INTRODUCTION 1O OB

CSCl 4448/5448: OBJECT-ORIENTED ANALYSIS & DESIGN
LECTURE |2 —09/29/201 |

© Kenneth M. Anderson, 201 |

—C TV

=(C

Goals of the Lecture

® Present an introduction to Objective-C 2.0

® Coverage of the language will be INCOMPLETE

® \We'll see the basics... there is a lot more to learn

® J[here s anice Objective-C tutorial located here:

® http://cocoadevcentral.com/d/learn objectivec/

© Kenneth M. Anderson, 201 | Y

http://cocoadevcentral.com/d/learn_objectivec/
http://cocoadevcentral.com/d/learn_objectivec/

History (1)

® Brad Cox created Objective-C in the early [980s

® [t was his attempt to add object-oriented programming
concepts to the C programming language

® NeXT Computer licensed the language in 1988; It was
used to develop the NeXTSTEP operating system,
brogramming libraries and applications for NeXT

® |In 1993, NeXT worked with Sun to create OpenStep,
an open specification of NeXTSTEP on Sun hardware

© Kenneth M. Anderson, 201 | 3

History (I)

® In 199/, Apple purchased NeXT and transformed
NeXTSTEP into MacOS X which was first released in the

summer of 2000

® Objective-C has been one of the primary ways to
develop applications for MacOS for the past | | years

® |n 2008, it became the primary way to develop
applications for 105 targeting (currently) the iIPhone
and the IPad and (soon, I'm guessing) the Apple TV

© Kenneth M. Anderson, 201 | 4

Objective-C 1s “C plus Objects” (I)
® Objective-C makes a small set of extensions to C which
turn It Into an object-oriented language

® [t s used with two object-oriented frameworks

® [he Foundation framework contains classes for basic
concepts such as strings, arrays and other data
structures and provides classes to interact with the
underlying operating system

® [he AppKit contains classes for developing applications
and for creating windows, buttons and other widgets

© Kenneth M. Anderson, 201 | 5

Objective-C 1s “C plus Objects” (Il

® Jogether, Foundation and AppKit are called Cocoa

8 On OS5, AppKit is replaced by UIKit
® Foundation and UIKit are called Cocoa Touch
® |n this lecture, we focus on the Objective-C language,
® well see a few examples of the Foundation framework

® we'll see examples of UIKit in Lecture |3

© Kenneth M. Anderson, 201 | 6

C Skills! Highly relevant
® Since Objective-C i1s “C plus objects™ any skills you have In
the C language directly apply
® statements, data types, structs, functions, etc.
® \What the OO additions do, Is reduce your need on
® structs, malloc, dealloc and the like

® and enable all of the object-oriented concepts we've
been discussing

® Objective-C and C code otherwise freely intermix

© Kenneth M. Anderson, 201 | y/

Development Tools (1)

® Apple's XCode is used to develop in Objective-C

® Behind the scenes, XCode makes use of either gcc or
Apple’'s own LLVM to compile Objective-C programs

® [he latest version of Xcode, Xcode 4, has integrated
functionality that previously existed in a separate
application, known as Interface Builder

® We'll see examples of that integration next week

© Kenneth M. Anderson, 201 | 8

http://developer.apple.com/technologies/tools/
http://developer.apple.com/technologies/tools/

Development lTools ()

® XCode is avallable on the Mac App Store
® [t s free for users of OS X Lion

® Otherwise, | believe 1t costs $5 for previous versions of
ORI

® Clicking Install in the App Store downloads a program

called “Install XCode".You then run that program to get
XCode installed

© Kenneth M. Anderson, 201 | 9

Hello VWorla

® As s traditional, let's look at our first objective-c program
via the traditional Hello World example

® Jo create it, we launch XCode and create a New Project
® select Application under the MacOS X
® select Command Line Tool on the right (click Next)
® select Foundation and type “Hello World™ (click Next)

® select a directory, select checkbox for git (click Finish)

© Kenneth M. Anderson, 201 | 10

Choose a template for your new project:

L!J i0s
,,\
Application a3
Framework & Library N
Other i
Lt Coceca Application
& Mac 0S X

Framework & Library
Application Plug-in
System Plug-in
Other

cocos2d

Cocoa-AppleScript
Application

.ﬁ Command Line Tool

This template builds a command-line tool.

-~

© Kenneth M. Anderson, 201 |

Choose options for your new project:

Product Name HelloWorld

Type | Foundation

Previous

© Kenneth M. Anderson, 201 |

| 0 v .| Examples

il
4»

Name 4 Date Modified Size Kind

Source Control: [V Create local git repository for this project

Xcode w place your project under version contre

Cancel | Create |

© Kenneth M. Anderson, 201 |

]

=
=

Similar to what

with Eclipse, XCode
HelloWorld creates a default project

m main.m for us;
HelloWorld. 1

Supporting Files There are folders for this

h| Helloworld-Prefix.pch program’s source
Frameworks and .h files), frar

» &= Foundation.framework and
Products &,

- I l':' I l O ‘v.v":l r I !::

© Kenneth M. Anderson, 201 | | 4

All Qutput & Clear) (0 BB

GNU gdb 6.3.50-20050815 (Apple version gdb-17@85) (Fri Jul 1 10:50:06 UTC 2011)

Copyright 2004 Free Software Foundation, Inc.
GDB 1s free software, covered by the GNU General Public License, and you are
welcome to change it and/or distribute copies of it under certain conditions.

Type "show copying" to see the conditions.
There is absolutely no warranty for GDB. Type '"show warranty" for details.
This GDB was configured as "x86_64-apple-darwin'.tty /dev/ttys000

[Switching to process 4616 thread 0x@]
2011-09-24 14:18:01.040 HelloWorld[4616:707] Hello, World!

Program ended with exit code: ©

Exciting, isn’t it?

The template is ready to run; clicking “Build and Run” brings up a
console that shows “Hello, World!” being displayed;

One interesting thing to note is that the program is being run by gdb

You can hide gdb’s output by switching the pop-up menu in the upper
left to “Target Output”

© Kenneth M. Anderson, 201 |

B A L EEE——

Name .+ Date Modified Size Kind
~ HelloWorld 2:27 PM -- Folder
___ HelloWorld 1:41 PM -- Folder
11 HelloWorld-Prefix.pch 1:41 PM 16...ytes C Precompiled Header Source
HelloWorld.1 1:41 PM 3 KB Document
m main.m 1:41 PM 38...ytes Objective-C Source
" HelloWorld.xcodeproj 1:41 PM 171 KB Xcode Project

The resulting project structure on disk does not map com'p—IAeter to
what is shown in Xcode; The source file, man page, and pre-compiled
header file are all stored in a sub-directory of the main directory.

The project file HelloWorld.xcodeproj is stored in the main directory. It
is the file that keeps track of all project settings and the location of
project files.

XCode project directories are a lot simpler now that files generated
during a build are stored elsewhere.

© Kenneth M. Anderson, 201 |

Where Is the actual application?

® After you ran the application, HelloWorld switched from
being displayed In red to being displayed in black

® You can right click on HelloWorld and select “Show In
Finder’” to see where XCode placed the actual
executable

® By default, XCode creates a directory for your project in
® ~/Library/Developer/XCode/DerivedData

® [or HelloWorld, XCode generated 20 directories
containing 31 files!

© Kenneth M. Anderson, 201 | |7

Why so many files and directories!

® |n addition to the actual results of compliling the source
code, XCode stores in DerviedData

® |ogs and Indexes (for code autocomplete feature)
® Builld information, including
® .o files, precompiled headers, debug information, etc.

® [he actual executable was located at

® ~/Library/Developer/Xcode/DerivedData/HelloVWorla-
dotwnmcngdjnnigmgnesuacnsxth/Build/Products/Debug

© Kenneth M. Anderson, 201 | |8

O Debug — bash — 117x12 — 381
1 bash ’
Jiriki:Debug $ pwd
/Users/kena/Library/Developer/Xcode/DerivedData/HelloWorld-dotwnmcngdjnnigmgnesuacnsxfh/Build/Products/Debug
Jiriki:Debug $ 1s

HelloWorld*

Jiriki:Debug $./HelloWorld

2011-09-24 14:43:01.336 HelloWorld[4900:707] Hello, World!

Jiriki:Debug $ |

The resulting executable can be executed from the
command line, fulfilling the promise that we were
creating a command-line tool

As you can see, most of the text on Slide 15 was
generated by gdb... our command line tool doesn’t do
much but say hi to the world.

Note the “2011-09-24 14:43:01.336
HelloWorid[4900:707]” is generated by a function
called NSLog() as we’ll see next

© Kenneth M. Anderson, 201 |

#¥1mport <Foundation/Foundation.h>

int main (int argc, const char * argv[]) {
NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];

: // 1nsert code here...
) NSLog(@"Hello, World!");
: [pool drain];
return 0;

Objective-C programs start with a function called main, just
like C programs; #import is similar to C’s #include except it
ensures that header files are only included once and only once

Ignore the “NSAutoreleasePool” stuff for now
Thus our program calls a function, NSLog, and returns 0

The blue arrow indicates that a breakpoint has been set; gdb
will stop execution on line 7 the next time we run the program

© Kenneth M. Anderson, 201 |

e m HelloWorld.m: HelloWorld - Debugger
[Debug | x86_64 v] n 4& Q' @ @ @ \d «d
Overview Breakpocints Build and Debug Tasks Restart Continue Step Over Step Into Step Out
Thread-1-<com.apple.main-thread> ¢ Variable Value Summary
RO v arguments
argc 1
argv Ox7ff5fbff498
Locals
pool 0x100109020
Clobals
Registers

Vector Registers
x87 Reqgisters

« —F— —9 >l
» HelloWorld.m:7:1 # 7 main() S ESHARS o

1| | #import <Foundation/Foundation.h> ;
3| | int main (int argc, const char * argv[]) {
4 NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];
5
6 // 1nsert code here...

—®» NSLog(@"Hello, World!");
8 [pool drain];
9 return 0; "
10| |} 2
11

 GDB: Stopped at breakpoint 1 (hit count : 1) - 'main() - Line 7' @ Succeeded

gdb is integrated into XCode; here gdb is stopped at our
breakpoint; this is XCode 3, XCode 4 looks similar

© Kenneth M. Anderson, 201 |

Let's add objects. ..

® Note: This example comes from “Learning Objective-C
2.0: A Hands-On Guide to Objective-C for Mac and 105

Developers” written by Robert Clair

® |t is an excellent book that | highly recommend

® His review of the C language Is an excellent bonus to
the content on Objective-C itself

® \We're going to create an Objective-C class called Greeter
to make this HelloWorld program a bit more object-
oriented

© Kenneth M. Anderson, 201 | 22

FIrst, we are going to add a class

® Select File = New File

® |n the resulting Dialog (see next three slides)
® Select Cocoa Class under Mac OS X
® Select Objective-C class (click Next)
® Select NSObject as your superclass (click Next)

® Name file “Greeterm’ add to HelloWorld Group and
HelloWorld Target. (Click Save.)

© Kenneth M. Anderson, 201 | 23

l!J i0s

Cocoa Touch
Cand C++
User Interface
Core Data
Resource
Code Signing
Other
cocos2d

& Mac OS X

Cand C++
User Interface
Core Data
Resource
Other
cocos2d

Cancel

Choose a template for your new file:

Objective-C class Objective-C Objective-C protocol

category

Objective-C class

An Objective-C class, with implementation and header files.

Previous

Objective-C test

case class

© Kenneth M. Anderson, 201 |

Step Two

Choose options for your new file:

—

Subclass of NSObject

Cancel Previous

© Kenneth M. Anderson, 201 |

Save As: Creeter.m

<> |[22]= mi || =+ || []HelloWorld] (Q
FAVORITES Folders Developer
(] kena #m HellowWorld HelloWo...refix.pch

.| Dropbox

- Developer main.m
_— HelloWo...codeproj = Documents
- Documents

HelloWorld.1

L
() Downloads

.~ Mail Downloads

7% Applications

— Movies

Group | 1 HelloWorld

| 4»

Targets (V| M HelloWorld

New Folder Cancel

© Kenneth M. Anderson, 201 |

® 00 _ HelloWorld - Greeter.m
~ - — | Finished HelloWorld
'\ ’) [H My Ma.] -» inishea running Helnowor @ E @ D [:I E
N v N CSUOS
Run Stop Scheme Breakpoints st Editor View Organizer
' @& A = = B w | 4 > | | 7 HelloWorld HelloWorld + m Greeter.m » No Selection
_ . HelloWorld //
'] target, Mac OS X SDK 10.7 // C_reeter. m
v | | HelloWorld // HelloWorld
h! Greeter.h //
m Greeter.m // Created by Ken Anderson on 9/24/11.
m/ main.m // Copyright 2011 University of Colorado, Boulder. All rights reserved.
yrig Y g
HelloWorld. 1 //
Suppeorting Files _ = -
h| Helloworld-Prefix.pch #1mport “Greeter.h i
Frameworks - 1 . G
~ @implementation
» &= Foundation.framework €1Mp Lementatlo reeter
v Products . ey
- (id)1init
™ Helloworld { (id)
self = [super init];
if (self) {
// Initialization code here.
}
return self;
}
dend

Greeter.h and Greeter.m are added to our project. (Note: the
“A” next to their names is a “git annotation” meaning that git

has detected that two new files are ready to be added to the

repository.) Greeter.m is shown with a default constructor.
© Kenneth M. Anderson, 201 |

Objective-C classes

® C(lasses in Objective-C are defined in two files

® A header file which defines the attributes and method
signatures of the class

® An implementation file (.(m) that provides the method
bodies

© Kenneth M. Anderson, 201 | 28

Header Files

® [he header file of an Objective-C class traditionally has
the following structure

<import statements>
@interface <classname> : <superclass name> {

<attribute definitions>

;

<method signature definitions>

@end

© Kenneth M. Anderson, 201 | 29

Header Files

® With Objective-C 2.0, the structure has changed to the
following (the previous structure is still supported)

<import statements>

@interface <classname> : <superclass name>
<property definitions>

<method signature definitions>

@end

© Kenneth M. Anderson, 201 | 30

What's the difference!

® [n Objective-C 2.0, the need for defining the attributes of a
class has been greatly reduced due to the addition of
properties

® When you declare a property, you automatically get
® an attribute (instance variable)
® 3 getter method
® and a setter method

® synthesized (automatically added) for you

© Kenneth M. Anderson, 201 | 31

New Style

® |n this class, I'll be using the new style promoted by
Objective-C 2.0

® Occasionally we may run into code that uses the old
style, I'll explain the old style when we encounter it

© Kenneth M. Anderson, 201 | 32

Objective-C additions to C (I)

® Besides the very useful #import, the best way to spot an
addition to C by Objective-C is the presence of this symbol

© Kenneth M. Anderson, 201 | 33

Objective-C additions to C (ll)

® In header files, the two key additions from Objective-C are
® @interface

® and
® @end

® @interface Is used to define a new objective-c class

® As we saw, you provide the class name and its superclass;
Objective-C Is a single inheritance language

® @end does what It says, ending the @interface compiler directive

© Kenneth M. Anderson, 201 | 34

Greeter's interface (l)

//
// Greeter.h

// HelloWorld

//

// Created by Ken Anderson on 9/24/11.

// Copyright 2011 University of Colorado, Boulder. All rights reserved.

//

#import <Foundation/Foundation.h>

@interface Greeter : NSObject

@roperty (nonatomic, copy) NSStringx greetingText;

- (void) greet;

© Kenneth M. Anderson, 201 |

//
// Greeter.h

// HelloWorld

//

// Created by Ken Anderson on 9/24/11.
// Copyright 2011 University of Colorado, Boulder. All rights reserved.

//

#import <Foundation/Foundation.h>

@interface Greeter : NSObject

@roperty (nonatomic, copy) NSStringx greetingText;
- (void) greet;

@end

We’ve added one property: It’s called greetingText. Its type is
NSString* which means “pointer to an instance of NSString”

We’ve also added one method called greet. It takes no
parameters and its return type is “void”.

(By the way, NS stands for “NeXTSTEP”! NeXT lives on!)

© Kenneth M. Anderson, 201 |

Objective-C Properties ()

® An Objective-C property helps to define the public interface
of an Objective-C class

® |t defines an Instance variable, a getter and a setter all
INn one go

® @property (nonatomic, copy) NSString™ greeting Text

® “nonatomic” tells the runtime that this property will never be
accessed by more than one thread (use “atomic” otherwise)

® “copy’ Is related to memory management and will be
discussed later

© Kenneth M. Anderson, 201 | 37

Objective-C Properties (II)

® @property (nonatomic, copy) NSString™® greeting lext

® After the property attributes (in this case nonatomic and
copy), the type of the property is specified and finally the
property’s name

® A property can be of any C or Objective-C type, although
they are primarily used with Objective-C classes and
(sometimes) primitive types such as int, long, and the like

© Kenneth M. Anderson, 201 | 38

Objective-C Properties ()

® @property (nonatomic, copy) NSString™® greeting lext
® |f you have an instance of Greeter
® Greeter™ ken = [[Greeter alloc] init];

® You can assign the property using dot notation

® ken.greetinglext = @ 'Say Hello, Ken';

® You can retrieve the property also using dot notation

® NSString® whats TheGreeting = ken.greeting Text;

© Kenneth M. Anderson, 201 | 39

Objective-C Properties (V)

® Dot notation Is simply “syntactic sugar’ for calling the
automatically generated getter and setter methods

® NSString® whats TheGreeting = ken.greeting Text;
® |s equivalent to

® NSString® whatsTheGreeting = [ken greeting Text];
® [he above is a call to a method that is defined as

® - (NSString™) greeting lext;

© Kenneth M. Anderson, 201 | 40

Objective-C Properties (V)

® Dot notation Is simply “syntactic sugar’ for calling the
automatically generated getter and setter methods

® ken.greetinglext = @ 'Say Hello, Ken';

® |s equivalent to

® [ken setGreeting lext:@ 'Say Hello, Ken™];
® [he above is a call to a method that Is defined as

® - (void) setGreeting lext:(NSString™) new lext;

© Kenneth M. Anderson, 201 | 4|

Objective-C Methods (I)

® |t takes a while to get use to Object-C method signatures

- (void) setGreetingText: (NSString*) newText;

® defines an instance method (-) called setGreeting lext:

® [he colon signifies that the method has one parameter
and 1s PART OF THE METHOD NAME

® new lext of type (NSString™®)

® [he names setGreeting lext: and setGreeting lext refer to
TWO different methods; the former has one parameter

© Kenneth M. Anderson, 201 | 42

Objective-C Methods (Il

® A method with multiple parameters will have multiple

colon characters and the parameter defs are interspersed
with the method name

* - (void) setStrokeColor: (NSColor*) strokeColor

* A ERINEOIIO R (NS Collo R IR IF RIS LCol or ;

® [he above signature defines a method with two
parameters called setStrokeColor:andFillColor:

© Kenneth M. Anderson, 201 | 43

NSString = and NSColor *

® \We've now seen examples of types
® NSString * and NSColor *
® \What does this mean!?
® The * in C means "pointer”
® [hus, this can be read as
® “pointer to <class>"

® it ssimply means an instance has been allocated and we
have a pointer to the instance

© Kenneth M. Anderson, 201 | 44

Let's implement the method bodies

® [he implementation file of a class looks like this
<import statements>
<optional class extension>
@implementation <classname>
<method body definitions>
@end

Let’s 1gnore the “optional class extension” part
for now

© Kenneth M. Anderson, 201 | 45

#i1mport "Greeter.h'

y
G re e_te r S aimp lementation Greeter

; . @synthesize tingText=_greetingTe>
Mmplementation A
(id)init {

self =

@'Default Greetings!";

void) greet {
NSLog(@"%@", self.greetingText

void) dealloc {

[greetingText releasel;
[super dealloc];
}

@end

© Kenneth M. Anderson, 201 |

#import "Greeter.h"

@implementation Greeter | |
@synthesize greetingText= grectinglex!; < ————— @synthesize is used
to actually create the

- (id)init { . .
self = [super init]: instance variable,
if (seH) { " R— | setter and getter of a
self.greetingText = @"'Default Greetings!'"; o
) J J . J property. In this case,
we are asking that
} return self; the instance variable
- for the property
- (void) greet { greetingText be
} NSLog(@"%@", self.greetingText); called _greetingText.
- (v?Ld) dealloc { o This allows us to be
_greetingliext releasel]; .
[E it danllioct: certalr.| when we are
} accessing the
| d property in the .m
@en

file and when we are
accessing

© Kenneth M. Anderson, 201 |

#import "Greeter.h"

@implementation Greeter

@synthesize greetingText=_greetingText;

self = [super init]; constructor. It calls

if (self) { -
self.greetingText = @'Default Greetings!"; init on the superclass
} and makes sure we |
s got an allocated
L self; .
} - object. If so, we

initialize our
- (void) greet {

NSLog(@"%@", self.greetingText); property to a proper
} value.

- (void) dealloc {

[greetingText releasel; If the call to init on

[super dealloc]; the superclass fails it
I} returns “nil” which is
@end what we then return

© Kenneth M. Anderson, 201 |

#import "Greeter.h"

@imp lementation Greeter

@synthesize greetingText=_gr

}

}

(id)init {
self = [super init];
if (self) {

self.greetingText =
return self;

(void) greet {

NSLog(@"%@", self.greetingText); the NSLog() function.

(void) dealloc {
[greetingText release];
[5L09r deaIIOC]

@end

eetingTlext;

Here is the
@'Default Greetings!"; implementation of
our greet method. It
simply prints our
greetingText to
- standard out using

NSLog() is similar to
C’s printf(). It can
take any number of
arguments, one for
each placeholder in
its format string.

%@ means “object”;
%s, %d, etc. also
supported

© Kenneth M. Anderson, 201 |

#1import "Greeter.h"

@imp lementation Greeter

@synthesize greetingText=_greetingText;
- (id)init {
self = [super init];
if (self) {
self.greetingText = @"'Default Greetings!";
} . . |
Finally, dealloc is the
} return self; “destructor” of the
- class. Unlike finalize()
- (void) greet { _ in Java, dealloc is
}
called when an
- (void) dealloc { instance of Greeter is

Pt deallocated.
Here we access our
instance variable
directly and tell it to
go away. We then call
dealloc on the super

class

Note: we do not access our property in

dealloc; there are situations where the
property mechanism may not work in the
dealloc method © Kenneth M. Anderson, 201 |

#import "Greeter.h"

Noté': we do NOT

@implementation Greeter define method bodies
@synthesize greetingText= greetingText; for greetingText and
setGreetingText:
- (id)init {
self = [super init];
if (self) { The getter and setter
self.greetingText = @'Default Greetings!"; B methods are
¥ automatically
return self; generated.
} _
~ (void) greet { We don’t need to
} NSLog(@"%@", self.greetingText); implement them.
~ (void) dealloc { Note: We could
[greetingText release]; override them if we
[super dealloc]:
} needed to.

© Kenneth M. Anderson, 201 |

But first, calling methods (1)

® [he method invocation syntax of Objective-C s

® [object method:argl method:arg2?2 ..]1;
® [Method calls are enclosed by square brackets

® |nside the brackets, you list the object being called

® [hen the method with any arguments for the methods
parameters

© Kenneth M. Anderson, 201 | 51

But first, calling methods (ll)

® Here's a call using Greeter's setter method; @ ‘Howdy!" is a shorthand
syntax for creating an NSString instance

® [greeter setGreetingText: @“Howdy!”];

® Here's a call to the same method where we get the greeting from
some other Greeter object

® [greeterOne setGreetinglext:[greeterTwo greetinglext]];

® Above we nested one call inside another; now a call with multiple args

Y IFecitangle seisirekeColor: [NsColer Feell]l apelrillCeolors [[NSC@kely EircEmn s

© Kenneth M. Anderson, 201 | 53

Memory Management (1)

Memory management of Objective-C objects involves the
use of six methods

® alloc, Init, dealloc, retain, release, autorelease
Objects are created using alloc and init

VWe then keep track of who Is using an object with retain
and release

We get rid of an object with dealloc (although, we never
call dealloc ourselves)

© Kenneth M. Anderson, 201 | 54

Memory Management (l)

® \When an object Is created, its retain count Is set to |

® |t is assumed that the creator is referencing the object
that was just created

® |[f another object wants to reference I, it calls retain to
iIncrease the reference count by |

® When 1t Is done, It calls release to decrease the
reference count by |

® |[f an object’s reference count goes to zero, the runtime
system automatically calls dealloc

© Kenneth M. Anderson, 201 | 515

Memory Management (ll)

® | won't talk about autorelease today, we'll see it in action soon
® Objective-C 2.0 added a garbage collector to the language

® VWhen garbage collection Is turned on, retain, release, and
autorelease become no-ops, doing nothing

® However, the garbage collector is not avallable when

running on 105, so the use of retain and release are still
with us

® Apple recently released "automatic reference counting’” which
may make all of this go away (including the garbage collector)

© Kenneth M. Anderson, 201 | 56

Memory Management (1V)

- (void) setGreetinglText: (NSString *) newText {
[newText retain],;
[greetingText release];
_greetinglext = newlext;

;

In a typical auto-generated setter method, the
following memory management dance occurs:

retain the new value, release the old, set our
instance variable to point at the new value

© Kenneth M. Anderson, 201 | ST

Memory Management (1V)

- (void) setGreetingText: (NSString *) newText {
[newText retain];
[greetingText release];

_greetinglext = newlext;

}
We perform this “dance” in this order because there
is a slight chance that greetinglText == newText

IfT so, 1if we called release first, we would
deallocate our instance variable with no way of
getting 1ts value back!

© Kenneth M. Anderson, 201 | 58

1 he dealloc method

- (voi1d) dealloc {
[greetinglext release];

[super dealloc];

;

® [he dealloc method releases the NSString that we are
pointing at with our automatically generated instance variable
and then invokes the dealloc method of our superclass

® We've now seen examples of the self and super keywords

© Kenneth M. Anderson, 201 | 59

A new malin method

® Ve now need a new version of main to make use of our
new Greeter class

8 We'll mport its header file

® Welll instantiate an instance of the class
® Welll set its greeting text

® Well call its greet method

® \We'll release It

© Kenneth M. Anderson, 201 | 60

#import <Foundation/Foundation.h>
#import "Greeter.h"

int main (int argc, const char % argvl[]) {
NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];
Greeterx myGreeter = [[Greeter alloc] init];
myGreeter.greetingText = @'Hello from Objective-C!!";

myGreeter greet];

myGreeter releasel];

(pool drain];

return 9;

H

As you can see, we create an instance of Greeter. We then set its
greetingText property, invoke the greet method, and release our
instance of myGreeter.

Since we were the only ones pointing at our instance of Greeter, its

dealloc method is automatically called. This in turn releases the
string pointed at by our greetingText property.

© Kenneth M. Anderson, 201 |

Some things not (yet) discussed

® Objective-C has a few additions to C not yet discussed
® The type id: id Is defined as a pointer to an object
® d ICanPointAtAString = @ 'Hello™;
® Note: no need for an asterisk in this case
® [he keyword nil: nil 1s a pointer to no object

® |t s similar to Java's null

® [he type BOOL: BOOL is a boolean type with values YES
and NO; used throughout the Cocoa frameworks

© Kenneth M. Anderson, 201 | 62

Wrapping Up (1)

® Basic introduction to Objective-C
® main methods
® class and method definition and implementation
® method calling syntax
® creation of objects and memory management

® [More to come as we use this knowledge to explore the
1OS platform in future lectures

© Kenneth M. Anderson, 201 | 63

Coming Up Next

® Homework 4 Due on Monday
® |ecture | 3:Introduction to 1OS
® [ecture |4: Review for Midterm

® |ecture |5: Midterm

® |ecture |6: Review of Midterm

© Kenneth M. Anderson, 201 | 64

