
© Kenneth M. Anderson, 2011

MORE OO FUNDAMENTALS
CSCI 4448/5448: OBJECT-ORIENTED ANALYSIS & DESIGN

LECTURE 4 — 09/01/2011

1

© Kenneth M. Anderson, 2011

Goals of the Lecture

Continue a review of fundamental object-oriented
concepts

2

© Kenneth M. Anderson, 2011

Overview of OO Fundamentals

Delegation

HAS-A

More on Inheritance

IS-A

More on Polymorphism

message passing

polymorphic
arguments and return
types

Interfaces

Abstract Classes

Object Identity

3

© Kenneth M. Anderson, 2011

Delegation (I)

When designing a class, there are four ways to handle an
incoming message

Handle message by implementing code in a method

Let the class’s superclass handle the request via
inheritance

Pass the request to another object (delegation)

some combination of the previous three

4

© Kenneth M. Anderson, 2011

Delegation (II)

Delegation is employed when some other class already
exists to handle a request that might be made on the class
being designed

The host class simply creates a private instance of the
helper class and sends messages to it when appropriate

As such, delegation is often referred to as a “HAS-A”
relationship

A Car object HAS-A Engine object

5

© Kenneth M. Anderson, 2011 6

import java.util.List;1
import java.util.LinkedList;2

3
public class GroceryList {4

5
 private List<String> items;6

7
 public GroceryList() {8
 items = new LinkedList<String>();9
 }10

11
 public void addItem(String item) {12
 items.add(item);13
 }14

15
 public void removeItem(String item) {16
 items.remove(item);17
 }18

19
 public String toString() {20
 String result = "Grocery List\n------------\n\n";21
 int index = 1;22
 for (String item: items) {23
 result += String.format("%3d. %s", index++, item) + "\n";24
 }25
 return result;26
 }27

28
}29

30

GroceryList
delegates all of
its work to Java’s
LinkedList class
(which it
accesses via the
List interface).

© Kenneth M. Anderson, 2011 7

public class Test {1
2

 public static void main(String[] args) {3
 GroceryList g = new GroceryList();4
 g.addItem("Granola");5
 g.addItem("Milk");6
 g.addItem("Eggs");7
 System.out.println("" + g);8
 g.removeItem("Milk");9
 System.out.println("" + g);10
 }11

12
}13

14

With the delegation, I get a nice abstraction in my client code. I can
create grocery lists, add and remove items and get a printout of the
current state of the list.

© Kenneth M. Anderson, 2011 8

import java.util.List;1
import java.util.LinkedList;2

3
public class TestWithout {4

5
 public static void printList(List<String> items) {6
 System.out.println("Grocery List");7
 System.out.println("------------\n");8
 int index = 1;9
 for (String item : items) {10
 System.out.println(String.format("%3d. %s", index++, item));11
 }12
 System.out.println();13
 }14

15
 public static void main(String[] args) {16
 List<String> g = new LinkedList<String>();17
 g.add("Granola");18
 g.add("Milk");19
 g.add("Eggs");20
 printList(g);21
 g.remove("Milk");22
 printList(g);23
 }24

25
}26

27

Without delegation, I get less abstraction. I’m using the List interface
directly with its method names and I have to create a static method
to handle the printing of the list rather than using toString().

© Kenneth M. Anderson, 2011 9

Delegation (III)

Now, the two programs (with delegation and without
delegation) produce exactly the same output

So, do we care which method we use?

© Kenneth M. Anderson, 2011

Delegation (IV)

Benefits of Delegation

Better abstraction

Less code in classes we write ourselves

We can change delegation relationships at runtime!

Unlike inheritance relationships; Imagine if we had
created GroceryList as a subclass of LinkedList
(*shudder*)

Why? Because GroceryList IS-NOT-A LinkedList

10

© Kenneth M. Anderson, 2011

Delegation (V)

Changing delegation relationships at run-time

A class can use a set at run-time

Set<String> items = new HashSet<String>();

If the class suddenly needs to be sorted, it can do this

items = new TreeSet<String>(items);

We have changed the delegation to an entirely new object
at run-time and now the items are sorted

In both cases, the type of items is Set<String> and we
get the correct behavior via polymorphism

11

© Kenneth M. Anderson, 2011

Delegation (VI)

Summary

Don’t re-invent the wheel… delegate!

Delegation is dynamic (not static)

delegation relationships can change at run-time

Not tied to inheritance

indeed, considered much more flexible; In languages
that support only single inheritance this is important!

12

© Kenneth M. Anderson, 2011

Delegation (VII)

Delegation, as a design pattern, is used throughout the iOS
and Cocoa frameworks

Basic pattern involving two objects

Host and delegate; use delegate to customize host

Define an interface that a delegate will implement

some methods are required; the rest are optional

Host will invoke methods on delegate as needed to
influence its behavior

13

© Kenneth M. Anderson, 2011

iOS Delegation Example (I)

UITableView displays a single-column table of rows

It requires two delegates

UITableViewDelegate

UITableViewDataSource

The first contains methods about how the table should
look, how it should respond to selections, etc.

The second contains methods that populate the table
and allow it to be edited

14

© Kenneth M. Anderson, 2011

iOS Delegation Example (II)

iOS app with a UITableViewController

by default acts as both the

delegate and the

data source

Some cleverness

Move handles do not appear unless
a delegate method is implemented

15

demo

© Kenneth M. Anderson, 2011

Inheritance (I)

Inheritance is a mechanism for sharing (public/protected)
features between classes

Subclasses have an “IS-A” relationship with their superclass

A Hippo IS-A Animal makes sense while the reverse
does not

IS-A relationships are transitive

If D is a subclass of C and C is a subclass of B, then
D IS-A B is true

16

© Kenneth M. Anderson, 2011

Inheritance (II)

Good OO design strives to make sure that all IS-A
relationships in a software system “make sense”

Consider Dog IS-A Canine vs. Dog IS-A Window

The latter might actually be tried by an
inexperienced designer who wants to display each
Dog object in its own separate window

This is known as implementation
inheritance; it is considered poor design and
something to be avoided

17

© Kenneth M. Anderson, 2011

Inheritance (III)

Inheritance enables significant code reuse since subclasses
gain access to the code defined in their ancestors

The next two slides show two ways of creating a set of
classes modeling various types of Animals

The first uses no inheritance and likely contains a lot of
duplicated code

The second uses inheritance and requires less code

even though it has more classes than the former

18

© Kenneth M. Anderson, 2011

Lion

makeNoise()

roam()

sleep()

Cat

makeNoise()

roam()

sleep()

Tiger

makeNoise()

roam()

sleep()

Hippo

makeNoise()

roam()

sleep()

Elephant

makeNoise()

roam()

sleep()

Rhino

makeNoise()

roam()

sleep()

Dog

makeNoise()

roam()

sleep()

Wolf

makeNoise()

roam()

sleep()

19

Animal
Classes with
no inheritance

© Kenneth M. Anderson, 2011

Cat
makeNoise()

Tiger
makeNoise()

Rhino
makeNoise()

Animal
sleep()

Feline
roam()

Canine
roam()

Pachyderm
roam()

Wolf
makeNoise()

Wolf

Dog
makeNoise()

Lion
makeNoise()

Elephant
makeNoise()

Hippo
makeNoise()

20

Animal
Classes with
inheritance

© Kenneth M. Anderson, 2011

Code Metrics

Indeed, I coded these two examples and discovered

without inheritance: 9 files, 200 lines of code

with inheritance: 13 files, 167 lines of code

approximately a 15% savings, even for this simple
example

21

© Kenneth M. Anderson, 2011

Inheritance (IV)

An important aspect of inheritance is substitutability

Since a subclass can exhibit all of the behavior of its
superclass, it can be used anywhere an instance of its
superclass is used

The textbook describes this as polymorphism

22

© Kenneth M. Anderson, 2011

Inheritance (VI)

Furthermore, subclasses can add additional behaviors that
make sense for it and override behaviors provided by the
superclass, altering them to suit its needs

This is both powerful AND dangerous

Why? Stay tuned for the answer…

23

© Kenneth M. Anderson, 2011

Polymorphism (I)

OO programming languages support polymorphism
(“many forms”)

In practice, this allows code

to be written with respect to the root of an
inheritance hierarchy

and function correctly when applied to
the root’s subclasses

24

© Kenneth M. Anderson, 2011

Polymorphism (II)

Message Passing vs. Method Invocation

With polymorphism, a message ostensibly sent to a
superclass, may be handled by a subclass

as discussed in lecture 3

25

© Kenneth M. Anderson, 2011

Polymorphism (III)

Compare this

Animal a = new Animal();

a.sleep(); // sleep() in Animal called

with this

Animal a = new Lion();

a.sleep(); // sleep() in Lion called

26

© Kenneth M. Anderson, 2011

Polymorphism Example
Without polymorphism, the code on
the right only calls methods in Animal

Think C++ non-virtual method
invocations

With polymorphism

a.roam() invokes Feline.roam()

a.makeNoise() invokes
Lion.makeNoise()

A message sent to Animal travels
down the hierarchy looking for the
“most specific” method body

In actuality, method lookup starts
with Lion and goes up

Animal

sleep()

roam()

makeNoise()

Feline

roam()

Lion

makeNoise()

Animal a = new Lion()
a.makeNoise();
a.roam();
a.sleep();

27

© Kenneth M. Anderson, 2011

Why is this important?

Polymorphism allows us to write very abstract code that is
robust with respect to the creation of new subclasses

For instance

public void goToSleep(Animal[] zoo) {
 for (int i = 0; i < zoo.length; i++) {
 zoo[i].sleep();
 }
}

28

© Kenneth M. Anderson, 2011

Importance (II)

In the previous code

we don’t care what type of animals are contained in
the array

we just call sleep() and get the correct behavior for
each type of animal

29

© Kenneth M. Anderson, 2011

Importance (III)

Indeed, if a new subclass of animal is created

the above code still functions correctly AND

it doesn’t need to be recompiled

with dynamic class loading, if the above code was running in
a server, you wouldn’t even need to “stop the server”; you
could simply load a new subclass and “keep on trucking” ☺

It only cares about Animal, not its subclasses

as long as Animal doesn’t change, the addition/removal of
Animal subclasses has no impact

30

© Kenneth M. Anderson, 2011

Importance (IV)

We can view a class’s public methods as establishing a
contract that it and its subclasses promise to keep

if we code to the (root) contract, as we did in the
previous example, we can create very robust and easy
to maintain software systems

This perspective is known as design by contract

31

© Kenneth M. Anderson, 2011

Importance (IV)

Earlier, we referred to method overloading as “powerful
AND dangerous”

The danger comes from the possibility that a subclass
may change the behavior of a method such that it no
longer follows the contract established by a superclass

such a change will break previously abstract and
robust code

32

© Kenneth M. Anderson, 2011

Importance (V)

Consider what would happen if an Animal subclass overrides
the sleep() method to make its instances flee from a predator
or eat a meal

Our goToSleep() method would no longer succeed in
putting all of the Zoo’s animals to sleep

If we could not change the offending subclass, we would have
to modify the goToSleep() method to contain special case
code to handle it

this would break abstraction and seriously degrade the
maintainability of that code

33

© Kenneth M. Anderson, 2011

Polymorphism (IV)

Finally, polymorphism is supported in arguments to
methods and method return types

In our goToSleep() method, we passed in a
polymorphic argument, namely an array of Animals

The code doesn’t care if the array contains Animal
instances or any of its subclasses

34

© Kenneth M. Anderson, 2011

Polymorphism (IV)
In addition, we can create methods that return polymorphic return
values. For example

When using the createRandomAnimal() method, we don’t know ahead
of time which instance of an Animal subclass will be returned

That’s okay as long as we are happy to interact with it via the API
provided by the Animal superclass

public Animal createRandomAnimal() {
 // code that randomly creates and
 // returns one of Animal's subclasses
}

35

© Kenneth M. Anderson, 2011

Abstract Classes (I)

There are times when you want to make the “design by
contract” principle explicit

Abstract classes and Interfaces let you do this

An abstract class is simply one which cannot be directly
instantiated

It is designed from the start to be subclassed

It does this by declaring a number of method signatures
without providing method implementations for them

this sets a contract that each subclass must meet

36

© Kenneth M. Anderson, 2011

Abstract Classes (II)

Abstract classes are useful since

they allow you to provide code for some methods
(enabling code reuse)

while still defining an abstract interface that subclasses
must implement

37

© Kenneth M. Anderson, 2011

Abstract Classes (III)

Zoo example

Animal a = new Lion(); // manipulate Lion via Animal interface

Animal a = new Animal(); // what Animal is this?

Animal, Feline, Pachyderm, and Canine are good candidates for being
abstract classes

38

© Kenneth M. Anderson, 2011

Interfaces

Interfaces go one step further and only allow the
declaration of abstract methods

you cannot provide method implementations for any of
the methods declared by an interface

Interfaces are useful when you want to define a role in
your software system that could be played by any number
of classes

39

© Kenneth M. Anderson, 2011

Interface Example (I)

Consider modifying the Animal hierarchy to provide
operations related to pets (e.g. play() or takeForWalk())

We have several options, all with pros and cons

add Pet-related methods to Animal

add abstract Pet methods to Animal

add Pet methods only in the classes they belong (no
explicit contract)

40

© Kenneth M. Anderson, 2011

Interface Example (II)

Options continued…

make a separate Pet superclass and have pets inherit
from both Pet and Animal

make a Pet interface and have only pets implement it

This often makes the most sense although it
hinders code reuse

Variation: create Pet interface, but then create Pet
helper class that is then composed internally and
Pet’s delegate if they want the default behavior

41

© Kenneth M. Anderson, 2011

Object Identity

In OO programming languages, all objects have a unique id

This id might be its memory location or a unique
integer assigned to it when it was created

This id is used to enable a comparison of two variables to
see if they point at the same object

See example next slide

42

© Kenneth M. Anderson, 2011

public class identity {

 public static void compare(String a, String b) {

 if (a == b) {

 System.out.println("(" + a + ", " + b + "): identical");

 } else if (a.equals(b)) {

 System.out.println("(" + a + ", " + b + "): equal");

 } else {

 System.out.println("(" + a + ", " + b + "): not equal");

 }

 }

 public static void main(String[] args) {

 String ken = "Ken Anderson";

 String max = "Max Anderson";

 compare(ken, max);

 ken = max;

 compare(ken, max);

 max = new String("Max Anderson");

 compare(ken, max);

 }

}

Not Equal

Identical

Equal

43

© Kenneth M. Anderson, 2011

Identity in OO A&D (I)

Identity is also important in analysis and design

We do not want to create a class for objects that do
not have unique identity in our problem domain

Consider people in an elevator

Does the elevator care who pushes its buttons?

44

© Kenneth M. Anderson, 2011

Identity in OO A&D (II)

Examples, continued

Consider a cargo tracking application

Does the system need to monitor every carrot
that exists inside a bag? How about each bag of
carrots in a crate?

Consider a flight between Denver and Chicago

What uniquely identifies that flight? The plane? The
flight number? The cities? What?

45

© Kenneth M. Anderson, 2011

Identity in OO A&D (III)

When doing analysis, you will confront similar issues

you will be searching for uniquely identifiable objects
that help you solve your problem

46

© Kenneth M. Anderson, 2011

Coming Up Next

Homework 2 assigned tomorrow, due next Friday

Lecture 5: Example problem domain and initial OO
solution (from book)

Read Chapters 3 and 4 of the Textbook

Lecture 6: Introduction to Design Patterns

Read Chapter 5 of the Textbook

47

