
© Kenneth M. Anderson, 2011

THE OBJECT-ORIENTED
PARADIGM

CSCI 4448/5448: OBJECT-ORIENTED ANALYSIS & DESIGN

LECTURE 2 — 08/25/2011

1Happy Birthday to me!

© Kenneth M. Anderson, 2011

Praise for Last Spring’s Class

2

© Kenneth M. Anderson, 2011

Lecture Goals
Introduce the object-oriented paradigm

Contrast it with functional decomposition

Discuss important concepts of object-oriented programming

Discuss the difference between abstraction and encapsulation

This is VERY important

Address the problem of requirements and the need to deal with change

3

© Kenneth M. Anderson, 2011

Design Methods
Ways of solving problems

Structured Design/Programming (a.k.a. functional decomposition)

“Think in terms of steps”

Functional Programming (a.k.a. declarative programming)

“Think in terms of functions and their composition”

Object-Oriented Design/Programming

“Think in terms of objects that do things”

4

© Kenneth M. Anderson, 2011

Simple Problem: Display Shapes
Functional decomposition: break problem into small steps

Connect to database

Locate and retrieve shapes

Sort the shapes (perhaps by z-order ; draw background shapes first)

Loop through list and display each shape

Identify shape (circle, triangle, square?)

Get location of shape

Call function to display the shape at the given location

5

© Kenneth M. Anderson, 2011

Functional Decomposition
Decompose big problems into the functional steps required to solve it

For a very big problem, simply break it down to smaller problems

then decompose smaller problems into functional steps

Goal is to slice the problems up until they are at a level of granularity
that is easy to solve in a couple of steps

Then arrange the steps into an order that solves all of the identified
subproblems and, presto, the big problem is solved along the way

Extremely natural approach to problem solving; we do this almost
without thinking about it

6

© Kenneth M. Anderson, 2011

Functional Decomposition: Problems
There are two main problems with this approach to design

It creates designs centered around a “main program”

This program is in control and knows all of the details about
what needs to be done and all of the details about the program’s
data structures

It creates designs that do not respond well to change requests

These programs are not well modularized and so a change
request often requires modification of the main program; a
minor change in a data structure, for example, might cause
impacts throughout the entire main program

7

© Kenneth M. Anderson, 2011

With respect to change…
A process-based approach to solving problems does not lead to
program structures that can gracefully react to change

And change in software development often involves a variation on
an existing theme

display new types of shapes

change the way shapes are rendered

add new functionality to the program such as being able to move
the shapes after they have been displayed

In “main programs,” these types of changes typically cause complexity
to increase and require that lots of files have to be recompiled

8

© Kenneth M. Anderson, 2011

Why do these problems exist?
These problems occur with the functional decomposition approach
because the resulting software exhibits

poor use of abstraction

poor encapsulation (a.k.a. information hiding)

poor modularity

If you have poor abstractions and you want to add another one, it’s
often not clear how to do it (easily)

If you have poor encapsulation and poor modularity, changes tend to
percolate through the code since nothing shields dependencies from
forming throughout the code

9

© Kenneth M. Anderson, 2011

Why should we care?
As the book says

“Many bugs originate with changes to the code”

and

“Things change. They always do. And nothing you can do will stop
change [from occurring to your software system].”

We need to ensure that we do not get overcome by change requests;
that we create designs that are resilient to change;

Indeed, we want software designs that are “designed” to accommodate
change in a straightforward manner ; that is what OO A&D provides!

10

© Kenneth M. Anderson, 2011

Start of a Journey (I)
What is the difference between abstraction and
encapsulation?

Any takers?

How would you interpret the following statements if you heard them in
casual (admittedly nerdy) conversation?

“That sound processing package offers a great set of abstractions!”

“Wow, that Employee class is horrible! There is no encapsulation!”

11

© Kenneth M. Anderson, 2011

Start of a Journey (II)
Identify which concept applies to the following statements

“I wonder if Java’s Map class will do what I need?”

“I wonder if I can prevent users of my library from finding out that
MyClass.id is implemented as a floating point number?”

“I like how I can decide at run time whether my List variable will
point at an instance of LinkedList or ArrayList! I mean List’s API is fine
but it’s nice to know that I have the flexibility of picking the more
efficient implementation when my list size is small”

I’m going to drill the definitions of these two terms and the difference
between them into your head this semester! Why are these concepts so
important?

12

© Kenneth M. Anderson, 2011

Analysis
Analysis is the phase of software development that occurs

before design when starting from scratch

that occurs first when responding to a change request during the
maintenance of an existing system

Its primary goal is to answer the following question

What is the problem that needs to be solved?

Design is the phase that comes after analysis and its goal is:

How am I going to solve the problem?

13

© Kenneth M. Anderson, 2011

Requirements
Requirements for a software system are initially generated during the
analysis phase of software development and are, typically:

simple statements of desired functional capabilities

“the system should allow its users to sort records by priority”

statements of non-functional capabilities

“the system should support 10,000 simultaneous users”

statements of constraints that must be met

“the system will comply with regulation XYZ at all times”

14

© Kenneth M. Anderson, 2011

The Problem of Requirements (I)
The problem? Experienced developers will tell you that

Requirements are incomplete and do not tell the whole story

Requirements are typically wrong

factually wrong or become obsolete

Requirements and users are misleading

In addition, users may be non-technical and may not understand the
range of options that could solve their problem

their ill informed suggestions may artificially constrain the space of
solutions

15

© Kenneth M. Anderson, 2011

The Problem of Requirements (II)
The other problem with requirements is

“requirements always change”

They change because

a user’s needs change over time

as they learn more about a new problem domain, a developer’s
ability to generate better solutions to the original problem (or the
current problem if it has evolved) will increase

the system’s environment changes

new hardware, new external pressures, new techniques

16

© Kenneth M. Anderson, 2011

The Problem of Requirements (III)
Most developers view changing requirements as a bad thing

and few design their systems to be resilient in the face of change

Luckily, this view is changing

agile software methods tell developers to welcome change

they recommend a set of techniques, technologies and practices
for developers to follow to remove the fear of change

OO analysis, design and programming techniques provide you with
powerful tools to handle change to software systems in a
straightforward manner

17

© Kenneth M. Anderson, 2011

The Problem of Requirements (IV)
However, this does not mean that we stop writing requirements

They are incredibly useful despite these problems

The lesson here is that we need to improve the way we design our
systems and write our code such that change can be managed

Agile methods make use of “user stories”; other life cycle methods make
use of requirements documents or use cases (dressed-up scenarios that
describe desired functional characteristics of the system)

Once we have these things, and the understanding of the problem
domain that they convey, we then have to design our system to
address them while leaving room for them to change

18

© Kenneth M. Anderson, 2011

The Problem with Functional
Decomposition

The book highlights a problem with code developed with functional
decomposition

such code has weak cohesion and tight coupling

translation: “it does too many things and has too many
dependencies”

Example

void process_records(records: record_list) {

// sort records, update values in records, print records, archive
records and log each operation as it is performed …

19

© Kenneth M. Anderson, 2011

Cohesion
Cohesion refers to “how closely the operations in a routine are related”

A simplification is to say “we want this method to do just one thing” or
“we want this module to deal with just one thing”

We want our code to exhibit strong cohesion (a.k.a. highly cohesive)

methods: the method performs one operation

classes: the class achieves a fine-grain design or implementation goal

packages: the package achieves a medium-grain design goal

subsystems: this subsystem achieves a coarse-grain design goal

system: the system achieves all design goals and meets its requirements

20

Code Complete by Steve McConnell; Microsoft
Press, 1993

© Kenneth M. Anderson, 2011

Coupling
Coupling refers to “the strength of a connection between two routines”

It is a complement to cohesion

weak cohesion implies strong coupling

strong cohesion implies loose coupling

With strong or tight coupling, a single change in one method or data
structure will cause ripple effects, that is, additional changes in other
parts of the system

We want systems with parts that are highly cohesive and loosely
coupled

21

Code Complete by Steve McConnell; Microsoft
Press, 1993

© Kenneth M. Anderson, 2011

Ripple Effects
Ripple effects cause us to spend a long time doing debugging and
system understanding tasks

We make a change and unexpectedly something breaks

This is called an unwanted side effect

If we have tightly coupled code we discover that many parts of the
system depended on the code that changed

It takes time to discover and understand those relationships

Once understanding is achieved, it often takes very little time to actually
fix the bug

22

© Kenneth M. Anderson, 2011

Transitioning to the OO Paradigm
Rather than having a main program do everything

populate your system with objects that can do things for themselves

Scenario: You are an instructor at a conference. Your session is over and
now conference attendees need to go to their next session

With functional decomposition, you would develop a program to
solve this problem that would have you the instructor do everything

get the roster, loop through each attendee, look up their next
session, find its location, generate a route, and, finally, tell the
attendee how to get to their next class

You would do everything, attendees would do (almost) nothing

23

© Kenneth M. Anderson, 2011

Transitioning to the OO Paradigm
The book asks

Would you do this in real life?

And the answer is (hopefully) NO!

What would you do instead?

You would assume that everyone has a conference program, knows
where they need to be next and will get their on their own

All you would do is end the session and head off to your next activity

At worst, you would have a list of the next sessions at the front of
the class and you would tell everyone “use this info to locate your
next session”

24

© Kenneth M. Anderson, 2011

Compare / Contrast
In the first scenario,

you know everything, you are responsible for everything, if
something changes you would be responsible for handling it

you give very explicit instructions to each entity in the system

In the second scenario,

you expect the other entities to be self sufficient

you give very general instructions and

you expect the other entities to know how to apply those general
instructions to their specific situation

25

© Kenneth M. Anderson, 2011

Benefits of the second scenario
The biggest benefit is that entities of the system have their own responsibilities

indeed this approach represents a shift of responsibility away from
a central control program to the entities themselves

Suppose we had attendees and student volunteers in our session and that
volunteers needed to do something special in between sessions

First approach: the session leader needs to know about the special case
and remember to tell volunteers to do it before going to the next session

Second approach: the session leader tells each person “Go to your next
session”; volunteers will then automatically handle the special case without
the session leader needing to know anything about it

We can add new types of attendees without impacting the leader

26

© Kenneth M. Anderson, 2011

As an aside...
OO main programs tend to be short

On the order of create an object and send a message to it

See next slide…

27

© Kenneth M. Anderson, 2011 28

import wx1
2

from ACE.GUI.Managers.RepositoryManager import RepositoryManager3
4

class ACEApp(wx.App):5
6

 def OnInit(self):7
 8
 bmp = wx.Image("images/ace_logo.png").ConvertToBitmap()9
 wx.SplashScreen(bmp, wx.SPLASH_CENTRE_ON_SCREEN | wx.SPLASH_TIMEOUT, 500, None, -1)10
 wx.SafeYield(None,True)11
 self.repoman = RepositoryManager()12
 return self.repoman.HandleAppStart(self)13
 14
 def OnExit(self):15
 self.repoman.HandleAppQuit()16

17
if __name__ == '__main__':18
 app = ACEApp(redirect=False)19
 app.MainLoop()20

21

© Kenneth M. Anderson, 2011

iOS Main Program
Here’s the main program of every iOS application in existence

29

Page 1 of 1

main.m 8/25/11 8:38 AM

#import <UIKit/UIKit.h>

int main(int argc, char *argv[]) {
 NSAutoreleasePool *pool = [[NSAutoreleasePool alloc] init];
 int retVal = UIApplicationMain(argc, argv, nil, nil);
 [pool release];
 return retVal;
}

© Kenneth M. Anderson, 2011

Android Main Program
The main program of an Android app is even shorter in that it is
completely hidden from the Android developer

Instead, in the application manifest, you specify your initial activity

and when your application launches, your activity’s onCreate()
method is automatically called

30

© Kenneth M. Anderson, 2011

Revisiting the Shape system
Recall our “display shapes” program from earlier in the lecture

How would you rearrange it to follow this new approach?

31

© Kenneth M. Anderson, 2011

Foreshadowing
The benefits we’ve been discussing are inherent in the OO approach to
analysis, design and implementation that will be learning this entire semester

self-sufficient entities ➡ objects

“give general instructions to” ➡ code to an interface

“expect entities to apply those general instructions to their specific
situation” ➡ polymorphism and subclasses

“add new attendees without impacting session leader” ➡ code to an
interface, polymorphism, subclasses

shift of responsibility ➡ functionality distributed across network of
objects

32

© Kenneth M. Anderson, 2011

Perspectives in Software Development
(UML Distilled, Martin, Fowler, Addison-Wesley,1999)

Conceptual — What are the main concepts of the problem domain and
what are each of those concepts responsible for? “A conceptual model
should be drawn with little or no regard for the software that might
implement it.”

Specification — What are the interfaces of the objects (derived from
the concepts above) in the system. How are these objects used?

Implementation — How do the objects fulfill their responsibilities?

“Go to your next class” : a conceptual instruction that shields the
requestor from how this command is actually carried out
(implementation). The fact that we know that objects can respond to
this command comes from the specification level.

33

© Kenneth M. Anderson, 2011

The Object-Oriented Paradigm
OO Analysis & Design is centered around the concept of an object

It produces systems that are networks of objects collaborating to
fulfill the responsibilities (requirements) of the system

Objects are conceptual units that combine both data and behavior

The data of an object is referred to by many names

attributes, properties, instance variables, etc.

The behavior of an object is defined by its set of methods

Objects inherently know what type they are. Its attributes allows it to
keep track of its state. Its methods allow it to function properly.

34

a.k.a. features

Return to Slide 34

© Kenneth M. Anderson, 2011

Object Responsibilities
In OO Analysis and Design, it is best to think of an object as “something
with responsibilities”

As you perform analysis (What’s the problem?), you discover
responsibilities that the system must fulfill

You will eventually find “homes” for these responsibilities in the
objects you design for the system; indeed this process can help
you “discover” objects needed for the system

The problem domain will also provide many candidate objects
to include in the system

This is an example of moving from the conceptual perspective
to the specification and implementation perspectives

35

© Kenneth M. Anderson, 2011

Objects
Conceptual — a set of responsibilities

Specification — a set of methods

Implementation — a set of code and data

Unfortunately, OO A&D is often taught only at the implementation level

if previously you have used OO programming languages without
doing analysis and design up front, then you’ve been operating only
at the implementation level

as you will see, there are great benefits from starting with the
other levels first

36

© Kenneth M. Anderson, 2011

Objects as Instances of a Class
If you have two Student objects, they each have their own data

e.g. Student A has a different set of values for its attributes than Student B

But they both have the same set of methods

This is true because methods are associated with a class that acts as a
blueprint for creating new objects

We say “Objects are instances of a class”

Classes define the complete behavior of their associated objects

what data elements and methods they have and how these features are
accessed (whether they are public or private)

37

© Kenneth M. Anderson, 2011

Classes (I)
The most important thing about a class is that it defines a type with a
legal set of values

Consider these four types

Complex Numbers ➡ Real Numbers ➡ Integers ➡ Natural
Numbers

Complex numbers is a class that includes all numbers; real numbers are
a subtype of complex numbers and integers are a subtype of reals, etc.

in each case, moving to a subtype reduces the set of legal values

The same thing is true for classes; A class defines a type and subclasses
can be defined that excludes some of the values from the superclass

38

© Kenneth M. Anderson, 2011

Classes (II)
Classes can exhibit inheritance relationships

Behaviors and data associated with a superclass are passed down to
instances of a subclass

The subclass can add new behaviors and new data that are specific to
it; it can also alter behaviors that are inherited from the superclass to
take into account its own specific situation

It is extremely desirable that any property that is true of a superclass is
true of a subclass; the reverse is not true: it is okay for properties that are
true of a subclass not to be true of values in the superclass

For instance, the property isPositive() is true for all natural numbers
but is certainly not true of all integers

39

© Kenneth M. Anderson, 2011

Classes (III)
Inheritance relationships are known as is-a relationships

Undergraduate IS-A Student

This phrase is meant to reinforce the concept that the subclass
represents a more refined, more specific version of the superclass

If need be, as we shall see, we can treat the subclass as if it IS the
superclass. It has all the same attributes and all the same methods as the
superclass and so code that was built to process the superclass can
equally apply to the subclass

40

© Kenneth M. Anderson, 2011

Classes (IV)
Classes can control the accessibility of the features (see Slide 27) of their objects

Assume object A is an instance of class X; object B is an instance of class Y which is a
subclass of X; object C is an instance of class Z which is unrelated to X and Y.

Public visibility of a feature of class X means that A, B and C can access that feature

Protected visibility of a feature of class X means that A and B can access the
feature but C cannot.

Private visibility of a feature of class X means that only A can access the feature

This ability to hide features of a class/module is referred to as encapsulation or
information hiding; encapsulation is a topic that is broader than just data hiding

41

© Kenneth M. Anderson, 2011

Classes (V)
Classes can control how their objects are created and destroyed

OO Programming languages will (typically) provide “special methods”
known as constructors and destructors (a.k.a. finalizers) to
handle these two phases in an object’s life cycle

Constructors are useful for ensuring that an object is properly
initialized before any other object makes use of it

Destructors are useful for ensuring that an object has released all of
the resources it consumed while it was active

Destructors can be tricky; in languages with garbage collection, an
inactive object might hang around for a significant amount of time
before the garbage collector gets around to reclaiming its space

42

© Kenneth M. Anderson, 2011

One benefit of superclasses
Treat all instances of a superclass-subclass hierarchy as if they were all
instances of the superclass even if some are instances of subclasses

Example

Suppose we have the classes, Undergraduate, MastersStudent and
PhDStudent in a software system

We may have a need for acting on all instances of these three classes
at once, for instance, storing them all in a collection, sorting by last
name and displaying a roster of the entire university

Solution: Make all three of these classes a subclass of the
class Student; You can then add all of the students to a single
collection and treat them all the same

43

© Kenneth M. Anderson, 2011

Example rendered in UML

44

Student

Undergraduate MastersStudent PhDStudent

List *

Note: UML Notation will be discussed in Lecture 3

© Kenneth M. Anderson, 2011

Another benefit of superclasses
Not only can you group all instances of an object hierarchy into a single
collection, but you can apply the same operations to all of them as well

In our example, any method defined in the superclass, Student, can
be applied to all instances contained in our collection (the List of
Students)

On the following slide:

Student has a method called saySomething() which is overridden
by each subclass to say something different

Yet look how clean the code is…

45

© Kenneth M. Anderson, 2011 46

import java.util.LinkedList;1
import java.util.List;2

3
public class Test {4

5
 public static void main(String[] args) {6

7
 List<Student> students = new LinkedList<Student>();8

9
 students.add(new Undergraduate("Bilbo Baggins"));10
 students.add(new MastersStudent("Aargorn"));11
 students.add(new PhDStudent("Gandalf the White"));12

13
 for (Student s: students) {14
 System.out.println("" + s);15
 }16

17
 System.out.println();18

19
 for (Student s: students) {20
 s.saySomething();21
 }22

23
 }24

25
}26

27

© Kenneth M. Anderson, 2011 47

The True Power : Clean Code!
The most powerful code in the previous example was

Why?

You can add as many subclasses to the Student hierarchy as you want and
this code never has to change!

It doesn’t even have to be recompiled

Indeed, given the right techniques, a server running this code doesn’t even
need to be “brought down”; the new subclass can be dynamically loaded
and this code will recognize instances of that subclass and do the right thing

for (Student s: students) {
 s.saySomething();
}

© Kenneth M. Anderson, 2011

Polymorphism (I)
The previous example demonstrated polymorphism

which literally means “many forms”

in OO A&D it means that we can treat objects as if they were
instances of an abstract class but get the behavior that is required for
their specific subclass

The “many forms” refers to the many different behaviors we get
as we operate on a collection of objects that are instances of
subclasses of a generic, abstract class

We will see many examples of polymorphism as we move forward in the
semester and you will get a chance to try it out for yourself in
Homework 1

48

© Kenneth M. Anderson, 2011

Polymorphism (II)
In the book, polymorphism is defined specifically as

“Being able to refer to different derivations of a class
in the same way, but getting the behavior appropriate
to the derived class being referred to”

As you can see, it is not an easy thing to define! But, it is very powerful
and the “clean code” example should show why we as designers should
strive to design OO hierarchies that allow us to write polymorphic
code

There are other variations on polymorphism to learn, we will get to
those in future lectures

49

© Kenneth M. Anderson, 2011

Abstract Classes
The classes that sit at the top of an object hierarchy are typically abstract
classes while the classes that sit near the bottom of the hierarchy are called
concrete classes

Abstract classes

define a set of generic behaviors for a related set of subclasses;

act as placeholders for other classes defining method signatures that they
must implement, defining method bodies for behaviors that should be the
same across all subclasses, defining data that will be useful for all subclasses

In OO programming languages, abstract classes cannot be instantiated

instead you instantiate concrete classes but access them via the interface
defined by the abstract class

50

© Kenneth M. Anderson, 2011

Summary
In this lecture, we have touched on a variety of OO concepts

Functional Decomposition vs. the OO Paradigm

Requirements and Change in Software Development

Objects, Classes (Abstract and Concrete)

Polymorphism and Encapsulation

51

© Kenneth M. Anderson, 2011

Coming Up Next
Homework 1: To be assigned today

Lecture 3: UML

Read Chapter 2 of the Textbook

Lecture 4: More review of fundamental OO A&D concepts

52

