est-

Driven

Development

Kenneth M. Anderson
University of Colorado, Boulder
CSCl 4448/5448 — Lecture 29 — 12/08/09

© University of Colorado, 2009

Credit where Credit Is Due

e Some of the material for this lecture is taken from “Test-Driven Development”
by Kent Beck

e as such some of this material is copyright © Addison Wesley, 2003

¢ In addition, some material for this lecture is taken from “Agile Software
Development: Principles, Patterns, and Practices” by Robert C. Martin

¢ as such some materials is copyright © Pearson Education, Inc., 2003

e Finally, one of the examples is inspired by the Roman Numerals example that
is featured in Dive into Python 3 <http://diveintopython3.org/> by Mark
Pilgrim. The slides devoted to that example are thus distributed using the
following license: <http://creativecommons.org/licenses/by-sa/3.0/>.

http://diveintopython3.org
http://diveintopython3.org
http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/3.0/

Goals for this lecture

¢ Introduce the concept of Test-Driven Development (TDD)

e Present several examples

Test-Driven Development

®* The idea is simple
e No production code is written except to make a failing test pass
e Implication

® You have to write test cases before you write code

e Note: use of the word “production”

e which refers to code that is going to be deployed to and used by real users

¢ |t does not say: “No code is written except...”

Writing Test Cases First

e This means that when you first write a test case, you may be testing code
that does not exist

¢ And since that means the test case will not compile, obviously the test
case “fails”

e After you write the skeleton code for the objects referenced in the test
case, it will now compile, but also may not pass

® S0, then you write the simplest code that will make the test case pass

—xample (l)

e Consider writing a program to score the game of bowling
e You might start with the following test
public class TestGame extends TestCase {
public void testOneThrow() {
Game g = new Game();
g.addThrow(5);
assertEquals (5, g.getScore());

}

e \When you compile this program, the test “fails” because the Game class
does not yet exist. But:

® You have defined two methods on the class that you want to use
e You are designing this class from a client’s perspective

—xample (I1)

¢ You would now write the Game class
public class Game {

public void addThrow(int pins) {

}
public int getScore() {

return 0;

}

e The code now compiles but the test will still fail: getScore() returns 0 not 5
* In Test-Driven Design, Beck recommends taking small, simple steps

e S0, we get the test case to compile before we get it to pass

—xample (ll)

e Once we confirm that the test still fails, we would then write the simplest code
to make the test case pass; that would be

public class Game {
public void addThrow(int pins) {

}

public int getScore() {

return 5;

}

® The test case now passes!

=xample (V)

e But, this code is not very useful!

¢ | ets add a new test case to enable progress
public class TestGame extends TestCase {
public void testOneThrow() {
Game g = new Game();
g.addThrow(5);
assertEquals (5, g.getScore());

}
public void testTwoThrows() ({

Game g = new Game()
g.addThrow(5)

g.addThrow(4)

assertEquals (9, g.getScore());

}
e The first test passes, but the second case fails (since 9 # 5)

e This code is written using JUnit; it uses reflection to invoke tests
automatically

—xample (V)

e \We have duplication of information between the first test and the Game class
¢ |n particular, the number 5 appears in both places

e This duplication occurred because we were writing the simplest code to
make the test pass

e Now, in the presence of the second test case, this duplication does more
harm than good

e S0, we must now refactor the code to remove this duplication

10

=xample (V)

public class Game {
private int score = 0;
public void addThrow(int pins) {
score += pins;
}
public int getScore() {

return score;

Both tests now pass. Progress!

11

—xample (V)

e But now, to make additional progress, we add another test case to the
TestGame class

public void testSimpleSpare() {
Game g = new Game()
g.addThrow(3); g.addThrow(7); g.addThrow(3);
assertEquals (13, g.scoreForFrame(l));

assertEquals (16, g.getScore());

e \We’re back to the code not compiling due to scoreForFramel()

e \We’ll need to add a method body for this method and give it the simplest
implementation that will make all three of our tests cases pass

12

TDD Life Cycle

* The life cycle of test-driven development is
e Quickly add a test
* Run all tests and see the new one falil
* Make a simple change
¢ Run all tests and see them all pass
e Refactor to remove duplication
e This cycle is followed until you have met your goal;

e note that this cycle simply adds testing to the “add functionality; refactor”
loop covered in the our two lectures on refactoring

TDD Lite Cycle, continued

e Kent Beck likes to perform TDD using Jum
a testing framework, such as JUnit. | est ciass name:

ory jfree junit.JCommonTestSul ¥ | | .. Run
® Wlthln SUCh frameWOrkS lv| Reload classes every run
. .. _ S Ju
e failing tests are indicated with a Runs: 1251125 X Errors: 0 % Failures: 0
“red bar” Results:
e passing tests are shown with a |
“green bar” =

e As such, the TDD life cycle is
sometimes described as

* “red bar/green bar/refactor”

IFinished: 8.086 seconds | Exit

14

Junit; Red Bar...

¢ \When a test fails:

JUnit

e You see a red bar Testelass name: _

FileTester ‘Run:

................

[¢] Reload classes every run
I v
e Clicking on a failure displays more | Runs: 1 Errors: 0 Failures: 1

' ' i d Failures:
deta”ed |nformat|0n abOUt What Errors and Failures:
went wrong

e Failures/Errors are listed

Failure: testGetName(FileTester).expected:<...> but was:<c:\xxx\yyy\...

Run

L¢] | [»]

junitframework.ComparisonFailure: expected:<...> butwas:<c\xxx\| &
at _Jv_CallAnyMethodA(java.lang.Object, java.lang.Class, _Jv_N
at_Jv_CallAnyMethodA(java.lang.Object, java.lang.Class, _Jv_N
at _Jv_ThreadRun(java.lang.Thread) (local/gcc-clean/lib/libgcj.s
at GC_start_routine (/local/gcc-clean/lib/libgcj.s0.6.0.0)

L¢] | [2]

Finished: 0.054 seconds Exit

15

—Xample Background:
Multi-Currency Money

¢ | ets design a system that will allow us to perform financial transactions with
money that may be in different currencies

e c.g. if we know that the exchange rate from Swiss Francs to U.S. Dollars is
2 to 1 then we can calculate expressions like

e 5USD + 10 CHF = 10 USD
® Or

e 5USD + 10 CHF = 20 CHF

16

Starting From Scratch

¢ | ets start developing such an example
e How do we start?
e TDD recommends writing a list of things we want to test
e This list can take any format, just keep it simple
e Example
e $5 + 10 CHF = $10 if rate is 2:1
e $5*2 =$10

17

First Test

® The first test case looks a bit complex, lets start with the second
e 5USD*2=10USD
e First, we write a test case
public void testMultiplication() {
Dollar five = new Dollar(5);
five.times(2);

assertEquals (10, five.amount)

18

Discussion on Test Case

public void testMultiplication() {

Dollar five = new Dollar(5);
five.times(2);
assertEquals (10, five.amount)

}

¢ \What benefits does this provide?
e target class plus some of its interface

e Wwe are designing the interface of the Dollar class by thinking about how
we would want to use it

¢ \We have made a testable assertion about the state of that class after we
perform a particular sequence of operations

What’s Next?

* \We need to update our test list

* The test case revealed some things about Dollar that we will want to
address

e \We are representing the amount as an integer, which will make it
difficult to represent values like 1.5 USD; how will we handle rounding
of factional amounts?

e Dollar.amount is public; violates encapsulation

e What about side effects?; we first declared our variable as “five” but
after we performed the multiplication it now equals “ten”

20

Update lTesting List

* The New List
e 5USD + 10 CHF =10 USD
e $5*2 =$10
e make “amount” private
e Dollar side-effects?
e Money rounding?
e Now, we need to fix the compile errors

e no class Dollar, no constructor, no method: times(), no field: amount

21

First version of Dollar Class

public class Dollar {

public Dollar(int amount) {

}

public void times(int multiplier) {

}

public int amount;

}

e Now our test compiles and fails!

22

Too Slow?

e Note: we did the simplest thing to make the test compile;

®* Now, we are going to do the simplest thing to make the test pass

e |s this process too slow?

e YES, as you get familiar with the TDD life cycle you will gain confidence
and make bigger steps

* NO, taking small simple steps avoids mistakes;

e beginning programmers try to code too much before invoking the
compiler;

e they then spend the rest of their time debugging!

23

How do we make the test pass”

® Here’s one way

public void times(int multiplier) {
amount = 5 * 2;

}

* The test now passes, we received a “green bar”!

e Now, we need to “refactor to remove duplication”
e But where is the duplication?

e Hint: its between the Dollar class and the test case

24

Refactoring

e To remove the duplication of the test data and the hard-wired code of the
times method, we think the following

e “We are trying to get a 10 at the end of our test case and we’ve been given a
5 in the constructor and a 2 was passed as a parameter to the times method”

e SO, lets connect the dots...

25

First version of Dollar Class

public class Dollar {
public Dollar(int amount) {
this.amount = amount;
}
public void times(int multiplier) {
amount = amount * multiplier;

}

public int amount;

}
e Now our test compiles and passes, and we didn’t have to cheat!

26

One loop complete!

e Before writing the next test case, we update our testing list

« 5USD + 10 CHF =10 USD

o * =
e make “amount” private
¢ Dollar side-effects?

e Money rounding?

27

One more example

¢ | ets address the “Dollar Side-Effects” item and then move on to another
example

¢ | ets write the next test case

e \When we called the times operation our variable “five” was pointing at an
object whose amount equaled “ten”; not good

¢ the times operation had a side effect which was to change the value of
a previously created “value object”

e Think about it, as much as you might like to, you can’t change a 5 dollar
bill into a 500 dollar bill; the 5 dollar bill remains the same throughout
multiple financial transactions

28

Next test case

* The behavior we want is
public void testMultiplication() {
Dollar five = new Dollar(5);
Dollar product = five.times(2);
assertEquals (10, product.amount);
product = five.times(3);
assertEquals (15, product.amount);

assertEquals (5, five.amount);

29

Test falls

* The test fails because it won’t compile;

¢ \We need to change the signature of the times method; previously it returned
void and now it needs to return Dollar

public Dollar times(int multiplier) {
amount = amount * multiplier;

return null;

}

* The test compiles but still fails; as Kent Beck likes to say “Progress!”

30

Test Passes

¢ To make the test pass, we need to return a new Dollar object whose amount
equals the result of the multiplication

public Dollar times(int multiplier) {

return new Dollar (amount * multiplier);

}

¢ Test Passes;

e Cross “Dollar Side Effects?” off the testing list; second loop complete!

e There was no need to refactor in this situation

31

Discussion of the Example

e There is still a long way to go
e only scratched the surface
e But
e we saw the life cycle performed twice
e Wwe saw the advantage of writing tests first

e we saw the advantage of keeping things simple

e we saw the advantage of keeping a testing list to keep track of our
progress

* Plus, as we write new code, we will know if we are breaking things because
our old test cases will fail if we do;

e if the old tests stay green, we can proceed with confidence

32

Roman Numerals (l)

¢ | et’s develop a class that can manipulate roman numerals
¢ Roman numerals can express integers from 1 to 3999

* They do this using the following set of symbols that map to the following
values

e|=1,V=5,X=10,L=50,C =100, D =500, M= 1000
* There are rules concerning how these characters can be combined
e For instance, the 10s characters (X,C,M) can be repeated up to three times
e The 5s characters (V, L, D) cannot be repeated
e Character sequences can be additive (lll = 3) or subtractive (IX = 9)

e Can be complex 99 is written as XCIX (100-10 + 10-1)

33

Roman Numerals (ll)

¢ \\e start by developing a testing list
e able to convert legal roman numerals to integers
e able to convert integers in the range 1 to 3999 into roman numerals
e able to add two roman numerals, checking for boundary conditions
e able to subtract two roman numerals, checking for boundary conditions

¢ \We will not complete the example but we’ll make progress on a few of these

34

Test Case: Create a Roman Numeral, Get Its Value

e | et’s use Python’s Unit Test framework

e \We write the test case as if all the code we need is available

import roman
import unittest

class TestRomanNumerals(unittest.TestCase):

def testCreateAndGetValue(self):
thousand = roman.RomanNumeral (' 'M")
self.assertEqual (thousand.value(), 1000)

0O Jo Ol WD B

O

1f name == " main ":
unittest.main()

e
N = O

35

Several Failures on the Path to Green

e module import fail: no file named roman.py = create one

* no class called RomanNumeral create one

e Wwrong number of arguments for constructor = add self and value arguments

e no method called value() = create a “blank” one

¢ test now runs and reports failure!! = write simplest code to make it work

¢ test passes but contains duplication = add another test case to make it fail
e end of step 2, onto step 3 directory

e original test passes, but new test fails = write simplest code to make it work

® note, because of the tests, this is no longer trivial code to write

36

Making

Progress;

Sut Long way to go

e \We now have a class that can successfully handle Roman Numerals that
consist only of “M” characters

e And, we haven'’t fully completed any of the items on our test list

e \\e have lots of different directions we could go in

e Add tests to check that we handle bad input

e Add tests to add support for other roman numeral characters

e Add tests to add basic support for addition or subtraction

® ctC.

¢ | et’s focus on bad input to see the test-code-refactor loop one more time

37

Test Case: Handle Bad Input

¢ | et’s add test cases that handle
e Wwrong input types (being handed a number or array rather than a string)
e wrong values (producing a value that is outside the legal set of values)

e Then, we’ll add a test case that can handle basic addition

38

Several Failures on the Path to Green (Again)

¢ add test case to handle non-string args to the constructor
e Here we want to give it bad input and see if it raises an exception

e All such tests will currently fail since the constructor just accepts
whatever it is given

e Start by passing a number, check to see if it raises an exception = falil
e Add code to check for int = pass; now pass collection = fail

e Make it pass but then erase code written so far and now write code to
raise exception whenever a non-string is passed

e This is the refactor step, as we were adding duplication based on the
types of the parameters passed in between code and test case

e End of step 4; now make sure that we test the contents of the string

e accept “M”, “MM”, and “MMM?” for now, all else should fall

39

Test Case: Handle Addition

e All we'll be able to do is handle 1000 + 1000 and 1000 + 2000
e pbut this will ensure that we’ve got the basics in place
e can handle correct additions
e can flag additions that produce numbers outside the legal range
e Getting to Green
e Add a sum method that follows the “value” pattern seen above
e Generates ValueError if the value goes outside of the legal range
* First a test case to handle an illegal addition
* Then a test case to handle a legal addition
e \We'll encounter familiar steps
e fails because there is no sum method
e fails because it doesn’t throw an exception
* etc.

40

—nd of Example

e Still a long way to go, but you should now have the feel of what test-driven
development is like

e Start with a system that needs a new feature

¢ \Write a test that documents what the expected results of the feature are
e Add simplest code to make test pass

¢ Make test more complicated, or add new test to reveal duplication

e Once duplication is found, refactor to produce general code

e |oop until feature is implemented and all tests pass

41

Principles of TDD

e Testing List
e keep a record of where you want to go;

® Beck keeps two lists, one for his current coding session and one for
“later”; You won’t necessarily finish everything in one go!

e Test First
¢ \Write tests before code, because you probably won’t do it after

e \Writing test cases gets you thinking about the design of your
Implementation;

¢ does this code structure make sense?

e what should the signature of this method be?

42

Principles of TDD, continued

e Assert First
e How do you write a test case?
e By writing its assertions first!

e Suppose you are writing a client/server system and you want to test an
interaction between the server and the client

e Suppose that for each transaction
e some string has to have been read from the server, and

¢ the socket used to talk to the server should be closed after the
transaction

e | ets write the test case

43

Assert First

public void testCompleteTransaction {

assertTrue(reader.isClosed());

assertEquals(“abc”, reply.contents());

}

e Now write the code that will make these asserts possible

44

Assert First, continued

public void testCompleteTransaction {
Server writer = Server(defaultPort(), *“abc”)
Socket reader = Socket(“localhost”, defaultPort());
Buffer reply = reader.contents();
assertTrue(reader.isClosed());
assertEquals(“abc”, reply.contents());

}
e Now you have a test case that can drive development

e if you don’t like the interface above for server and socket, then write a
different test case

e or refactor the test case, after you get the above test to pass

45

Principles of TDD, continued

e Evident Data
e How do you represent the intent of your test data

® Even in test cases, we’d like to avoid magic numbers; consider this rewrite
of our second “times” test case

public void testMultiplication() {
Dollar five = new Dollar(5);
Dollar product = five.times(2);
assertEquals(5 * 2, product.amount);
product = five.times(3);

assertEquals(5 * 3, product.amount);

}
* Replace the “magic numbers” with expressions

46

Summary

e Test-Driven Design is a “mini” software development life cycle that helps to
organize coding sessions and make them more productive

e \Write a failing test case
* Make the simplest change to make it pass
e Refactor to remove duplication

¢ Repeat!

47

Reflections

e Test-Driven Design builds on the practices of Agile Design Methods

e |f you decide to adopt it, not only do you “write code only to make failing
tests pass” but you also get

e an easy way to integrate refactoring into your daily coding practices

e an easy way to introduce “integration testing/building your system
every day” into your work environment

e pbecause you need to run all your tests to make sure that your new
code didn’t break anything; this has the side effect of making
refactoring safe

e courage to try new things, such as unfamiliar design pattern, because
now you have a safety net

48

Ken’s Corner: Testing Frameworks

e JUnit Tutorial: <http://clarkware.com/articles/JUnitPrimer.htmi>

e PyUnit: <http://wiki.python.org/moin/PyUnit>

e Unit testing in Objective-C and Xcode:

e <http://developer.apple.com/mac/articles/tools/
unittestingwithxcoded.htmi>

e Unit testing with C#: <http://www.csunit.org/tutorials/tutorial7/>

e Unit testing for Ruby:

e <http://www.ruby-doc.org/stdlib/libdoc/test/unit/rdoc/classes/Test/
Unit.html>

49

http://clarkware.com/articles/JUnitPrimer.html
http://clarkware.com/articles/JUnitPrimer.html
http://wiki.python.org/moin/PyUnit
http://wiki.python.org/moin/PyUnit
http://developer.apple.com/mac/articles/tools/unittestingwithxcode3.html
http://developer.apple.com/mac/articles/tools/unittestingwithxcode3.html
http://developer.apple.com/mac/articles/tools/unittestingwithxcode3.html
http://developer.apple.com/mac/articles/tools/unittestingwithxcode3.html
http://www.csunit.org/tutorials/tutorial7/
http://www.csunit.org/tutorials/tutorial7/
http://www.ruby-doc.org/stdlib/libdoc/test/unit/rdoc/classes/Test/Unit.html
http://www.ruby-doc.org/stdlib/libdoc/test/unit/rdoc/classes/Test/Unit.html
http://www.ruby-doc.org/stdlib/libdoc/test/unit/rdoc/classes/Test/Unit.html
http://www.ruby-doc.org/stdlib/libdoc/test/unit/rdoc/classes/Test/Unit.html

Coming Up Next

e |_ecture 30: Scala Traits, Ruby mix-ins and Semester Wrap Up

50

