X

CSC

SANDING OUR HORIZONS

444

8/5448: OBJECT-ORIENTED ANALYSIS & DESIGN
LECTURE 8 — 09/15/201 |

© Kenneth M. Anderson, 201 |

Goals of the Lecture

® Cover the material in Chapter 8 of our textbook
® New perspective on objects and encapsulation
® How to handle variation in behavior
® New perspective on inheritance
® Commonality and Variability Analysis

® Relationship between Design Patterns and Aglle

© Kenneth M. Anderson, 201 | Y

Traditional View of Objects

® "Data with Methods” or “Smart Data”
® Based on the mechanics of OO languages

® In C, you have structs (data) and then you have
functions that operate on the structs (methods)

® |n C++, you could combine the two Into a single
unit... hence “data with methods”

® But this view limits your ability to design with objects

® [he focus Is mainly on the data not the behavior!

© Kenneth M. Anderson, 201 | 3

0O Jo Ul WDN -

MNDNMNMNDNNDMNMNNMNMNMNPRPRPRRPRPRPRPRRBREPBRE
O & WNDNEFEPE O WO JOYOLbd WD EFE OV

public class Pixel {
“Dumb Data Holder”
private double red;
private double green;
private double blue;
private double alpha;

public Pixel(double red, double green, double blue, double alpha) {
this.red = red;

this.green = green; This iS a CIaSS that
this.blue = blue; o t I I t h I
this.alpha = alpha; €XISts soie Y o e p

' some other class. It

public double getRed() { is the worst form of
return red; 6 . 9

) data with methods

public void setRed(double red) {

this.red = red; Part of the problem
} is this “concept” is
too low level to be
useful.

© Kenneth M. Anderson, 201 |

New Perspective on Objects (I)

® Objects are “Things with Responsibilities”

® Don't focus on the data; It Is subject to change as the
implementation evolves to meet non-functional

constraints
® this Is why we set attributes as private by default
® focus on behavior

® And how those behaviors allow you to fulfill
responsibilities that the system must meet

© Kenneth M. Anderson, 201 | 5

New Perspective on Objects (ll)

® [he responsibilities come from the requirements

® |f you have a requirement to create profiles for your
users then somewhere In your design, you have

® an object with the responsibility of creating profiles
and managing the workflow related to that task

® an object with the responsibility of storing and
manipulating the data of a profile

® an object with the responsibility of storing and
manipulating multiple profiles

© Kenneth M. Anderson, 201 | 6

New Perspective on Objects (lll)

® Responsibilities help you design

® Requirements lead to responsibilities

® And responsibilities need to “go somewhere”
® [he process of analysis becomes

® finding all of the responsibilities of the system

® [he process of design becomes

® finding a home for each responsibility (object/subsystem)

© Kenneth M. Anderson, 201 | y/

New Perspective on Objects (IV)

® A focus on responsibilities also promotes a focus on
defining the public interface of an object

® What methods will | need to meet my responsibilities!

® How will | be used?

® T[his focus early in desiscn matches the external
perspective we need to maintain

® see the system from the user’s point of view

® A rush to implementation obscures that perspective

© Kenneth M. Anderson, 201 | 8

-xXample, continued

® Pixel was too low level to be useful
® but a collection of pixels... an image
® Now you're talking
® \With an image class you can specify useful services

® stretch, flip, distort, change to black and white, add a
shadow, produce a mirror image effect, move, display
yourself on this canvas, ...

© Kenneth M. Anderson, 201 | 9

Tasks Example,
Cached Image Loading Routines

imageNamed: H‘n,s th‘ p*
Creating New Images Ullmage class in w'l Cocoa
+ imageWithContentsOfFile:

;r:"..ac'_.'c:-(-J;tL':;aL.3: tm W

imageWithCGImage:

imageWithCGImage:scale:orientation:

Initializing Images public interface as
.L g

initWithContents0OfFile:

initWithData:

e [S
- - _‘-_

o

initWithCGImage: b

l’l

initWithCGImage:scale:orientation:

Image Attributes

imageOrientation

Drawing Images
drawAtPoint:

drawAtPoint:blendMode:alpha:

drawInRect:

drawInRect:blendMode:alpha:

drawAsPatternInRect:

© Kenneth M. Anderson, 201 |

[radrtional View on Encapsulation

® tnca

® T

bsulation means “hiding data”

nis view Is too limited and again focuses on the data

when we want to focus on behavior and responsibilities

® [he Umbrella Example

® |n the analogy, the car plays the role of “encapsulation”

® [hinking of a car as an “umbrella™ is too limiting; It

can do so much more! The same Is true of
encapsulation

© Kenneth M. Anderson, 201 | | |

N,

Perspective on Encapsulation (I)

® Encapsulation should be thought of as “any kind of hiding”
especially the hiding of “things that can change”

® We certainly can hide data but also

® behavior, mplementations, design detalls, etc.

® and the mechanisms can involve more than just
attribute and method visibility annotations

® design patterns, subsystem boundaries, interfaces

® for example, Objective-C's class clusters

© Kenneth M. Anderson, 201 | |2

http://seanmurph.com/weblog/make-your-own-abstract-factory-class-cluster-in-objective-c/
http://seanmurph.com/weblog/make-your-own-abstract-factory-class-cluster-in-objective-c/

Multiple Types of Encapsulation (1)

Shape
setLocation(Point)

/\

Circle
setLocation(Point)

&

OtherCircle

setX(int)
setY (int)

© Kenneth M. Anderson, 201 |

Multiple Types of Encapsulation (lI)

Shape
setLocation(Point)

/\

Circle
setLocation(Point)

&

Encapsulation of Data within

each class OtherCircle
setX(int)

setY (int)

© Kenneth M. Anderson, 201 |

Multiple Types of Encapsulation (lII)

Shape
setLocation(Point)

/\

Circle
setLocation(Point)

&

Encapsulation of methods;

e.g. setLocation() in Circle OtherCircle
setX(int)

setY (int)

© Kenneth M. Anderson, 201 |

Multiple Types of Encapsulation (V)

Shape
setLocation(Point)

/\

Circle
setLocation(Point)

&

Encapsulation of objects;
only Circle knows about OtherCirce

OtherCircle setX(in)
setY (int)

© Kenneth M. Anderson, 201 |

Multiple Types of Encapsulation (V)

Shape
setLocation(Point)

/\

Point Line

Encapsulation of type; clients
of Shape do not have to
know about points, lines and
circles

© Kenneth M. Anderson, 201 |

Circle

setLocation(Point)

&

OtherCircle
setX(int)
setY(int)

-ncapsulation of lype

® CEncapsulation of Type occurs

® when there Is an abstract class with derivations (subclasses)
or an Iinterface with implementations

s AND
® the abstract class or interface 1s used polymorphically

® \When you encounter the term “encapsulation” in design
patterns, this Is typically what they are referring to

® [hese abstract types provide the means for decomposing
designs around the major services the system provides

© Kenneth M. Anderson, 201 | |8

Inheritance: Specialization vs. Behavior

® [Encapsulation of type provides a new way of looking at
iInheritance

® Subclasses of the abstract types are grouped because
they all behave the same way (as defined by the
methods of the abstract type)

® [his contrasts with inheritance used to “specialize” (make
more specific) an existing class

® Pentagon — SpecialBorderPentagon

© Kenneth M. Anderson, 201 | |19

Specialization vs. Behavior (Il

® Pentagon — SpecialBorderPentagon

® Pros

® Reuse pentagon’s behavior; enable variation with borders

® Cons

® Weak Cohesion: I | specialize again with another border,
've got classes that all deal with both pentagons and borders

® Poor Reuse: How do | share my borders with Circles!

® Does not scale across multiple dimensions:
SpecialBorderBlinkingSpinningPentagon (give me a break!)

© Kenneth M. Anderson, 201 | 20

-Xample

Imagine if we
had to add
Circle to this
hierarchy!

Specialization
can lead to bad
designs like this

Pentagon

-
N

SpinningPentagon BlinkingPentagon
/\ /\
SpinningBlinkingPentagon BlinkingSpinningPentagon

© Kenneth M. Anderson, 201 |

2

Specialization vs. Behavior (lII)

® Jo avoid the trap of SpecialBorderBlinkingSpinningPentagon

® [ncapsulate variation in behavior using the Strategy pattern we saw
in Lecture 6

® Subclasses become manageable as they are partitioned across
multiple abstract types (FlyBehavior)

® [ots of polymorphic behavior is enabled since classes like
Pentagon become customizable

® Reuse Is enabled because Circle can plug these classes in as well

® [his approach scales; one new abstract type, one concrete
subclass for each new behavior that varies

© Kenneth M. Anderson, 201 | 22

-xample: Rectangle and Square

Rectangle I1S-A Shape
Square IS-A Rectangle

Is there a problem with this de

1 S

© Kenneth M. Anderson, 201 |

-xample: Rectangle and Square

What would happen if we did something
like this?

List<Shape> shapes = (list d_ qua

Rectangle

/\

© Kenneth M. Anderson, 201 |

-xample: Rectangle and Square

Squares share properties of rectangles but
they don’t BEHAVE the same

If you set a square’s width, you are also 2

/\
/\

© Kenneth M. Anderson, 201 |

_--

-xample: Rectangle and Square

Since squares do not
behave like Rectangles

they no longer are

Rectangle

© Kenneth M. Anderson, 201 | 26

Commonality and Variability Analysis

® Answers the question

® How do we find variations in a problem domain and
identify what Is common across the domain

® Commonality Analysis identifies where things vary
® ook at different objects and find a supertype
® Variability Analysis identifies how things vary

® ook at a supertype and identify variations

© Kenneth M. Anderson, 201 | 27

-Xample

® Objects

® whiteboard marker, pencil, ballpoint pen
® Commonality Analysis

® writing Instruments
® Variability Analysis

® appearance varies, writing surface varies, 'Ink” varies

© Kenneth M. Anderson, 201 | 28

Commonality and Variability Analysis

® Variability only makes sense within a given commonality

® Commonality Analysis seeks structure in a problem domain
that is unlikely to change over time

® Variability Analysis identifies structures that are likely to change

® A&D becomes locating common concepts (abstract
superclasses) and their likely variations (concrete subclasses)

® [he abstract classes identify important behavior (that fulfill
responsibilities) within the domain; the subclasses outline the
legal variations of that behavior

© Kenneth M. Anderson, 201 | 29

Comparison to Aglle Techniques

® [he approach to A&D advocated by this book is often
called the “design up front” approach

® You identify the primary domain concepts relevant to
solving the problem

® You identify the users of your system;

® You then develop a design that uses those domain
concepts to allow your users to complete their tasks

® You Iterate and flesh out the design until it Is ready
for implementation

© Kenneth M. Anderson, 201 | 30

Aglle Techniques

® Agile methods are technigues/processes for developing
software systems that rely on

® communicating with your customer frequently
® taking small steps (functionality wise)

® validating the small steps with the customer before
Moving on

® [hey emphasize iteration, feedback, and communication
over upfront design, detailed analysis, diagrams, etc.

© Kenneth M. Anderson, 201 | 31

Opposition?

® [hese two technigues seem to be In ©

® Up front design (top-down) vs. sma

DposItion

| steps (bottom-up)

® et they are both driving towards the same goal

® systems built from effective, robust, flexible code

® [hey differ in approach but value the same things

® Design patterns produce flexible code; Agile values
code that can change in a straightforward manner

© Kenneth M. Anderson, 201 |

i)

Opposition! Not Really

® Aglle technigues value characteristics in code that are
valued by the design pattern approach

® No redundancy and Highly Cohesive Code
® Readablility and Design to an Interface
® Jestability and <all the other qualities>

® While the two techniques use different names for these
characteristics, they are really talking about the same
thing...

© Kenneth M. Anderson, 201 | 33

No Redundancy

® VWVhen mplementing code, don't repeat yourself
® One Rule, One Place: do not duplicate behavior

® Once and Only Once

® [he system (code+tests) must communicate everything
you want to communicate (about its responsibilites)

® [he system must contain no duplicate code

® (Code with no redundancy is highly cohesive and loosely
coupled

© Kenneth M. Anderson, 201 | 34

Readability (1)

® Program by Intention
® You need to Implement some functionality
® Pretend it exists, give It an intention-revealing name
® Write the method that calls 1t
® Write the method itself

® (Code becomes a series of calls to functions with highly
descriptive names

© Kenneth M. Anderson, 201 | 35

Readability ()

® Martin Fowler encourages Program by Intention when he
says ‘Whenever [you] feel the need to [write a
comment], write a method Instead.”

® [his encourages shorter and more cohesive methods
In cohesive classes

® Using intention-revealing names Is very similar to “Code to
an Interface™. By considering how the function is to be
called/used before writing It, you establish its public
interface...

© Kenneth M. Anderson, 201 | 36

lestability

® J[estability Is key In software development

® [he more you test the more confident you are in the
software being developed

® Jestable code (encouraged by Agile at every turn) Is

® cohesive (doing only one thing), loosely coupled (less
dependencies on a class may mean It Is easier to
instantiate 1ts objects), non redundant (each rule to be
tested lives In one place), readable (intention-revealing
names make It easler to target test cases), encapsulated

© Kenneth M. Anderson, 201 | 37

Wrapping Up (1)

® [NNew perspective on objects and encapsulation
® responsibilities; hide anything

® How to handle variation in behavior
® strategy pattern

® [New perspective on inheritance

® Group via behavior

© Kenneth M. Anderson, 201 | 38

Wrapping Up (lI)

® Commonality and Variability Analysis

® Examine problem domain for structure that are
resistant to change (commonality) and then identify
ways In which they can legally vary

® Relationship between Design Patterns and Agile
® [hey both value the same code qualities

® |oose coupling, high cohesiveness, no redundancy,
testability, readability, code to an Interface, etc.

© Kenneth M. Anderson, 201 | 39

Coming Up Next

® |ecture 9: Strategy, Bridge, Abstract Factory
® Read Chapters 9, 10, & | |

® Homework 3 due tomorrow

® Homework 4 assighed tomorrow

® |[ecture |0: Introduction to Java

® No reading assignment

© Kenneth M. Anderson, 201 | 40

