the length of the text field’s string.

If it is greater than zero, then we’ll enable the button

otherwise, we’ll disable it

A really polished app would make sure that the
entered name is not all spaces.

60

© Kenneth M. Anderson, 2011

Add a new event handler

Add a new event handler called checkLength:

Give it the following code:

- (IBAction) checkLength: (UITextField*) sender {

[self.hello setEnabled:([self.name.text length] > 0)];

}

Connect text field’s Editing Changed event to
checkLength:

61

© Kenneth M. Anderson, 2011

Final Change

Add

[self.name resignFirstResponder];

to the first line of the sayHello: event handler

We need to tell the keyboard to go away if it is showing
when the button is pressed

62

© Kenneth M. Anderson, 2011

Make it Universal

A Universal app is one that runs on both iPhone and iPad

You essentially ask XCode to upgrade your iPhone
program to a “universal” program

You add a new .xib file that specifies the UI for the iPad

You can then create a second view controller or hook
up the existing view controller to the new .xib file

Regardless, the application will now autodetect which
platform it is on and load the appropriate classes/
resources

63

© Kenneth M. Anderson, 2011

Step One; There is no Step 2

Select the HelloWorld Target

In the Devices pop-up, select Universal

XCode creates a new .xib file that automatically hooks up
to the existing HelloWorldViewController

Since we configured HelloWorldViewController.xib to
autoresize its widgets, we are done!

Select iPad Simulator 4.2 from XCode’s pop-up and run
the app

64

© Kenneth M. Anderson, 2011

Wrapping Up

Introduction to Interface Builder (XCode’s XIB Editor)

Powerful, object-based GUI creation

Basic introduction to iOS programming

iPhone application template

views and view controllers

hooking up code and widgets

making a universal application (Note: saw simplest case)

65

© Kenneth M. Anderson, 2011

Coming Up Next

Homework 4 Due Yesterday

Lecture 14: Review for Midterm

Lecture 15: Midterm

Lecture 16: Review of Midterm

66

