
© Kenneth M. Anderson, 2011

UML & OO FUNDAMENTALS
CSCI 4448/5448: OBJECT-ORIENTED ANALYSIS & DESIGN

LECTURE 3 — 08/30/2011

1

© Kenneth M. Anderson, 2011

Goals of the Lecture

Review the material in Chapter 2 of the Textbook

Cover key parts of the UML notation

Demonstrate the ways in which I think it is useful

Give you a chance to apply the notation yourself to
several examples

Warning: I repeat important information
several times in this lecture; this is a hint to
the future you when you are studying for the
midterm.

2

© Kenneth M. Anderson, 2011

UML

UML is short for Unified Modeling Language

The UML defines a standard set of notations for use in
modeling object-oriented systems

Throughout the semester we will encounter UML in the form of

class diagrams

sequence/collaboration diagrams

state diagrams

activity diagrams, use case diagrams, and more

3

© Kenneth M. Anderson, 2011

(Very) Brief History of the UML

In the 80s and early 90s, there were multiple OO A&D
approaches (each with their own notation) available

Three of the most popular approaches came from

James Rumbaugh: OMT (Object Modeling Technique)

Ivar Jacobson: Wrote “OO Software Engineering”

Grady Booch: Booch method of OO A&D

In the mid-90’s all three were hired by Rational and
together developed the UML; “three amigos”

4

© Kenneth M. Anderson, 2011

Big Picture View of OO Paradigm

OO techniques view software systems as

networks of communicating objects

Each object is an instance of a class

All objects of a class share similar features

attributes

methods

Classes can be specialized by subclasses

Objects communicate by sending messages

5

© Kenneth M. Anderson, 2011

Objects (I)

Objects are instances of classes

They have state (attributes) and exhibit behavior
(methods)

We would like objects to be

highly cohesive

have a single purpose; make use of all features

loosely coupled

be dependent on only a few other classes

6

© Kenneth M. Anderson, 2011

Objects (II)

Objects interact by sending messages

Object A sends a message to Object B to request it
perform a task

When done, B may pass a value back to A

Sometimes A == B

i.e., an object can send a message to itself

7

© Kenneth M. Anderson, 2011

Objects (III)

Sometimes messages can be rerouted

invoking a method defined in class A may in fact invoke
an overridden version of that method in subclass B

a method of class B may in turn invoke messages on its
superclass that are then handled by overridden
methods from lower in the hierarchy

The fact that messages (dynamic) can be rerouted
distinguishes them from procedure calls (static) in non-
OO languages

8

© Kenneth M. Anderson, 2011

Objects (IV)

In response to a message, an object may

update its internal state

return a value from its internal state

perform a calculation based on its state and return the
calculated value

create a new object (or set of objects)

delegate part or all of the task to some other object

9

© Kenneth M. Anderson, 2011

Objects (V)

As a result, objects can be viewed as members of
multiple object networks

Object networks are also called collaborations

Objects in an collaboration work together to perform a
task for their host application

10

© Kenneth M. Anderson, 2011

Objects (VI)

UML notation

Objects are drawn as rectangles with their names
and types (class names) underlined

Ken : Person

The name of an object is optional. The type is required

: Person

Note: The colon is not optional.

11

© Kenneth M. Anderson, 2011

Objects (VII)

Objects that work together have lines drawn between them

This connection has many names

object reference

reference

link

Messages are sent across links

Links are instances of associations (see slide 30)

12

© Kenneth M. Anderson, 2011 13

Skippy: Dog

Felix: Cat

Ken: Person

sit()

feed()

3 objects; 3 classes; 2 links; 2 messages

You can think of the names as the variables
that a program uses to keep track of the
three objects

© Kenneth M. Anderson, 2011

Classes (I)

A class is a blueprint for an object

The blueprint specifies a class’s attributes and methods

attributes are things an object of that class knows

methods are things an object of that class does

An object is instantiated (created) from the description
provided by its class

Thus, objects are often called instances

14

© Kenneth M. Anderson, 2011

Classes (II)

An object of a class has its own values for the
attributes of its class

For instance, two objects of the Person class can have
different values for the name attribute

Objects share the implementation of a class’s methods

and thus behave similarly

i.e. Objects A and B of type Person each share the
same implementation of the sleep() method

15

© Kenneth M. Anderson, 2011

Classes (III)

Classes can define “class-based” (a.k.a. static) attributes
and methods

A static attribute is shared among a class’s objects

That is, all objects of that class can read/write the
static attribute

A static method does not have to be accessed via
an object; you invoke static methods directly on a class

In Lecture 2’s Java code: String.format() was an
example of a static method

16

© Kenneth M. Anderson, 2011

Classes (IV)

Classes in UML appear as rectangles with multiple sections

The first section contains its name (defines a type)

The second section contains the class’s attributes

The third section contains the class’s methods

play()

artist
title

Song

17

© Kenneth M. Anderson, 2011

Class Diagrams, 2nd Example

getSpeed(): int
setSpeed(int)

speed: int
Airplane

A class is represented as a rectangle

All parts are optional
except the class name

This rectangle says that there is a class called Airplane that
could potentially have many instances, each with its own

speed variable and methods to access it

Name
Atts

Methods

© Kenneth M. Anderson, 2011

Translation to Code

Class diagrams can be translated into code straightforwardly

Define the class with the specified name

Define specified attributes (assume private access)

Define specified method skeletons (assume public)

May have to deal with unspecified information

Types are optional in class diagrams

Class diagrams typically do not specify constructors

just the class’s public interface

19

© Kenneth M. Anderson, 2011

Airplane in Java
public class Airplane {1

 2

 private int speed;3

 4

 public Airplane(int speed) {5

 this.speed = speed;6

 }7

 8

 public int getSpeed() {9

 return speed;10

 }11

 12

 public void setSpeed(int speed) {13

 this.speed = speed;14

 }15

16

}17

20

Using Airplane

Airplane a = new Airplane(5);

a.setSpeed(10);

System.out.println(
 “” + a.getSpeed());

© Kenneth M. Anderson, 2011

Relationships Between Classes

21

Classes can be related in a variety of ways

Inheritance

Association

Multiplicity

Whole-Part (Aggregation and Composition)

Qualification

Interfaces

© Kenneth M. Anderson, 2011

Relationships: Inheritance
One class can extend another

notation: a white triangle points to the superclass

the subclass can add attributes

Hippo adds submerged as new state

the subclass can add behaviors or override
existing ones

Hippo is overriding makeNoise() and eat()
and adding submerge()

22

Animal

location
food type

roam()
eat()
makeNoise()

Hippo

eat()
makeNoise()

submerge()

submerged: boolean

© Kenneth M. Anderson, 2011

Inheritance

Inheritance lets you build
classes based on other
classes and avoid
duplicating code

Here, Jet builds off
the basics that
Airplane provides

getSpeed(): int
setSpeed(int)

speed: int
Airplane

accelerate()
MULTIPLIER: int

Jet

23

© Kenneth M. Anderson, 2011

Inheriting From Airplane (in Java)
public class Jet extends Airplane {1

2

 private static final int MULTIPLIER = 2;3

 4

 public Jet(int id, int speed) {5

 super(id, speed);6

 }7

 8

 public void setSpeed(int speed) {9

 super.setSpeed(speed * MULTIPLIER);10

 }11

 12

 public void accelerate() {13

 super.setSpeed(getSpeed() * 2);14

 }15

16

}17

18

Note:

extends keyword indicates
inheritance

super() and super keyword is used
to refer to superclass

No need to define getSpeed()
method; its inherited!

setSpeed() method
overrides behavior of setSpeed() in
Airplane

subclass can define new behaviors,
such as accelerate()

24

© Kenneth M. Anderson, 2011

Polymorphism: “Many Forms”

“Being able to refer to different derivations of a
class in the same way, …”

Implication: both of these are legal statements

Airplane plane = new Airplane();

Airplane plane = new Jet();

“...but getting the behavior appropriate to the
derived class being referred to”

when I invoke setSpeed() on the second plane variable
above, I will get Jet’s method, not Airplane’s method

25

© Kenneth M. Anderson, 2011

Encapsulation

Encapsulation lets you

hide data and algorithms in one class from the rest of
your application

limit the ability for other parts of your code to access
that information

protect information in your objects from being used
incorrectly

26

© Kenneth M. Anderson, 2011

Encapsulation Example
The “speed” instance variable
is private in Airplane. That
means that Jet doesn’t have
direct access to it.

Nor does any client of
Airplane or Jet objects

Imagine if we changed
speed’s visibility to public

The encapsulation of Jet’s
setSpeed() method would
be destroyed

Airplane1

2

...3

public void setSpeed(int speed) {4

 this.speed = speed;5

}6

...7

8

Jet9

10

...11

public void setSpeed(int speed) {12

 super.setSpeed(speed * MULTIPLIER);13

}14

...15

16

27

© Kenneth M. Anderson, 2011

Reminder : Abstraction

Abstraction is distinct from encapsulation

It answers the questions

What features does a class provide to its users?

What services can it perform?

Abstraction is the MOST IMPORTANT concern in A&D!

The choices you make in defining the abstractions of
your system will live with you for a LONG time

28

© Kenneth M. Anderson, 2011

The Difference Illustrated
The getSpeed() and setSpeed()
methods represent Airplane’s
abstraction

Of all the possible things
that we can model about
airplanes, we choose just to
model speed

Making the speed attribute
private is an example of
encapsulation; if we choose to
use a linked list to keep track of
the history of the airplane’s
speed, we are free to do so

29

public class Airplane {1

 2

 private int speed;3

 4

 public Airplane(int speed) {5

 this.speed = speed;6

 }7

 8

 public int getSpeed() {9

 return speed;10

 }11

 12

 public void setSpeed(int speed) {13

 this.speed = speed;14

 }15

16

}17

© Kenneth M. Anderson, 2011

Relationships: Association
One class can reference
another (a.k.a. association)

notation: straight line

This notation is a graphical
shorthand that each class
contains an attribute whose
type is the other class

This is just one way to
implement this; there are
MANY others

Zoo

addAnimal()

Hippo

eat()

makeNoise()

Zoo

addAnimal()

Hippo ourHippo

shortcut for

Hippo

eat()

makeNoise()

Zoo myZoo

30

© Kenneth M. Anderson, 2011

Multiplicity

Associations can indicate the number of instances
involved in the relationship

this is known as multiplicity

An association with no markings is “one to one”

An association can also indicate directionality

if so, it indicates that the “knowledge” of the relationship
is not bidirectional

Examples on next slide

31

© Kenneth M. Anderson, 2011

Multiplicity Examples
A B

One B with each A; one
A with each B

A B
11

Same as above

A B
*1 Zero or more Bs with each

A; one A with each B

A B
** Zero or more Bs with each

A; ditto As with each B

A B
2..51

A B
*

Two to Five Bs with each
A; one A with each B

Zero or more Bs with each
A; B knows nothing about A

32

© Kenneth M. Anderson, 2011

Multiplicity Example

33

A
2..51

B

:A

:B

:A

:B :B:B :B

© Kenneth M. Anderson, 2011

Self Association

34

Person
* parent-of

 Ken : Person

Manny: Person Moe: Person Jack: Person

© Kenneth M. Anderson, 2011

Relationships: whole-part

Associations can also convey semantic information about
themselves

In particular, aggregations indicate that one object
contains a set of other objects

think of it as a whole-part relationship between

a class representing a group of components

a class representing the components

Notation: aggregation is indicated with a white diamond
attached to the class playing the container role

35

© Kenneth M. Anderson, 2011

Example: Aggregation
Composition

Book

Section

Chapter

Aggregation

Crate

Bottle

Composition will be
defined on the next slide

Note: multiplicity annotations
for aggregation/composition is
tricky

Some authors assume “one to
many” when the diamond is
present; others assume “one to
one” and then add multiplicity
indicators to the other end

*

36

© Kenneth M. Anderson, 2011

Semantics of Aggregation
Aggregation relationships are transitive

if A contains B and B contains C, then A contains C

Aggregation relationships are asymmetric

If A contains B, then B does not contain A

A variant of aggregation is composition which adds the property
of existence dependency

if A composes B, then if A is deleted, B is deleted

Composition relationships are shown with a black diamond
attached to the composing class

37

© Kenneth M. Anderson, 2011

Relationships: Qualification

An association can be qualified with information that
indicates how objects on the other end of the association are
found

This allows a designer to indicate that the association
requires a query mechanism of some sort

e.g., an association between a phonebook and its
entries might be qualified with a name

Notation: a qualification is indicated with a rectangle
attached to the end of an association indicating the
attributes used in the query

38

© Kenneth M. Anderson, 2011

Qualification Example

EntryPhoneBook name

39

Qualification is not used very often; the same
information can be conveyed via a note or a use
case that accompanies the class diagram

© Kenneth M. Anderson, 2011

Relationships: Interfaces

A class can indicate that it implements an interface

An interface is a type of class definition in which only
method signatures are defined

A class implementing an interface provides method
bodies for each defined method signature in that interface

This allows a class to play different roles, with each role
providing a different set of services

These roles are then independent of the class’s
inheritance relationships

40

© Kenneth M. Anderson, 2011

Example
Dog

location

food type

roam()

eat()

makeNoise()

Pet

Dog

location

food type

roam()

eat()

makeNoise()

Pet

Person

41

Other classes can then access a class via its interface

This is indicated via a “ball and socket” notation

© Kenneth M. Anderson, 2011

Class Summary

Classes are blue prints used to create objects

Classes can participate in multiple types of relationships

inheritance, association (with multiplicity), aggregation/
composition, qualification, interfaces

42

© Kenneth M. Anderson, 2011

Your Turn

Draw the following UML diagrams

A can have zero or more B’s; each B can have 3-4 C’s

A inherits from B; B implements an interface called C;
D accesses B via C’s interface

B’s are accessed from A via an id

A composes zero or more B’s; C aggregates zero or
more A’s

43

© Kenneth M. Anderson, 2011

Questions

Given

A inherits from B; B implements an interface called C; D accesses
B via C’s interface

Can D access an instance of A via C’s interface?

How would you implement the following?

A can contain zero or more B’s

B’s are accessed from A via an id

A composes zero or more B’s; C aggregates zero or more A’s

44

© Kenneth M. Anderson, 2011

Sequence Diagrams (I)
Objects are shown across the top of the diagram

Objects at the top of the diagram existed when the scenario
begins

All other objects are created during the execution of the
scenario

Each object has a vertical dashed line known as its lifeline

When an object is active, the lifeline has a rectangle placed above
its lifeline

If an object dies during the scenario, its lifeline terminates with an
“X”

45

© Kenneth M. Anderson, 2011

Sequence Diagrams (II)

Messages between objects are shown with lines pointing
at the object receiving the message

The line is labeled with the method being called and
(optionally) its parameters

All UML diagrams can be annotated with “notes”

Sequence diagrams can be useful, but they are also labor
intensive (!)

46

© Kenneth M. Anderson, 2011 47

:DogDoorSimulator

:DogDoor

:BarkRecognizer

:Remote

:System.out

«create»

«create»

«create»

println("Fido starts barking.")

recognize("Woof")
println("BarkRecognizer: Heard a 'Woof'.")

open()

println("The dog door opens.")

«create»
:Timer

schedule()
sleep(5000)

println("Fido has gone outside...")

println("Fido's all done...")

sleep(10000)
close()

println("The dog door closes.")

println("...but he's stuck outside!")

println("Fido starts barking.")

recognize("Woof")
Insert another copy of the

interaction shown above here

println("Fido's back inside...")

© Kenneth M. Anderson, 2011

Coming Up Next

Lecture 4: More OO Fundamentals

Homework 1 due Thursday night by 11:59 PM

Lecture 5: Example problem domain and traditional OO
solution

Read Chapters 3 and 4 of the Textbook

Homework 2 assigned on Thursday

48

