
© Kenneth M. Anderson, 2011

PROBLEM DOMAIN & INITIAL DESIGN
PLUS MORE ON DESIGN AND UML

CSCI 4448/5448: OBJECT-ORIENTED ANALYSIS & DESIGN

LECTURE 5 — 09/06/2011

1

© Kenneth M. Anderson, 2011

Goals of the Lecture

Introduce and reflect on the problem domain of the
book’s running example

Present an initial design to the problem domain

Highlight its strengths (if any) and weaknesses

Then switch to an overview of the analysis phase

Use cases and other UML diagrams

How these diagrams work together

2

© Kenneth M. Anderson, 2011

The Problem Domain

A company provides software that

allows engineers to create models for parts made out
of sheet metal

generates the instructions needed by a computer-
controlled cutting tool to actually make the part
specified by the models

3

© Kenneth M. Anderson, 2011

An example part with all 5 features

4

Slots

Cutouts

Holes

Special

Irregular

© Kenneth M. Anderson, 2011

Feature?

5

We have a terminology overlap

In previous lectures, I referred to an object’s attributes
and methods collectively as “features”

In this problem domain, a “feature” is a type of shape
that can automatically be cut into a piece of sheet metal

Terminology overlaps like this are common
when doing analysis and design

For this system, “Feature” is a domain concept and
will eventually appear as a class in our design

© Kenneth M. Anderson, 2011 6

♫

Confident
Engineer

CAD/CAM
System

Expert
System

Cutter
Slots

Cutouts

Holes

Special

Irregular

Slots

Cutouts

Holes

Special

Irregular

Slots

Cutouts

Holes

Special

Irregular

Slots

Cutouts

Holes

Special

Irregular

Parts

Controls

Produces

Our
Software

Retrieves
Info

Produces
Model

System Overview

© Kenneth M. Anderson, 2011 7

Nice system!

The engineers get to use familiar tools when designing
new parts

The expert system encodes all the rules about how the
cutter is used to create parts out of features

Our software simply acts as the “glue” between these two
major components

extracting information and converting it into a format
that the expert system understands

© Kenneth M. Anderson, 2011

Discussion

The use of existing CAD software was a good decision

Imagine if the original development team had been
infected with Not Invented Here syndrome and
had decided they needed to build a modeling tool

It would have increased expense and complexity

Plus their tool would likely have been non-standard

Sometimes, “buy” is the best option of a “buy vs.
build” decision; be sure to leverage standards

8

© Kenneth M. Anderson, 2011 9

So, What’s the Problem?

So far, all I’ve presented is information about the
application domain

What we are missing is details concerning what the
problem might be

Don’t confuse supplemental information or domain
information for a problem statement

As designers, we need to know what the problem is

© Kenneth M. Anderson, 2011 10

CAD/CAM
Version 1

Expert
System

Our
Software

Retrieves
Info

Produces
Model

CAD/CAM
Version 2

CAD/CAM
Version N

•••

Here's the Problem

We are being asked to make
the overall system resilient to
changes in the CAD/CAM
system

Example of encapsulation via software architecture…

© Kenneth M. Anderson, 2011

Discussion (I)

Our problem is to allow the expert system to work with
multiple CAD systems

currently different versions of the existing CAD system
or (possibly) CAD systems from different vendors

11

© Kenneth M. Anderson, 2011

Discussion (II)

Why not replace the expert system?

It was an expensive piece of software to develop and
embodies a significant amount of domain knowledge

Translating models into commands for the cutter is
non trivial

punching features in the wrong order produces
defective parts

This type of legacy system is common; you just have to
incorporate it into your design

12

© Kenneth M. Anderson, 2011

Our Approach

13

Model

V1Model V2Model

Expert
System

We want to provide the expert system with a single model that
it understands; we will subclass this model to integrate the
different versions of the CAD system

© Kenneth M. Anderson, 2011

Understanding the Challenges

The API of version 1 of the CAD system is NOT object-
oriented

It is accessed via a set of library routines

(think standard C library)

The API of version 2 of the CAD system is object-
oriented

It provides an OO framework of classes to describe its
models

14

© Kenneth M. Anderson, 2011

Example of Version 1 API
model_t *get_model(char *name);

int number_of_features(model_t *model);

int get_id_of_ith_feature(model_t *model, int index);

feature_type get_feature_type(model_t *model, int id);

int get_x_coord_of_slot(model_t *model, int id);

Gosh, I miss programming in C! ☺

15

© Kenneth M. Anderson, 2011

Accessing the API
To get the x coordinate of a feature, I need to do something like

model_t *model = get_model(“part XYZ”);

int num = number_of_features(model);

for (int i = 0; i < num; i++) {

int id = get_id_of_ith_feature(model, i);

switch (get_feature_type(model, id)) {

case SLOT:

int x = get_x_coord_of_slot(model, id);

…

16

© Kenneth M. Anderson, 2011

Version 2’s API

17

Feature

Slot Special

Model

Hole •••
Much Better!

© Kenneth M. Anderson, 2011

Discussion: The Challenge is Clear

18

We want to give the expert system an OO API

Version 2 provides us with a nice OO model, so our
system will need to “wrap” those classes in some way

Version 1 provides only library routines, so our system will
need to “hide” the non-OO API from the expert system

If we do this right, we will be able to write robust,
polymorphic code for the expert system that doesn’t change
when support for a new CAD system is added to our system

© Kenneth M. Anderson, 2011

First Attempt: Not so Great

In Chapter 4, an initial attempt to solve the problem is
presented

“It is not a great solution, but it is a solution that would
work.”

The idea is to present an obvious elaboration of the
approach outlined so far

and then highlight some obvious problems it has

these problems will be dealt with later in the book

19

© Kenneth M. Anderson, 2011

The Basic Approach (I)

20

Feature

Slot Special

Model

Hole •••

V1Slot V2Slot ••• V1Special V2Special

One subclass
per CAD system
plus the high
level classes =
17 classes

© Kenneth M. Anderson, 2011

The Basic Approach (II)

21

Slot

V1Slot V2Slot

V1System V2SystemSlot

For each Feature class, the version 1
variation will have attributes that link to
the version 1 model id and the feature
id; it will then call the V1 library routines
directly

The version 2 variation will simply wrap
the Feature class that comes from the
CAD system

The arrow with dashed line means “uses”

© Kenneth M. Anderson, 2011

Note on Polymorphism (I)

22

The authors comment that their goal is not to achieve
polymorphism across Features

In their design, they assign different sets of methods to
different feature subclasses rather than trying to define
all of the methods in the top level Feature class

The expert system needs to know the types of
features it is dealing with

abstracting those details away will prevent it from
doing its job

© Kenneth M. Anderson, 2011

Note on Polymorphism (II)

23

This means they are not striving to support client code like this

for (Feature f : features) {

f.doSomething();

}

The expert system needs to differentiate among the various
feature types; the design does achieve polymorphism across the
V1* and V2* subclasses

Slot s = <retrieve a slot>; s.getLength(); // polymorphic
across V1 and V2 subclasses

© Kenneth M. Anderson, 2011

Problems with the Design (I)

The design has four problems that the authors highlight

1. Redundancy among methods

Lots of duplicated code or highly similar code is
likely across V1 subclasses

OO designers hate duplicated code!

2. “Messy”, “Ill structured”, “Cumbersome”

something doesn’t feel quite right about the design

24

© Kenneth M. Anderson, 2011

Problems with the Design (II)

The design has four problems that the authors highlight

3. Tight coupling

The design is tightly coupled to the different CAD
systems; A lot of code will need to be changed or
produced if a new CAD system is added or an
existing one is changed

4. Weak cohesion

core functionality is too widely dispersed across the
various classes; Model is too simple a class

25

© Kenneth M. Anderson, 2011

Potential for Class Growth

The final problem is that the design does not scale nicely

(# of features * # of CAD systems) + 7 core classes

5 features, 2 systems = 17 classes

25 features, 10 systems = 257 classes (!!)

especially if something else about the system suddenly
started to vary, even the “worst case” of “# of expert
systems”

26

© Kenneth M. Anderson, 2011

Switching Gears

Let’s look at analysis and design more generically

During analysis and design, we will

capture requirements,

brainstorm candidate objects and roles,

consider trade-offs and design alternatives,

and make decisions

We will capture these decisions in UML diagrams and use
cases

27

© Kenneth M. Anderson, 2011

User Perspective (I)

In analysis, as much as possible, we want to write our
artifacts from the standpoint of a user

We will make frequent and consistent use of domain-
related vocabulary and concepts

We will talk about the software system as a “black box”

We can describe its inputs and its expected
outputs but we try to avoid discussing how the
system will process or produce this information

28

© Kenneth M. Anderson, 2011

User Perspective (II)

Use cases are a technique for maintaining this
perspective

we identify the different types of users for our
system

we then develop tasks for each of the different
types of user

29

© Kenneth M. Anderson, 2011

Actors

More formally, a user is represented by an actor

Each use case can have one or more actors involved

An actor can be either a human user or a software
system

Actors have two defining characteristics

They are external to the system under design

They take initiative and interact with our system

During a use case, they have a goal they are trying to achieve

30

© Kenneth M. Anderson, 2011

Use Cases

Each use case describes a single task for a particular actor

The description typically includes one “success”
case and a number of extensions that
document “exceptional” conditions

Use cases are used to capture functional requirements

They can be annotated to also describe non-functional
requirements but typically the focus is on functional
requirements only

31

© Kenneth M. Anderson, 2011

Example Use Case

32

What the Door Does
1. Fido barks to be let out.
2. Todd or Gina hears Fido barking.
3. Todd or Gina presses the button on the remote control.
4. The dog door opens.
5. Fido goes outside.
6. Fido does his business.

6.1 The door shuts automatically
6.2 Fido barks to be let back inside.
6.3 Todd or Gina hears Fido barking (again).
6.4 Todd or Gina presses the button on the remote control.
6.5 The dog door opens (again).

7. Fido goes back inside.

If something goes
wrong with step 6,
then 6.1-6.5 kicks
in to handle it

© Kenneth M. Anderson, 2011

Goes hand in hand with
requirements

33

Requirements List
1. The dog door opening must be at least 12” tall.
2. A button on the remote control toggles the
state of the door: it opens the door if closed, and
closes the door if open.
3. Once the dog door has opened, it should close
automatically after a short delay

© Kenneth M. Anderson, 2011

How are they related?

34

Requirements List
1. The dog door opening must be
at least 12” tall.
2. A button on the remote control
toggles the state of the door: it
opens the door if closed, and
closes the door if open.
3. Once the dog door has
opened, it should close
automatically after a short delay

What the Door Does
1. Fido barks to be let out.
2. Todd or Gina hears Fido barking.
3. Todd or Gina presses the button on the remote control.
4. The dog door opens.
5. Fido goes outside.
6. Fido does his business.

6.1 The door shuts automatically
6.2 Fido barks to be let back inside.
6.3 Todd or Gina hears Fido barking (again).
6.4 Todd or Gina presses the button on the remote control.
6.5 The dog door opens (again).

7. Fido goes back inside.

© Kenneth M. Anderson, 2011

Use cases contain scenarios

35

Important concept

A complete path through a use case from the first step
to the last is called a scenario

Most use cases have multiple scenarios but a
single user goal

All paths try to achieve victory

© Kenneth M. Anderson, 2011

Iterative Process

36

Once you have written

requirements and use cases to fulfill them

and you’ve discussed the use cases with clients to
determine the various alternate paths

You’re ready to start creating class diagrams, activity
diagrams, state diagrams and sequence diagrams

using information in the use cases as inspiration

© Kenneth M. Anderson, 2011

What are Activity & State Diagrams?
They represent alternate ways to record/capture design
information about your system. They can help you identify new
classes and methods

They are typically used in the following places in analysis and design

After use case creation: create an activity diagram for the use
case

For each activity in the diagram: draw a sequence diagram

Add a class for each object in the sequence diagrams to
your class diagram, add methods in sequence diagrams to
relevant classes

37

© Kenneth M. Anderson, 2011

What are Activity & State Diagrams?

Based on the information in the activity and sequence
diagrams, see if you can partition an object’s behavior into
various categories (initializing, acquiring info, performing
calcs, …)

Create a state diagram for the object that documents
these states and the transitions between them
(transitions typically map to method calls)

38

© Kenneth M. Anderson, 2011

Activity Diagrams (I)

Think “Flow Chart on Steroids”

Able to model complex, parallel processes with
multiple ending conditions

Notation

Initial Node (circle)/Final Node (circle in circle)/Early
Termination Node (circle with x through it)

Activity: Rounded Rectangle indication an action of
some sort either by a system or by a user

39

© Kenneth M. Anderson, 2011

Activity Diagrams (II)

Notation

Flow: directed lines between activities and/or other
constructs. Flows can be annotated with guards
“[student on list]” that restrict its use

Fork/Join: Black bars that indicate activities that happen
in parallel

Decision/Merge: Diamonds used to indicate conditional
logic.

40

© Kenneth M. Anderson, 2011

Example adapted from <http://www.agilemodeling.com/artifacts/activityDiagram.htm>. Copyright © 2003-2006 Scott W. Ambler

Fill Out Forms Inspect Forms

[problem found]

Display
Enrollment Screen

[no problem found]

Enter Applicant
Information

Validate Student

Search for
Student Record

Need to Apply

[not a student]

Display
Matches

Create
Student Record

[matches
found]

[no
matches]

[on list]

[not on
list]

[is a
student]

Enroll Student

Calculate Fees

Process
Payment

41

http://www.agilemodeling.com/artifacts/activityDiagram.htm
http://www.agilemodeling.com/artifacts/activityDiagram.htm

© Kenneth M. Anderson, 2011

State Diagrams
Shows the major states of an object or system

Each state appears as a rounded rectangle

Arrows indicate state transitions

Each transition has a name that indicates what triggers the
transition (often times, this name corresponds to a method
name)

Each transition may optionally have a guard that indicates a
condition that must be true before the transition can be
followed

A state diagram also has a start state and an end state

42

© Kenneth M. Anderson, 2011

Ready to
Play

Player 1
Movement

Player 2
Movement

Player 1
Combat

Player 2
Combat

Victory
Check

select game
scenario

start
game

end
phase

end
phase

[player 2 to move]
end phase

[player 1 to move]
end phase

end
phase

end
phase

victory

[units able to move > 0]
make move

[units able to move > 0]
make move

[units able to fight > 0]
fight battle

[units able to fight > 0]
fight battle

43

© Kenneth M. Anderson, 2011

Relationships between OO A&D
Software Artifacts

44

Requirements Use Cases

Class Diagram Activity Diagrams

Sequence DiagramsState Diagrams

© Kenneth M. Anderson, 2011

Wrapping Up

45

We’ve seen an application domain with a specific problem

We’ve seen an initial (poor) OO design to solve it

We then took a step back and looked at some of the
activities in OO A&D that our book doesn’t focus on

including the creation of use cases and new UML
diagrams our book doesn’t discuss

Finally, we looked at how all our diagram types support an
iterative approach to analysis and design

© Kenneth M. Anderson, 2011

Coming Up Next

Homework 2 Due Friday

Lecture 6: Introduction to Design Patterns

Read Chapter 5 of the Textbook

Homework 3 Assigned on Friday

Lecture 7: Facade and Adapter

Read Chapters 6 and 7 of the Textbook

46

