
© Kenneth M. Anderson, 2011

INTRODUCTION TO OBJECTIVE-C
CSCI 4448/5448: OBJECT-ORIENTED ANALYSIS & DESIGN

LECTURE 12 — 09/29/2011

1

© Kenneth M. Anderson, 2011

Goals of the Lecture

Present an introduction to Objective-C 2.0

Coverage of the language will be INCOMPLETE

We’ll see the basics… there is a lot more to learn

There is a nice Objective-C tutorial located here:

http://cocoadevcentral.com/d/learn_objectivec/

2

http://cocoadevcentral.com/d/learn_objectivec/
http://cocoadevcentral.com/d/learn_objectivec/

© Kenneth M. Anderson, 2011

History (I)

Brad Cox created Objective-C in the early 1980s

It was his attempt to add object-oriented programming
concepts to the C programming language

NeXT Computer licensed the language in 1988; it was
used to develop the NeXTSTEP operating system,
programming libraries and applications for NeXT

In 1993, NeXT worked with Sun to create OpenStep,
an open specification of NeXTSTEP on Sun hardware

3

© Kenneth M. Anderson, 2011

History (II)

In 1997, Apple purchased NeXT and transformed
NeXTSTEP into MacOS X which was first released in the
summer of 2000

Objective-C has been one of the primary ways to
develop applications for MacOS for the past 11 years

In 2008, it became the primary way to develop
applications for iOS targeting (currently) the iPhone
and the iPad and (soon, I’m guessing) the Apple TV

4

© Kenneth M. Anderson, 2011

Objective-C is “C plus Objects” (I)

Objective-C makes a small set of extensions to C which
turn it into an object-oriented language

It is used with two object-oriented frameworks

The Foundation framework contains classes for basic
concepts such as strings, arrays and other data
structures and provides classes to interact with the
underlying operating system

The AppKit contains classes for developing applications
and for creating windows, buttons and other widgets

5

© Kenneth M. Anderson, 2011

Objective-C is “C plus Objects” (II)

Together, Foundation and AppKit are called Cocoa

On iOS, AppKit is replaced by UIKit

Foundation and UIKit are called Cocoa Touch

In this lecture, we focus on the Objective-C language,

we’ll see a few examples of the Foundation framework

we’ll see examples of UIKit in Lecture 13

6

© Kenneth M. Anderson, 2011

C Skills? Highly relevant

Since Objective-C is “C plus objects” any skills you have in
the C language directly apply

statements, data types, structs, functions, etc.

What the OO additions do, is reduce your need on

structs, malloc, dealloc and the like

and enable all of the object-oriented concepts we’ve
been discussing

Objective-C and C code otherwise freely intermix

7

© Kenneth M. Anderson, 2011

Development Tools (I)

Apple’s XCode is used to develop in Objective-C

Behind the scenes, XCode makes use of either gcc or
Apple’s own LLVM to compile Objective-C programs

The latest version of Xcode, Xcode 4, has integrated
functionality that previously existed in a separate
application, known as Interface Builder

We’ll see examples of that integration next week

8

http://developer.apple.com/technologies/tools/
http://developer.apple.com/technologies/tools/

© Kenneth M. Anderson, 2011

Development Tools (II)

XCode is available on the Mac App Store

It is free for users of OS X Lion

Otherwise, I believe it costs $5 for previous versions of
OS X

Clicking Install in the App Store downloads a program
called “Install XCode”. You then run that program to get
XCode installed

9

© Kenneth M. Anderson, 2011

Hello World

As is traditional, let’s look at our first objective-c program
via the traditional Hello World example

To create it, we launch XCode and create a New Project

select Application under the MacOS X

select Command Line Tool on the right (click Next)

select Foundation and type “Hello World” (click Next)

select a directory, select checkbox for git (click Finish)

10

© Kenneth M. Anderson, 2011 11

Step One

© Kenneth M. Anderson, 2011 12

Step Two

© Kenneth M. Anderson, 2011 13

Step Two

© Kenneth M. Anderson, 2011 14

Similar to what we saw
with Eclipse, XCode
creates a default project
for us;

There are folders for this
program’s source code (.m
and .h files), frameworks,
and products (the
application itself)

Note: the Foundation
framework is front and
center and HelloWorld is
shown in red because it
hasn’t been created yet

© Kenneth M. Anderson, 2011

Exciting, isn’t it?

The template is ready to run; clicking “Build and Run” brings up a
console that shows “Hello, World!” being displayed;

One interesting thing to note is that the program is being run by gdb

You can hide gdb’s output by switching the pop-up menu in the upper
left to “Target Output”

15

© Kenneth M. Anderson, 2011 16

The resulting project structure on disk does not map completely to
what is shown in Xcode; The source file, man page, and pre-compiled
header file are all stored in a sub-directory of the main directory.

The project file HelloWorld.xcodeproj is stored in the main directory. It
is the file that keeps track of all project settings and the location of
project files.

XCode project directories are a lot simpler now that files generated
during a build are stored elsewhere.

© Kenneth M. Anderson, 2011 17

Where is the actual application?

After you ran the application, HelloWorld switched from
being displayed in red to being displayed in black

You can right click on HelloWorld and select “Show in
Finder” to see where XCode placed the actual
executable

By default, XCode creates a directory for your project in

~/Library/Developer/XCode/DerivedData

For HelloWorld, XCode generated 20 directories
containing 31 files!

© Kenneth M. Anderson, 2011

Why so many files and directories?

In addition to the actual results of compiling the source
code, XCode stores in DerviedData

Logs and Indexes (for code autocomplete feature)

Build information, including

.o files, precompiled headers, debug information, etc.

The actual executable was located at

~/Library/Developer/Xcode/DerivedData/HelloWorld-
dotwnmcnqdjnnigmgnesuacnsxfh/Build/Products/Debug

18

© Kenneth M. Anderson, 2011 19

The resulting executable can be executed from the
command line, fulfilling the promise that we were
creating a command-line tool

As you can see, most of the text on Slide 15 was
generated by gdb… our command line tool doesn’t do
much but say hi to the world.

Note the “2011-09-24 14:43:01.336
HelloWorld[4900:707]” is generated by a function
called NSLog() as we’ll see next

© Kenneth M. Anderson, 2011 20

Objective-C programs start with a function called main, just
like C programs; #import is similar to C’s #include except it
ensures that header files are only included once and only once

Ignore the “NSAutoreleasePool” stuff for now

Thus our program calls a function, NSLog, and returns 0

The blue arrow indicates that a breakpoint has been set; gdb
will stop execution on line 7 the next time we run the program

© Kenneth M. Anderson, 2011 21

gdb is integrated into XCode; here gdb is stopped at our
breakpoint; this is XCode 3, XCode 4 looks similar

© Kenneth M. Anderson, 2011 22

Let’s add objects…

Note: This example comes from “Learning Objective-C
2.0: A Hands-On Guide to Objective-C for Mac and iOS
Developers” written by Robert Clair

It is an excellent book that I highly recommend

His review of the C language is an excellent bonus to
the content on Objective-C itself

We’re going to create an Objective-C class called Greeter
to make this HelloWorld program a bit more object-
oriented

© Kenneth M. Anderson, 2011

First, we are going to add a class

Select File ⇒ New File

In the resulting Dialog (see next three slides)

Select Cocoa Class under Mac OS X

Select Objective-C class (click Next)

Select NSObject as your superclass (click Next)

Name file “Greeter.m” add to HelloWorld Group and
HelloWorld Target. (Click Save.)

23

© Kenneth M. Anderson, 2011 24

Step One

© Kenneth M. Anderson, 2011 25

Step Two

© Kenneth M. Anderson, 2011 26

Step Three

© Kenneth M. Anderson, 2011 27

Greeter.h and Greeter.m are added to our project. (Note: the
“A” next to their names is a “git annotation” meaning that git
has detected that two new files are ready to be added to the
repository.) Greeter.m is shown with a default constructor.

© Kenneth M. Anderson, 2011 28

Classes in Objective-C are defined in two files

A header file which defines the attributes and method
signatures of the class

An implementation file (.m) that provides the method
bodies

Objective-C classes

© Kenneth M. Anderson, 2011

Header Files

The header file of an Objective-C class traditionally has
the following structure

<import statements>

@interface <classname> : <superclass name> {

 <attribute definitions>

}

<method signature definitions>

@end

29

© Kenneth M. Anderson, 2011

Header Files

With Objective-C 2.0, the structure has changed to the
following (the previous structure is still supported)

<import statements>

@interface <classname> : <superclass name>

<property definitions>

<method signature definitions>

@end

30

© Kenneth M. Anderson, 2011

What’s the difference?

In Objective-C 2.0, the need for defining the attributes of a
class has been greatly reduced due to the addition of
properties

When you declare a property, you automatically get

an attribute (instance variable)

a getter method

and a setter method

synthesized (automatically added) for you

31

© Kenneth M. Anderson, 2011

New Style

In this class, I’ll be using the new style promoted by
Objective-C 2.0

Occasionally we may run into code that uses the old
style, I’ll explain the old style when we encounter it

32

© Kenneth M. Anderson, 2011

Objective-C additions to C (I)

Besides the very useful #import, the best way to spot an
addition to C by Objective-C is the presence of this symbol

@
33

© Kenneth M. Anderson, 2011

Objective-C additions to C (II)

In header files, the two key additions from Objective-C are

@interface

and

@end

@interface is used to define a new objective-c class

As we saw, you provide the class name and its superclass;
Objective-C is a single inheritance language

@end does what it says, ending the @interface compiler directive

34

© Kenneth M. Anderson, 2011

Greeter’s interface (I)

35

© Kenneth M. Anderson, 2011 36

We’ve added one property: It’s called greetingText. Its type is
NSString* which means “pointer to an instance of NSString”

We’ve also added one method called greet. It takes no
parameters and its return type is “void”.

(By the way, NS stands for “NeXTSTEP”! NeXT lives on!)

© Kenneth M. Anderson, 2011

Objective-C Properties (I)

37

An Objective-C property helps to define the public interface
of an Objective-C class

It defines an instance variable, a getter and a setter all
in one go

@property (nonatomic, copy) NSString* greetingText

“nonatomic” tells the runtime that this property will never be
accessed by more than one thread (use “atomic” otherwise)

“copy” is related to memory management and will be
discussed later

© Kenneth M. Anderson, 2011

Objective-C Properties (II)

38

@property (nonatomic, copy) NSString* greetingText

After the property attributes (in this case nonatomic and
copy), the type of the property is specified and finally the
property’s name

A property can be of any C or Objective-C type, although
they are primarily used with Objective-C classes and
(sometimes) primitive types such as int, long, and the like

© Kenneth M. Anderson, 2011

Objective-C Properties (III)

39

@property (nonatomic, copy) NSString* greetingText

If you have an instance of Greeter

Greeter* ken = [[Greeter alloc] init];

You can assign the property using dot notation

ken.greetingText = @“Say Hello, Ken”;

You can retrieve the property also using dot notation

NSString* whatsTheGreeting = ken.greetingText;

© Kenneth M. Anderson, 2011

Objective-C Properties (IV)

40

Dot notation is simply “syntactic sugar” for calling the
automatically generated getter and setter methods

NSString* whatsTheGreeting = ken.greetingText;

is equivalent to

NSString* whatsTheGreeting = [ken greetingText];

The above is a call to a method that is defined as

- (NSString*) greetingText;

© Kenneth M. Anderson, 2011

Objective-C Properties (V)

41

Dot notation is simply “syntactic sugar” for calling the
automatically generated getter and setter methods

ken.greetingText = @“Say Hello, Ken”;

is equivalent to

[ken setGreetingText:@”Say Hello, Ken”];

The above is a call to a method that is defined as

- (void) setGreetingText:(NSString*) newText;

© Kenneth M. Anderson, 2011

Objective-C Methods (I)

42

It takes a while to get use to Object-C method signatures

- (void) setGreetingText: (NSString*) newText;

defines an instance method (-) called setGreetingText:

The colon signifies that the method has one parameter
and is PART OF THE METHOD NAME

newText of type (NSString*)

The names setGreetingText: and setGreetingText refer to
TWO different methods; the former has one parameter

© Kenneth M. Anderson, 2011

Objective-C Methods (II)

A method with multiple parameters will have multiple
colon characters and the parameter defs are interspersed
with the method name

 - (void) setStrokeColor: (NSColor*) strokeColor

 andFillColor: (NSColor*) fillColor;

The above signature defines a method with two
parameters called setStrokeColor :andFillColor :

43

© Kenneth M. Anderson, 2011

NSString * and NSColor *

We’ve now seen examples of types

NSString * and NSColor *

What does this mean?

The * in C means “pointer”

Thus, this can be read as

“pointer to <class>”

it simply means an instance has been allocated and we
have a pointer to the instance

44

© Kenneth M. Anderson, 2011

Let’s implement the method bodies

The implementation file of a class looks like this

<import statements>

<optional class extension>

@implementation <classname>

<method body definitions>

@end

Let’s ignore the “optional class extension” part
for now

45

© Kenneth M. Anderson, 2011

Greeter’s
implementation

46

© Kenneth M. Anderson, 2011 47

@synthesize is used
to actually create the
instance variable,
setter and getter of a
property. In this case,
we are asking that
the instance variable
for the property
greetingText be
called _greetingText.

This allows us to be
certain when we are
accessing the
property in the .m
file and when we are
accessing

© Kenneth M. Anderson, 2011 48

init is the
constructor. It calls
init on the superclass
and makes sure we
got an allocated
object. If so, we
initialize our
property to a proper
value.

If the call to init on
the superclass fails it
returns “nil” which is
what we then return

© Kenneth M. Anderson, 2011 49

Here is the
implementation of
our greet method. It
simply prints our
greetingText to
standard out using
the NSLog() function.

NSLog() is similar to
C’s printf(). It can
take any number of
arguments, one for
each placeholder in
its format string.

%@ means “object”;
%s, %d, etc. also
supported

© Kenneth M. Anderson, 2011 50

Finally, dealloc is the
“destructor” of the
class. Unlike finalize()
in Java, dealloc is
guaranteed to be
called when an
instance of Greeter is
deallocated.

Here we access our
instance variable
directly and tell it to
go away. We then call
dealloc on the super
class

Note: we do not access our property in
dealloc; there are situations where the
property mechanism may not work in the
dealloc method

© Kenneth M. Anderson, 2011 51

Note: we do NOT
define method bodies
for greetingText and
setGreetingText:

The getter and setter
methods are
automatically
generated.

We don’t need to
implement them.

Note: We could
override them if we
needed to.

© Kenneth M. Anderson, 2011

But first, calling methods (I)

52

The method invocation syntax of Objective-C is

[object method:arg1 method:arg2 …];

Method calls are enclosed by square brackets

Inside the brackets, you list the object being called

Then the method with any arguments for the methods
parameters

© Kenneth M. Anderson, 2011

But first, calling methods (II)

53

Here’s a call using Greeter’s setter method; @“Howdy!” is a shorthand
syntax for creating an NSString instance

[greeter setGreetingText: @“Howdy!”];

Here’s a call to the same method where we get the greeting from
some other Greeter object

[greeterOne setGreetingText:[greeterTwo greetingText]];

Above we nested one call inside another ; now a call with multiple args

[rectangle setStrokeColor: [NSColor red] andFillColor: [NSColor green]];

© Kenneth M. Anderson, 2011

Memory Management (I)

Memory management of Objective-C objects involves the
use of six methods

alloc, init, dealloc, retain, release, autorelease

Objects are created using alloc and init

We then keep track of who is using an object with retain
and release

We get rid of an object with dealloc (although, we never
call dealloc ourselves)

54

© Kenneth M. Anderson, 2011

Memory Management (II)

When an object is created, its retain count is set to 1

It is assumed that the creator is referencing the object
that was just created

If another object wants to reference it, it calls retain to
increase the reference count by 1

When it is done, it calls release to decrease the
reference count by 1

If an object’s reference count goes to zero, the runtime
system automatically calls dealloc

55

© Kenneth M. Anderson, 2011

Memory Management (III)

I won’t talk about autorelease today, we’ll see it in action soon

Objective-C 2.0 added a garbage collector to the language

When garbage collection is turned on, retain, release, and
autorelease become no-ops, doing nothing

However, the garbage collector is not available when
running on iOS, so the use of retain and release are still
with us

Apple recently released “automatic reference counting” which
may make all of this go away (including the garbage collector)

56

© Kenneth M. Anderson, 2011

Memory Management (IV)
- (void) setGreetingText: (NSString *) newText {

 [newText retain];

 [_greetingText release];

 _greetingText = newText;

}

In a typical auto-generated setter method, the
following memory management dance occurs:

retain the new value, release the old, set our
instance variable to point at the new value

57

© Kenneth M. Anderson, 2011

Memory Management (IV)
- (void) setGreetingText: (NSString *) newText {

 [newText retain];

 [_greetingText release];

 _greetingText = newText;

}

We perform this “dance” in this order because there
is a slight chance that _greetingText == newText

If so, if we called release first, we would
deallocate our instance variable with no way of
getting its value back!

58

© Kenneth M. Anderson, 2011

The dealloc method

- (void) dealloc {

 [_greetingText release];

 [super dealloc];

}

The dealloc method releases the NSString that we are
pointing at with our automatically generated instance variable
and then invokes the dealloc method of our superclass

We’ve now seen examples of the self and super keywords

59

© Kenneth M. Anderson, 2011

A new main method

We now need a new version of main to make use of our
new Greeter class

We’ll import its header file

We’ll instantiate an instance of the class

We’ll set its greeting text

We’ll call its greet method

We’ll release it

60

© Kenneth M. Anderson, 2011 61

As you can see, we create an instance of Greeter. We then set its
greetingText property, invoke the greet method, and release our
instance of myGreeter.

Since we were the only ones pointing at our instance of Greeter, its
dealloc method is automatically called. This in turn releases the
string pointed at by our greetingText property.

© Kenneth M. Anderson, 2011 62

Some things not (yet) discussed

Objective-C has a few additions to C not yet discussed

The type id: id is defined as a pointer to an object

id iCanPointAtAString = @“Hello”;

Note: no need for an asterisk in this case

The keyword nil: nil is a pointer to no object

It is similar to Java’s null

The type BOOL: BOOL is a boolean type with values YES
and NO; used throughout the Cocoa frameworks

© Kenneth M. Anderson, 2011

Wrapping Up (I)

Basic introduction to Objective-C

main methods

class and method definition and implementation

method calling syntax

creation of objects and memory management

More to come as we use this knowledge to explore the
iOS platform in future lectures

63

© Kenneth M. Anderson, 2011

Coming Up Next

Homework 4 Due on Monday

Lecture 13: Introduction to iOS

Lecture 14: Review for Midterm

Lecture 15: Midterm

Lecture 16: Review of Midterm

64

