
© Kenneth M. Anderson, 2011

EXPANDING OUR HORIZONS
CSCI 4448/5448: OBJECT-ORIENTED ANALYSIS & DESIGN

LECTURE 8 — 09/15/2011

1

© Kenneth M. Anderson, 2011

Goals of the Lecture

Cover the material in Chapter 8 of our textbook

New perspective on objects and encapsulation

How to handle variation in behavior

New perspective on inheritance

Commonality and Variability Analysis

Relationship between Design Patterns and Agile

2

© Kenneth M. Anderson, 2011

Traditional View of Objects

“Data with Methods” or “Smart Data”

Based on the mechanics of OO languages

In C, you have structs (data) and then you have
functions that operate on the structs (methods)

In C++, you could combine the two into a single
unit… hence “data with methods”

But this view limits your ability to design with objects

The focus is mainly on the data not the behavior!

3

© Kenneth M. Anderson, 2011

Example

4

public class Pixel {1
2

 private double red;3
 private double green;4
 private double blue;5
 private double alpha;6

7
 public Pixel(double red, double green, double blue, double alpha) {8
 this.red = red;9
 this.green = green;10
 this.blue = blue;11
 this.alpha = alpha;12
 }13

14
 public double getRed() {15
 return red;16
 }17

18
 public void setRed(double red) {19
 this.red = red;20
 }21

22
 ...23
}24

25

“Dumb Data Holder”

This is a class that
exists solely to help
some other class. It
is the worst form of
“data with methods”

Part of the problem
is this “concept” is
too low level to be
useful.

© Kenneth M. Anderson, 2011

New Perspective on Objects (I)

Objects are “Things with Responsibilities”

Don’t focus on the data; it is subject to change as the
implementation evolves to meet non-functional
constraints

this is why we set attributes as private by default

focus on behavior

And how those behaviors allow you to fulfill
responsibilities that the system must meet

5

© Kenneth M. Anderson, 2011

New Perspective on Objects (II)

The responsibilities come from the requirements

If you have a requirement to create profiles for your
users then somewhere in your design, you have

an object with the responsibility of creating profiles
and managing the workflow related to that task

an object with the responsibility of storing and
manipulating the data of a profile

an object with the responsibility of storing and
manipulating multiple profiles

6

© Kenneth M. Anderson, 2011

New Perspective on Objects (III)

Responsibilities help you design

Requirements lead to responsibilities

And responsibilities need to “go somewhere”

The process of analysis becomes

finding all of the responsibilities of the system

The process of design becomes

finding a home for each responsibility (object/subsystem)

7

© Kenneth M. Anderson, 2011

New Perspective on Objects (IV)

A focus on responsibilities also promotes a focus on
defining the public interface of an object

What methods will I need to meet my responsibilities?

How will I be used?

This focus early in design matches the external
perspective we need to maintain

see the system from the user’s point of view

A rush to implementation obscures that perspective

8

© Kenneth M. Anderson, 2011

Example, continued

Pixel was too low level to be useful

but a collection of pixels… an image

Now you’re talking

With an image class you can specify useful services

stretch, flip, distort, change to black and white, add a
shadow, produce a mirror image effect, move, display
yourself on this canvas, …

9

© Kenneth M. Anderson, 2011 10

Example, continued.

Here’s the public interface of the
UIImage class in Apple’s Cocoa
touch library

Note that they refer to the
public interface as “Tasks”

A “+” in front of a method name
indicates a static method

A “-” indicates an instance
method

This class is designed to be used
with UIImageView to be
displayed and CoreAnimation to
be manipulated/animated

© Kenneth M. Anderson, 2011

Traditional View on Encapsulation

Encapsulation means “hiding data”

This view is too limited and again focuses on the data
when we want to focus on behavior and responsibilities

The Umbrella Example

In the analogy, the car plays the role of “encapsulation”

Thinking of a car as an “umbrella” is too limiting; it
can do so much more! The same is true of
encapsulation

11

© Kenneth M. Anderson, 2011

New Perspective on Encapsulation (I)

Encapsulation should be thought of as “any kind of hiding”
especially the hiding of “things that can change”

We certainly can hide data but also

behavior, implementations, design details, etc.

and the mechanisms can involve more than just
attribute and method visibility annotations

design patterns, subsystem boundaries, interfaces

for example, Objective-C’s class clusters

12

http://seanmurph.com/weblog/make-your-own-abstract-factory-class-cluster-in-objective-c/
http://seanmurph.com/weblog/make-your-own-abstract-factory-class-cluster-in-objective-c/

© Kenneth M. Anderson, 2011

Multiple Types of Encapsulation (I)

13

setLocation(Point)
Shape

Point LIne setLocation(Point)
Circle

setX(int)
setY(int)

OtherCircle

© Kenneth M. Anderson, 2011

Multiple Types of Encapsulation (II)

14

setLocation(Point)
Shape

Point LIne setLocation(Point)
Circle

setX(int)
setY(int)

OtherCircle
Encapsulation of Data within
each class

© Kenneth M. Anderson, 2011

Multiple Types of Encapsulation (III)

15

setLocation(Point)
Shape

Point LIne setLocation(Point)
Circle

setX(int)
setY(int)

OtherCircle
Encapsulation of methods;
e.g. setLocation() in Circle

© Kenneth M. Anderson, 2011

Multiple Types of Encapsulation (IV)

16

setLocation(Point)
Shape

Point LIne setLocation(Point)
Circle

setX(int)
setY(int)

OtherCircle

Encapsulation of objects;
only Circle knows about
OtherCircle

© Kenneth M. Anderson, 2011

Multiple Types of Encapsulation (V)

17

setLocation(Point)
Shape

Point LIne setLocation(Point)
Circle

setX(int)
setY(int)

OtherCircle

Encapsulation of type; clients
of Shape do not have to
know about points, lines and
circles

© Kenneth M. Anderson, 2011

Encapsulation of Type

18

Encapsulation of Type occurs

when there is an abstract class with derivations (subclasses)
or an interface with implementations

AND

the abstract class or interface is used polymorphically

When you encounter the term “encapsulation” in design
patterns, this is typically what they are referring to

These abstract types provide the means for decomposing
designs around the major services the system provides

© Kenneth M. Anderson, 2011

Inheritance: Specialization vs. Behavior

Encapsulation of type provides a new way of looking at
inheritance

Subclasses of the abstract types are grouped because
they all behave the same way (as defined by the
methods of the abstract type)

This contrasts with inheritance used to “specialize” (make
more specific) an existing class

Pentagon → SpecialBorderPentagon

19

© Kenneth M. Anderson, 2011

Specialization vs. Behavior (II)

Pentagon → SpecialBorderPentagon

Pros

Reuse pentagon’s behavior ; enable variation with borders

Cons

Weak Cohesion: If I specialize again with another border,
I’ve got classes that all deal with both pentagons and borders

Poor Reuse: How do I share my borders with Circles?

Does not scale across multiple dimensions:
SpecialBorderBlinkingSpinningPentagon (give me a break!)

20

© Kenneth M. Anderson, 2011

Example

21

Shape

Pentagon

SpinningPentagon BlinkingPentagon

SpinningBlinkingPentagon BlinkingSpinningPentagon

Specialization
can lead to bad
designs like this

Imagine if we
had to add
Circle to this
hierarchy!

© Kenneth M. Anderson, 2011

Specialization vs. Behavior (III)
To avoid the trap of SpecialBorderBlinkingSpinningPentagon

Encapsulate variation in behavior using the Strategy pattern we saw
in Lecture 6

Subclasses become manageable as they are partitioned across
multiple abstract types (FlyBehavior)

Lots of polymorphic behavior is enabled since classes like
Pentagon become customizable

Reuse is enabled because Circle can plug these classes in as well

This approach scales; one new abstract type, one concrete
subclass for each new behavior that varies

22

© Kenneth M. Anderson, 2011

Example: Rectangle and Square

23

Shape

Rectangle

Square

Rectangle IS-A Shape
Square IS-A Rectangle

Is there a problem with this design?

© Kenneth M. Anderson, 2011

Example: Rectangle and Square

24

Shape

Rectangle

Square

What would happen if we did something
like this?

List<Shape> shapes = (list of squares/rects)

// set width to 5; leave length the same
for (Shape s: shapes) {
 s.setWidth(5);
}

© Kenneth M. Anderson, 2011

Example: Rectangle and Square

25

Shape

Rectangle

Square

Squares share properties of rectangles but
they don’t BEHAVE the same

If you set a square’s width, you are also
setting its length

Whereas with a Rectangle, setting width
and length are independent operations

Since we should use inheritance to group
classes that behave the same, how should
we change our design?

© Kenneth M. Anderson, 2011

Example: Rectangle and Square

26

Shape

Rectangle Square

Since squares do not
behave like Rectangles
they no longer are a
subclass

But since they share lots
of properties, Square will
keep a private copy of
rectangle and delegate to
rectangle when their
properties or behaviors
ARE the same

Differences in behavior
are then handled in
Square itself

© Kenneth M. Anderson, 2011

Commonality and Variability Analysis

Answers the question

How do we find variations in a problem domain and
identify what is common across the domain

Commonality Analysis identifies where things vary

Look at different objects and find a supertype

Variability Analysis identifies how things vary

Look at a supertype and identify variations

27

© Kenneth M. Anderson, 2011

Example

Objects

whiteboard marker, pencil, ballpoint pen

Commonality Analysis

writing instruments

Variability Analysis

appearance varies, writing surface varies, “ink” varies

28

© Kenneth M. Anderson, 2011

Commonality and Variability Analysis

Variability only makes sense within a given commonality

Commonality Analysis seeks structure in a problem domain
that is unlikely to change over time

Variability Analysis identifies structures that are likely to change

A&D becomes locating common concepts (abstract
superclasses) and their likely variations (concrete subclasses)

The abstract classes identify important behavior (that fulfill
responsibilities) within the domain; the subclasses outline the
legal variations of that behavior

29

© Kenneth M. Anderson, 2011

Comparison to Agile Techniques

The approach to A&D advocated by this book is often
called the “design up front” approach

You identify the primary domain concepts relevant to
solving the problem

You identify the users of your system;

You then develop a design that uses those domain
concepts to allow your users to complete their tasks

You iterate and flesh out the design until it is ready
for implementation

30

© Kenneth M. Anderson, 2011

Agile Techniques

Agile methods are techniques/processes for developing
software systems that rely on

communicating with your customer frequently

taking small steps (functionality wise)

validating the small steps with the customer before
moving on

They emphasize iteration, feedback, and communication
over upfront design, detailed analysis, diagrams, etc.

31

© Kenneth M. Anderson, 2011

Opposition?

These two techniques seem to be in opposition

Up front design (top-down) vs. small steps (bottom-up)

Yet, they are both driving towards the same goal

systems built from effective, robust, flexible code

They differ in approach but value the same things

Design patterns produce flexible code; Agile values
code that can change in a straightforward manner

32

© Kenneth M. Anderson, 2011

Opposition? Not Really

Agile techniques value characteristics in code that are
valued by the design pattern approach

No redundancy and Highly Cohesive Code

Readability and Design to an Interface

Testability and <all the other qualities>

While the two techniques use different names for these
characteristics, they are really talking about the same
thing…

33

© Kenneth M. Anderson, 2011

No Redundancy

When implementing code, don’t repeat yourself

One Rule, One Place: do not duplicate behavior

Once and Only Once

The system (code+tests) must communicate everything
you want to communicate (about its responsibilites)

The system must contain no duplicate code

Code with no redundancy is highly cohesive and loosely
coupled

34

© Kenneth M. Anderson, 2011

Readability (I)

Program by Intention

You need to implement some functionality

Pretend it exists, give it an intention-revealing name

Write the method that calls it

Write the method itself

Code becomes a series of calls to functions with highly
descriptive names

35

© Kenneth M. Anderson, 2011

Readability (II)

Martin Fowler encourages Program by Intention when he
says “Whenever [you] feel the need to [write a
comment], write a method instead.”

This encourages shorter and more cohesive methods
in cohesive classes

Using intention-revealing names is very similar to “Code to
an Interface”. By considering how the function is to be
called/used before writing it, you establish its public
interface…

36

© Kenneth M. Anderson, 2011

Testability

Testability is key in software development

The more you test the more confident you are in the
software being developed

Testable code (encouraged by Agile at every turn) is

cohesive (doing only one thing), loosely coupled (less
dependencies on a class may mean it is easier to
instantiate its objects), non redundant (each rule to be
tested lives in one place), readable (intention-revealing
names make it easier to target test cases), encapsulated

37

© Kenneth M. Anderson, 2011

Wrapping Up (I)

New perspective on objects and encapsulation

responsibilities; hide anything

How to handle variation in behavior

strategy pattern

New perspective on inheritance

Group via behavior

38

© Kenneth M. Anderson, 2011

Wrapping Up (II)

Commonality and Variability Analysis

Examine problem domain for structure that are
resistant to change (commonality) and then identify
ways in which they can legally vary

Relationship between Design Patterns and Agile

They both value the same code qualities

loose coupling, high cohesiveness, no redundancy,
testability, readability, code to an interface, etc.

39

© Kenneth M. Anderson, 2011

Coming Up Next

Lecture 9: Strategy, Bridge, Abstract Factory

Read Chapters 9, 10, & 11

Homework 3 due tomorrow

Homework 4 assigned tomorrow

Lecture 10: Introduction to Java

No reading assignment

40

