
© Kenneth M. Anderson, 2011

INTRODUCTION TO ANDROID
CSCI 4448/5448: OBJECT-ORIENTED ANALYSIS & DESIGN

LECTURE 11 — 09/27/2011

1

© Kenneth M. Anderson, 2011

Goals of the Lecture

Present an introduction to the Android Framework

Coverage of the framework will be INCOMPLETE

We’ll provide additional coverage after the midterm

2

© Kenneth M. Anderson, 2011

Android

open source software toolkit created, updated and
maintained by Google and the Open Handset Alliance

2.X series and previous: mobile phones

3.X series: extended to also support tablets

We’ll be covering 3.X in this lecture

3

© Kenneth M. Anderson, 2011

Tim Bray’s What Android Is

The next few slides paraphrase a November 2010 blog post by
Tim Bray; be sure to read the original!

What Android Is

4

Tim Bray is a co-inventor of
XML and is currently
employed by Google to work
on Android

http://www.tbray.org/ongoing/When/201x/2010/11/14/What-Android-Is
http://www.tbray.org/ongoing/When/201x/2010/11/14/What-Android-Is

© Kenneth M. Anderson, 2011

Big Picture View (I)

5

Android is a layered software framework

At the bottom is the Linux kernel that has been
augmented with extensions for Android

the extensions deal with power-savings, essentially
adapting the Linux kernel to run on mobile devices

Next are a set of standard libraries

Apache HTTP, OpenGL ES, Open SSL, SAX, WebKit,
SQLite, libc, FreeType, etc.

© Kenneth M. Anderson, 2011

Big Picture View (II)

6

Android is a layered software framework (cont.)

The third layer is the Android Framework

These classes and services uniquely define Android

Examples include Activity Manager, Search
manager, Notification Manager, Media Player,
Widow Manager, etc.

These services are used by developers to create
Android applications that can be run in the emulator
or on a device

© Kenneth M. Anderson, 2011

Big Picture View (III)

7

Android is a layered software framework (cont.)

The fourth layer are actual Android apps and
services

These applications are executed by the Dalvik virtual
machine, essentially a Java virtual machine but with
different bytecodes

Note: Android also supports native applications
written in C/C++ (think games); I will not be
covering that aspect of Android programming

© Kenneth M. Anderson, 2011

Android Applications
Android applications get distributed in a .apk file

APK stands for “Android Package”

It is simply a zip file that has a particular file structure (similar to
JAR files that take snapshots of the file system)

An APK contains

The Android Manifest file (an XML file with lots of
metadata)

A Resource bundle containing sounds, graphics, etc.

The Dalvik classes that make up your application

8

© Kenneth M. Anderson, 2011

Android Benefits (I)

Proponents of Android point to the following benefits

An open & free development platform

Handset makers can use it without royalty and
customize to their hearts content

Component-based architecture

Lots of default components (such as the on-screen
keyboard) can be replaced straightforwardly

9

© Kenneth M. Anderson, 2011

Android Benefits (II)

Proponents of Android point to the following benefits

Lots of services: location, sql, maps, web, etc.

Well managed applications; isolated from each other to
protect data and provide security; operating system can
quit programs as needed to ensure good performance
on mobile devices

Portability: To support a new device, a company has to
port the virtual machine; Android apps (Dalvik) then
execute on the new device with little to no modification

10

© Kenneth M. Anderson, 2011

Android Installation

See Installing Android on the What’s New Page

Major steps

Install Java (if needed); JDK 5.0 or higher

Download and install Eclipse

Download the Android SDK

Download a version of the Android Platform

Install and Configure the Eclipse Android plug-in

11

http://www.cs.colorado.edu/~kena/classes/5448/s11/whats-new/installing-android.html
http://www.cs.colorado.edu/~kena/classes/5448/s11/whats-new/installing-android.html

© Kenneth M. Anderson, 2011

Before developing… (I)

Create an Android Virtual Device

The emulator for Android is called a “virtual device”

When you first start developing for Android, you will
need to create one;

then Eclipse will build .apk files that can be stored and
executed on that device (essentially they run on an
imaginary phone that has been configured to have a
certain amount of memory and UI and that targets a
particular version of the Android API

12

© Kenneth M. Anderson, 2011

Before developing… (II)

To create a virtual device

Launch Eclipse

Select Window ⇒ Android SDK and AVD Manager

Select “Virtual Devices” in the resulting window

Click “New…”

Configure the resulting screen (defaults are fairly
obvious) and click “Create AVD”

13

© Kenneth M. Anderson, 2011

Hello World (I)

As with all advanced frameworks, the standard application
template is configured to ensure that you have a working
application from the start

In Eclipse

Click the new Android project icon

Fill out the resulting dialog with the values on the next
slide

Click “Finish”

14

© Kenneth M. Anderson, 2011

Hello World (II)

Project Name: HelloWorld

Build Target: Android 3.2 (or whatever you downloaded)

Application Name: Hello From Android

Package Name: org.example.hello

Activity: Hello

Min SDK: 13 (or whatever you downloaded; 13 is the
current latest SDK)

15

© Kenneth M. Anderson, 2011

Hello World (III)

16

Zoom in on dialog box on
the right to confirm what
you should be seeing on
your machine.

Then click “Finish”.

© Kenneth M. Anderson, 2011

Meet the Android Project

17

On disk, this virtual
representation in Eclipse
translates to 19 files stored in
19 directories

Only 2 Java source code files
however! Hello.java and the
(automatically updated) R.java

Demo

© Kenneth M. Anderson, 2011

Run the Program

18

As mentioned previously, this application is ready to run

So, right click on the project icon

And select Run As ⇒ Android Application

The first time the emulator launches, it takes a long
time; It may then show a “lock screen” that needs to be
unlocked; It will then show our marvelous application!

© Kenneth M. Anderson, 2011

Hello From Android

19

We can see our
application name across
the top.

But where did the string
“Hello World, Hello!”
come from?

© Kenneth M. Anderson, 2011

Not in Hello, our initial Activity

20

Lots of interesting info here

We see the package that
we specified in line 1

We see that activities come
from the package
“android.app”

We see hints of a life cycle
model: “onCreate”

But no sign of the
string “Hello World,
Hello!”

A clue: R.layout.main

© Kenneth M. Anderson, 2011

Not in R.java

21

Egads, run screaming!

Besides, it says “Auto-
generated file. Do not
Modify.”

Autogenerated from what?

© Kenneth M. Anderson, 2011

Double Click layout.xml in res/layout

22

Bingo!

But what are we seeing?

Click the tab main.xml for a
view of the actual xml file

© Kenneth M. Anderson, 2011

Fun with XML

23

Again, lots of fun information; Our user interface is
defined by a vertical “LinearLayout”, i.e. in a straight
line, that contains a single widget, a TextView

And, the value of the TextView is “@string/hello”
Hmm… that’s not the string we saw in the GUI

© Kenneth M. Anderson, 2011

The Likely Suspect:
 res/values/strings.xml

24

Bingo!

The slightly
ungrammatical
phrase of “Hello
World, Hello!” was
hiding in the
strings.xml file that is
a part of our app’s
standard resources

© Kenneth M. Anderson, 2011

What have we learned?

25

Android Apps make use of classes and resources

At least one of the classes comes from “android.app” and is
called Activity

When an activity is created, the operating system calls its
onCreate() method

One of the things it can do is set the current layout

Layouts are specified in XML files and make use of strings
defined in other XML files

There are graphical editors for these XML files

© Kenneth M. Anderson, 2011

Let’s learn more…

The key parts of the Android Framework are

The activity manager : starts, stops, pauses and resumes
applications

The resource manager : allows apps to access the
resources bundled with them

content providers: objects that encapsulate data that is
shared between applications

Location Manager and Notification Manager (events)

26

© Kenneth M. Anderson, 2011

Application Stack

When a user launches an Android application

A linux process is created, containing an activity

That activity’s layout takes over the entire screen
except for the status bar

The user may then switch to a different screen in the
application (i.e. a different activity) or to a new
application all together

Screens are “stacked” and the user can navigate back
to the previous screen by pressing the “back” button

27

© Kenneth M. Anderson, 2011

Application Life Cycle (I)

In Android, an application is a set of activities with a Linux
process to contain them

However, an application DOES NOT EQUAL a process

Due to low memory conditions, an activity might be
suspended at any time and its process discarded

The activity manager remembers the state of the
activity however and can reactivate it at any time

Thus, an activity may span multiple processes over
the life time of an application

28

© Kenneth M. Anderson, 2011 29

onCreate()

onStart()

onResume()

onPause()

onStop()

onDestroy()

Running

Not
Running

Process
Killed

sent to background

no longer visible

sent to
foreground

onRestart()about to be
displayed

can start
interacting
with user

just started

being redisplayed from
a stopped state

Activity Life
cycle

onStop() and
onDestroy()
are optional
and may
never be
called

Thus, if your
app needs to
save data
persistently,
the save
needs to
happen in
onPause()

© Kenneth M. Anderson, 2011 30

Let’s see this in action

Create new application

Project Name: Life Cycle

Build Target: Android 3.2 (or whatever you downloaded)

Application Name: Activity Life Cycle

Package Name: org.example.lifecycle

Activity: LifeCycle

Min SDK: 13 (or whatever you downloaded)

© Kenneth M. Anderson, 2011

Modify LifeCycle.java

31

Add a method for each of the life
cycle events

Each method should call its
counterpart in the superclass and
then call Log.i with a tag and a
message.

Run the app and switch to the
Debug perspective; watch the
events appear in the Log (because
of the tag, we can use a filter)

© Kenneth M. Anderson, 2011

Intents

32

The other primary concept for an application is an Intent

Intents are used to describe a specific action

An activity will create an Intent and then invoke it

Intents can be used to pass information between
activities, as we will see

Intents can also be used to launch other applications, such
as the built-in web browser or the built-in camera

We’ll see simple uses of Intents next and explore them more in
lectures after the midterm

© Kenneth M. Anderson, 2011

Switching Between Activities

We will now design a simple application that has three
activities (and thus three screens). A start screen will
contain two buttons that let you jump to the other two
screens. Screen one and screen two will each contain a
button that takes you to the other screen.

We won’t provide a way to go back to the start screen

Since we have multiple activities, we’ll use intents to switch
between them

33

© Kenneth M. Anderson, 2011

Step 1

Create the Application

Project Name: Screen Switcher

Build Target: Android 3.2

Application Name: Screen Switcher

Package Name: org.example.screenswitcher

Activity: StartScreen

Min SDK: 13

34

© Kenneth M. Anderson, 2011

Step 2

Need to modify the default layout

Add label for application name and screen name

Add buttons to go to screen one and screen two

Resize text, add margins, and center elements on screen

New concepts

Each widget has an id using the following syntax

@+id/identifier

(has Android define a global id automatically)

35

© Kenneth M. Anderson, 2011

Step 3

Define what happens when the two buttons are clicked

New concepts

Create an Intent

Intent i = new Intent(this, ScreenOne.class);

Where ScreenOne is a new Activity

findViewById(resource_id): looks up widgets

OnClickListener : implement interface

36

© Kenneth M. Anderson, 2011

Step 4

Create the other two Activities

Use File ⇒ New ⇒ Class in Eclipse

Add new classes to the src directory with the
package org.example.screenswitcher and the
superclass android.app.Activity. Do not generate
method stubs.

Name one activity ScreenOne and the other
ScreenTwo

37

© Kenneth M. Anderson, 2011

Step 5

Implement onCreate() for both of the new activities and
create layout files for both

Both layout files will go in res/layout

Use File ⇒ New ⇒ Android XML File

Define layout for both screens… both will have a title and
a button. They will each have a different background color

Colors will be defined in res/values/colors.xml

38

© Kenneth M. Anderson, 2011

Step 6

Update the Android Manifest to “know” about the other
two activities

You can now run the application and switch among the
various screens

Note: the ScreenTwo activity has been augmented to
assign ids to each instance created and it prints out life
cycle events with the id so we can see how many
instances are created

39

© Kenneth M. Anderson, 2011

Discussion

As we can see from the output of ScreenTwo’s Log messages,
each time we invoke

startActivity(new Intent(this, ScreenTwo.class));

we create a completely new instance of ScreenTwo

Even though “screen two” as a logical concept suggests that
there should only be one “screen two activity”, a separate
activity gets created each time we visit it

This has implications for application design

We don’t want to start “big” activities multiple times

40

© Kenneth M. Anderson, 2011

Wrapping Up (I)

We’ve had a brief introduction to the Android framework

Big picture: Apps running in Dalvik on top of Linux

Application != Process

Application equals set of activities (screens)

Applications use Intents to start new activities

be it activities within the same application or to
invoke a system activity (e.g. view web page)

41

© Kenneth M. Anderson, 2011

Wrapping Up (II)

After the midterm, we’ll return to the Android framework

More comprehensive example

We’ll see how to pass data between activities using
Intents

Getting user input via forms and dialogs

Accessing the file system and the network

And more…

42

© Kenneth M. Anderson, 2011

Coming Up Next

Lecture 12: Introduction to Objective-C

Lecture 13: Introduction to iOS

Homework 4 Due on Monday

Lecture 14: Review for Midterm

Lecture 15: Midterm

43

