
© Kenneth M. Anderson, 2011

STRATEGY, BRIDGE & FACTORY
CSCI 4448/5448: OBJECT-ORIENTED ANALYSIS & DESIGN

LECTURE 9 — 09/20/2011

1

© Kenneth M. Anderson, 2011

Goals of the Lecture

Cover the material in Chapters 9, 10 & 11 of our
textbook

The Strategy Pattern

The Bridge Pattern

The Abstract Factory Pattern

2

© Kenneth M. Anderson, 2011

The Strategy Pattern

We already covered this pattern in Lecture 6

Intention

Lets you use different algorithms depending on context

Or lets you vary behavior across subclasses of some
abstract class

3

© Kenneth M. Anderson, 2011

The Structure of the Strategy Pattern

4

performOperation()
setAlgorithm(a: Algorithm)

Client

operation()
Algorithm

ConcreteAlgorithm1

strategy

ConcreteAlgorithmN...

strategy.operation()

© Kenneth M. Anderson, 2011

SimUDuck’s use of Strategy

5

swim()
display()
setFlyBehavior()
setQuackBehavior()
performFly()
performQuack()

Duck

display()
MallardDuck

display()
RedheadDuck

display()
RubberDuck

display()
DecoyDuck

fly()
FlyBehavior

quack()
QuackBehavior

FlyWithWings CantFly QuackSilence Squeak

flyBehavior quackBehavior

Duck’s Fly and Quack behaviors are decoupled from Duck

© Kenneth M. Anderson, 2011

Your Turn

6

Work in a group and create a class diagram that shows a
design that meets these requirements and uses Strategy

A bank account has a balance and a set of transactions

A transaction records the date, the vendor, the amount
and a category

A client can add transactions, ask for a List of transactions
and ask that the List be sorted in a certain way

The list can be sorted by date, vendor, amount or
category

© Kenneth M. Anderson, 2011

The Bridge Pattern

7

The Gang of Four says the intent of the pattern is to
“decouple an abstraction from its implementation so that
the two can vary independently”

What it doesn’t mean

Allow a C++ header file to be implemented in multiple
ways

What it does mean

Allows a set of abstract objects to implement their
operations in a number of ways in a scalable fashion

© Kenneth M. Anderson, 2011

Bottom-Up Design

The book presents an example that derives the bridge
pattern

Let a set of shapes draw themselves using different
drawing libraries

Think of the libraries as items such as Monitor, Printer,
OffScreenBuffer, etc.

Imagine a world where each of these might have
slightly different methods and method signatures

8

© Kenneth M. Anderson, 2011

Examples of Drawing Library

The drawing library for Monitor has these methods

draw_a_line(x1, y1, x2, y2)

draw_a_circle(x, y, r)

The drawing library for Printer has these methods

drawline(x1, x2, y1, y2)

drawcircle(x, y, r)

9

draw_a_line(x1, y1, x2, y2)
draw_a_circle(x, y, r)

Monitor
drawline(x1, x2, y1, y2)
drawcircle(x, y, r)

Printer

© Kenneth M. Anderson, 2011

Examples of Shape

10

+draw()
Shape

+draw()
Rectangle

+draw()
Circle

We want to be
able to create
collections of
rectangles and
circles and then
tell the
collection to
draw itself and
have it work
regardless of the
medium

© Kenneth M. Anderson, 2011 11

+draw()
Shape

+draw()
#drawLine()

Rectangle
+draw()
#drawCircle()

Circle

#drawLine()
MonitorRect

#drawLine()
PrinterRect

#drawCircle()
MonitorCircle

#drawCircle()
PrinterCircle

draw_a_line(x1, y1, x2, y2)
draw_a_circle(x, y, r)

Monitor
drawline(x1, x2, y1, y2)
drawcircle(x, y, r)

Printer

Client
Two Shapes,
Two Libraries:
Approach One

© Kenneth M. Anderson, 2011 12

+draw()
Shape

+draw()
#drawLine()

Rectangle
+draw()
#drawCircle()

Circle

#drawLine()
MonitorRect

#drawLine()
PrinterRect

#drawCircle()
MonitorCircle

#drawCircle()
PrinterCircle

draw_a_line(x1, y1, x2, y2)
draw_a_circle(x, y, r)

Monitor
drawline(x1, x2, y1, y2)
drawcircle(x, y, r)

Printer

Client Problem: Try
adding another
shape or library

© Kenneth M. Anderson, 2011 13

Emphasis of Problem (I)

We are using inheritance to specialize for implementation

And, surprise, surprise, we encounter the combinatorial
subclass program once again

2 shapes, 2 libraries: 4 subclasses

3 shapes, 3 libraries: 9 subclasses

100 shapes, 10 libraries: 1000 subclasses

Not good!

© Kenneth M. Anderson, 2011 14

Emphasis of Problem (II)

Is there redundancy (duplication) in this design?

Yes, each subclass method is VERY similar

Tight Coupling

You bet… each subclass highly dependent on the
drawing libraries

change a library, change a lot of subclasses

Strong Cohesion? Not completely, shapes need to know
about their drawing libraries; no single location for drawing

© Kenneth M. Anderson, 2011 15

+draw()
Shape

#drawLine()
#drawCircle()

PrinterShapes
#drawLine()
#drawCircle()

MonitorShapes

+draw()
PrinterRect

+draw()
PrinterCircle

+draw()
MonitorRect

+draw()
MonitorCircle

draw_a_line(x1, y1, x2, y2)
draw_a_circle(x, y, r)

Monitor

drawline(x1, x2, y1, y2)
drawcircle(x, y, r)

Printer

Client
Two Shapes,
Two Libraries:
Approach Two

© Kenneth M. Anderson, 2011 16

+draw()
Shape

#drawLine()
#drawCircle()

PrinterShapes
#drawLine()
#drawCircle()

MonitorShapes

+draw()
PrinterRect

+draw()
PrinterCircle

+draw()
MonitorRect

+draw()
MonitorCircle

draw_a_line(x1, y1, x2, y2)
draw_a_circle(x, y, r)

Monitor

drawline(x1, x2, y1, y2)
drawcircle(x, y, r)

Printer

Client
Same Problems:
Inheritance for
Specialization just
doesn’t scale!

© Kenneth M. Anderson, 2011 17

Finding a Solution

Our book offers two strategies to find the right solution

Find what varies and encapsulate it

Favor delegation over inheritance (book: aggregation)

What varies?

Shapes and Drawing Libraries

We’ve seen two approaches to using inheritance

But neither worked, let’s try delegation instead

© Kenneth M. Anderson, 2011

What varies? Shapes

18

+draw()
Shape

+draw()
Rectangle

+draw()
Circle

© Kenneth M. Anderson, 2011

What varies? Drawing Libraries

19

+drawLine(x1, y1, x2, y2)
+drawCircle(x, y, r)

DrawingService

+drawLine(x1, y1, x2, y2)
+drawCircle(x, y, r)

WrapMonitor
+drawLine(x1, y1, x2, y2)
+drawCircle(x, y, r)

WrapPrinter

draw_a_line(x1, y1, x2, y2)
draw_a_circle(x, y, r)

Monitor
drawline(x1, x2, y1, y2)
drawcircle(x, y, r)

Printer

One abstract service which
defines a uniform interface

The next level down
consists of classes that wrap
each library behind the
uniform interface

© Kenneth M. Anderson, 2011

Favor delegation

20

Two choices

DrawingLibrary delegates to Shape

That doesn’t sound right

Shape delegates to DrawingLibrary

That sounds better

So…

© Kenneth M. Anderson, 2011 21

+drawLine(x1, y1, x2, y2)
+drawCircle(x, y, r)

DrawingService

+drawLine(x1, y1, x2, y2)
+drawCircle(x, y, r)

WrapMonitor
+drawLine(x1, y1, x2, y2)
+drawCircle(x, y, r)

WrapPrinter

draw_a_line(x1, y1, x2, y2)
draw_a_circle(x, y, r)

Monitor
drawline(x1, x2, y1, y2)
drawcircle(x, y, r)

Printer

+draw()
Shape

+draw()
Rectangle

+draw()
Circle

Much Better! Add a new
library? No problem, create
one new wrapper; Add a shape?
No problem; as long as it can
use DrawingService, add one
new class

Book uses aggregation here;
plain association is okay too

© Kenneth M. Anderson, 2011 22

+drawLine(x1, y1, x2, y2)
+drawCircle(x, y, r)

DrawingService

+drawLine(x1, y1, x2, y2)
+drawCircle(x, y, r)

WrapMonitor
+drawLine(x1, y1, x2, y2)
+drawCircle(x, y, r)

WrapPrinter

draw_a_line(x1, y1, x2, y2)
draw_a_circle(x, y, r)

Monitor
drawline(x1, x2, y1, y2)
drawcircle(x, y, r)

Printer

+draw()
Shape

+draw()
Rectangle

+draw()
Circle

Abstractions
(Shapes) decoupled
from Implementations
(Drawing Libraries)

© Kenneth M. Anderson, 2011 23

The Structure of the Bridge Pattern

+operationImpl()
Implementor

+operationImpl()
ConcreteImplementorA

+operationImpl()
ConcreteImplementorB

+operation()
Abstraction

+operation()
Variation

imp.operationImpl()

© Kenneth M. Anderson, 2011

Two Factory Patterns

24

I’m going to use an example from Head First Design
Patterns to introduce the concept of Abstract Factory

This example uses Factory Method, so you get to be
introduced early to this pattern

(Our textbook holds off on Factory Method until
Chapter 23!)

You still need to read chapter 11 of our textbook and be
familiar with its material!

Factory Pattern: The Problem With “New”

• Each time we invoke the “new” command to create a new object, we violate
the “Code to an Interface” design principle

• Example

• Duck duck = new DecoyDuck()

• Even though our variable’s type is set to an “interface”, the class that
contains this statement depends on “DecoyDuck”

• In addition, if you have code that checks a few variables and instantiates a
particular type of class based on the state of those variables, then the
containing class depends on each referenced concrete class
if (hunting) {

 return new DecoyDuck()

} else {

 return new RubberDuck();

}

Obvious Problems:
 needs to be recompiled each time a dep. changes;
 add new classes, change this code;
 remove existing classes, change this code

This means that this code violates the “encapsulate what
varies” design principle 25

PizzaStore Example

• We have a pizza store program that wants to separate the process of creating
a pizza with the process of preparing/ordering a pizza

• Initial Code: mixed the two processes
public class PizzaStore {1

2

 Pizza orderPizza(String type) {3

 4

 Pizza pizza;5

 6

 if (type.equals("cheese")) {7

 pizza = new CheesePizza();8

 } else if (type.equals("greek")) {9

 pizza = new GreekPizza();10

 } else if (type.equals("pepperoni")) {11

 pizza = new PepperoniPizza();12

 }13

 14

 pizza.prepare();15

 pizza.bake();16

 pizza.cut();17

 pizza.box();18

 19

 return pizza;20

 }21

 22

}23

24

Creation

Preparation

Note: excellent example of “coding to an interface”

Creation code has all the
same problems as the
code on the previous slide

26

Encapsulate Creation Code

• A simple way to encapsulate this code is to put it in a separate class

• That new class depends on the concrete classes, but those dependencies
no longer impact the preparation code

public class PizzaStore {1

2

 private SimplePizzaFactory factory;3

4

 public PizzaStore(SimplePizzaFactory factory) {5

 this.factory = factory;6

 }7

8

 public Pizza orderPizza(String type) {9

 10

 Pizza pizza = factory.createPizza(type);11

 12

 pizza.prepare();13

 pizza.bake();14

 pizza.cut();15

 pizza.box();16

 17

 return pizza;18

 }19

 20

}21

22

public class SimplePizzaFactory {1

2

 public Pizza createPizza(String type) {3

 if (type.equals("cheese")) {4

 return new CheesePizza();5

 } else if (type.equals("greek")) {6

 return new GreekPizza();7

 } else if (type.equals("pepperoni")) {8

 return new PepperoniPizza();9

 }10

 }11

12

}13

14

27

Class Diagram of New Solution

orderPizza():
Pizza

PIzzaStore

createPizza(): Pizza
SimplePizzaFactory

prepare()
bake()
cut()
box()

Pizza

CheesePizza VeggiePizza PepperoniPizza

factoryClient

Products

Factory

While this is nice, its not as flexible as it can be: to increase flexibility we
need to look at two design patterns: Factory Method and Abstract Factory28

Factory Method

• To demonstrate the factory method pattern, the pizza store example evolves
• to include the notion of different franchises
• that exist in different parts of the country (California, New York, Chicago)

• Each franchise will need its own factory to create pizzas that match the
proclivities of the locals
• However, we want to retain the preparation process that has made

PizzaStore such a great success
• The Factory Method Design Pattern allows you to do this by

• placing abstract, “code to an interface” code in a superclass
• placing object creation code in a subclass

• PizzaStore becomes an abstract class with an abstract createPizza() method
• We then create subclasses that override createPizza() for each region

29

New PizzaStore Class

public abstract class PizzaStore {1

2

 protected abstract createPizza(String type);3

4

 public Pizza orderPizza(String type) {5

 6

 Pizza pizza = createPizza(type);7

 8

 pizza.prepare();9

 pizza.bake();10

 pizza.cut();11

 pizza.box();12

 13

 return pizza;14

 }15

16

}17

18

Factory Method

Beautiful Abstract Base Class!

This class is a (very simple) OO
framework. The framework provides
one service “prepare pizza”.
The framework invokes the
createPizza() factory method to create
a pizza that it can prepare using a well-
defined, consistent process.
A “client” of the framework will
subclass this class and provide an
implementation of the createPizza()
method.
Any dependencies on concrete
“product” classes are encapsulated in
the subclass. 30

New York Pizza Store
public class NYPizzaStore extends PizzaStore {1

 public Pizza createPizza(String type) {2

 if (type.equals("cheese")) {3

 return new NYCheesePizza();4

 } else if (type.equals("greek")) {5

 return new NYGreekPizza();6

 } else if (type.equals("pepperoni")) {7

 return new NYPepperoniPizza();8

 }9

 return null;10

 }11

}12

13

Nice and Simple. If you want a NY-Style Pizza, you create an instance of
this class and call orderPizza() passing in the type. The subclass makes
sure that the pizza is created using the correct style.

If you need a different style, create a new subclass.
31

Factory Method: Definition and Structure

• The factory method design pattern defines an interface for creating an object,
but lets subclasses decide which class to instantiate. Factory Method lets a
class defer instantiation to subclasses

Product

ConcreteProduct

factoryMethod(): Product
operation()

Creator

factoryMethod(): ConcreteProduct
ConcreteCreator

Factory Method leads to the creation of parallel class hierarchies;
ConcreteCreators produce instances of ConcreteProducts that
are operated on by Creator’s via the Product interface 32

Dependency Inversion Principle (I)

• Factory Method is one way of following the dependency inversion principle

• “Depend upon abstractions. Do not depend upon concrete classes.”

• Normally “high-level” classes depend on “low-level” classes;

• Instead, they BOTH should depend on an abstract interface

33

Dependency Inversion Principle: Pictorially

34

Level 1

Level 2

Client

Concrete
Service

Here we have a client class in an “upper”
level of our design depending on a
concrete class that is “lower” in the design

Dependency Inversion Principle: Pictorially

35

Level 1

Level 2

Client

Concrete
Service

Service
Interface

Instead, create an interface that lives in
the upper level that hides the concrete
classes in the lower level; “code to an
interface”

Dependency Inversion Principle (II)

• Factory Method is one way of following the dependency inversion principle

• “Depend upon abstractions. Do not depend upon concrete classes.”

• Normally “high-level” classes depend on “low-level” classes;

• Instead, they BOTH should depend on an abstract interface

• DependentPizzaStore depends on eight concrete Pizza subclasses

• PizzaStore, however, depends on the Pizza interface

• as do the Pizza subclasses

• In this design, PizzaStore (the high-level class) no longer depends on the
Pizza subclasses (the low level classes); they both depend on the abstraction
“Pizza”. Nice.

36

Demonstration

• Lets look at some code

• The FactoryMethod directory of this lecture’s example source code
contains an implementation of the pizza store using the factory method
design pattern

• It even includes a file called “DependentPizzaStore.java” that shows
how the code would be implemented without using this pattern

• DependentPizzaStore is dependent on 8 different concrete classes and 1
abstract interface (Pizza)

• PizzaStore is dependent on just the Pizza abstract interface (nice!)

• Each of its subclasses is only dependent on 4 concrete classes

• furthermore, they shield the superclass from these dependencies

37

Moving On

• The factory method approach to the pizza store is a big success allowing our
company to create multiple franchises across the country quickly and easily

• But, bad news, we have learned that some of the franchises

• while following our procedures (the abstract code in PizzaStore forces
them to)

• are skimping on ingredients in order to lower costs and increase
margins

• Our company’s success has always been dependent on the use of fresh,
quality ingredients

• so “Something Must Be Done!” ®

38

Abstract Factory to the Rescue!

• We will alter our design such that a factory is used to supply the ingredients
that are needed during the pizza creation process

• Since different regions use different types of ingredients, we’ll create
region-specific subclasses of the ingredient factory to ensure that the right
ingredients are used

• But, even with region-specific requirements, since we are supplying the
factories, we’ll make sure that ingredients that meet our quality standards
are used by all franchises

• They’ll have to come up with some other way to lower costs. ☺

39

First, We need a Factory Interface

public interface PizzaIngredientFactory {1

 2

 public Dough createDough();3

 public Sauce createSauce();4

 public Cheese createCheese();5

 public Veggies[] createVeggies();6

 public Pepperoni createPepperoni();7

 public Clams createClam();8

 9

}10

11

Note the introduction of more abstract classes: Dough, Sauce, Cheese,
etc.

40

Second, We implement a Region-Specific Factory
public class ChicagoPizzaIngredientFactory 1

 implements PizzaIngredientFactory 2

{3

4

 public Dough createDough() {5

 return new ThickCrustDough();6

 }7

8

 public Sauce createSauce() {9

 return new PlumTomatoSauce();10

 }11

12

 public Cheese createCheese() {13

 return new MozzarellaCheese();14

 }15

16

 public Veggies[] createVeggies() {17

 Veggies veggies[] = { new BlackOlives(), 18

 new Spinach(), 19

 new Eggplant() };20

 return veggies;21

 }22

23

 public Pepperoni createPepperoni() {24

 return new SlicedPepperoni();25

 }26

27

 public Clams createClam() {28

 return new FrozenClams();29

 }30

}31

32

This factory ensures that
quality ingredients are used
during the pizza creation
process…

… while also taking into
account the tastes of people
who live in Chicago

But how (or where) is this
factory used?

41

Within Pizza Subclasses… (I)

public abstract class Pizza {1

 String name;2

3

 Dough dough;4

 Sauce sauce;5

 Veggies veggies[];6

 Cheese cheese;7

 Pepperoni pepperoni;8

 Clams clam;9

10

 abstract void prepare();11

12

 void bake() {13

 System.out.println("Bake for 25 minutes at 350");14

 }15

16

 void cut() {17

 System.out.println("Cutting the pizza into diagonal slices");18

 }19

20

 void box() {21

 System.out.println("Place pizza in official PizzaStore box");22

 }23

24

 void setName(String name) {25

 this.name = name;26

 }27

28

 String getName() {29

 return name;30

 }31

32

 public String toString() {33

 StringBuffer result = new StringBuffer();34

 result.append("---- " + name + " ----\n");35

 if (dough != null) {36

 result.append(dough);37

 result.append("\n");38

 }39

 if (sauce != null) {40

 result.append(sauce);41

 result.append("\n");42

 }43

 if (cheese != null) {44

 result.append(cheese);45

 result.append("\n");46

 }47

 if (veggies != null) {48

 for (int i = 0; i < veggies.length; i++) {49

 result.append(veggies[i]);50

 if (i < veggies.length-1) {51

 result.append(", ");52

 }53

 }54

 result.append("\n");55

 }56

 if (clam != null) {57

 result.append(clam);58

 result.append("\n");59

 }60

First, alter the Pizza abstract base class to make the prepare method
abstract…

42

Within Pizza Subclasses… (II)
public class CheesePizza extends Pizza {1

 PizzaIngredientFactory ingredientFactory;2

 3

 public CheesePizza(PizzaIngredientFactory ingredientFactory) {4

 this.ingredientFactory = ingredientFactory;5

 }6

 7

 void prepare() {8

 System.out.println("Preparing " + name);9

 dough = ingredientFactory.createDough();10

 sauce = ingredientFactory.createSauce();11

 cheese = ingredientFactory.createCheese();12

 }13

}14

15

Then, update Pizza subclasses to make use of the factory! Note: we no
longer need subclasses like NYCheesePizza and ChicagoCheesePizza
because the ingredient factory now handles regional differences

43

One last step…
public class ChicagoPizzaStore extends PizzaStore {1

2

 protected Pizza createPizza(String item) {3

 Pizza pizza = null;4

 PizzaIngredientFactory ingredientFactory =5

 new ChicagoPizzaIngredientFactory();6

7

 if (item.equals("cheese")) {8

9

 pizza = new CheesePizza(ingredientFactory);10

 pizza.setName("Chicago Style Cheese Pizza");11

12

 } else if (item.equals("veggie")) {13

14

 pizza = new VeggiePizza(ingredientFactory);15

 pizza.setName("Chicago Style Veggie Pizza");16

17

 } else if (item.equals("clam")) {18

19

 pizza = new ClamPizza(ingredientFactory);20

 pizza.setName("Chicago Style Clam Pizza");21

22

 } else if (item.equals("pepperoni")) {23

24

 pizza = new PepperoniPizza(ingredientFactory);25

 pizza.setName("Chicago Style Pepperoni Pizza");26

27

 }28

 return pizza;29

 }30

}31

32

…

We need to update our PizzaStore subclasses to create the appropriate
ingredient factory and pass it to each Pizza subclass in the createPizza
factory method.

44

Summary: What did we just do?

1. We created an ingredient factory interface to allow for the creation of a family
of ingredients for a particular pizza

2. This abstract factory gives us an interface for creating a family of products

2.1.The factory interface decouples the client code from the actual factory
implementations that produce context-specific sets of products

3. Our client code (PizzaStore) can then pick the factory appropriate to its
region, plug it in, and get the correct style of pizza (Factory Method) with the
correct set of ingredients (Abstract Factory)

45

46

Class Diagram of Abstract Factory Solution

createPizza()
orderPizza()

PizzaStore

bake()
cut()
box()
prepare()

Dough
Sauce
Cheese
...

Pizza

createDough(): Dough
createSauce(): Sauce
createCheese(): Cheese
...

PizzaIngredientFactory

prepare()
CheesePizza

createPizza()
ChicagoPizzaStore

createDough(): Dough
createSauce(): Sauce
createCheese(): Cheese
...

ChicagoPizzaIngredientFactory

Dough

ThickCrustDough

Note: Lots of
classes not shown

Demonstration

• Lets take a look at the code

47

Abstract Factory: Definition and Structure

• The abstract factory design pattern provides an interface for creating families
of related or dependent objects without specifying their concrete classes

Client
createProductA(): AbstractProductA

createProductB(): AbstractProductB

AbstractFactory
«Interface»

createProductA(): ProductA1

createProductB(): ProductB1

ConcreteFactoryA
createProductA(): ProductA2

createProductB(): ProductB2

ConcreteFactoryB

AbstractProductA
«Interface»

AbstractProductB
«Interface»

ProductA1 ProductA2 ProductB1 ProductB2

factory

48

© Kenneth M. Anderson, 2011

Wrapping Up

We reviewed Strategy and worked on applying it

We learned about Bridge and saw how it allows a set of
abstractions to make use of multiple implementations in a
scalable way

We learned about Abstract Factory and how it enables
the creation of families of objects while hiding the specific
objects created from the clients that use them

49

© Kenneth M. Anderson, 2011

Coming Up Next

Lecture 10: Introduction to Java

Lecture 11: Introduction to Android

50

