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Goals for this Lecture

• Briefly review concepts behind concurrency in software systems

• See examples of how to make use of concurrency in OO systems

• Look at some of the problems that occur

• Look at one non-OO approach to concurrency that avoids some of the 
problems
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Why worry?

• Concurrency is hard and I’ve only ever needed single-threaded programs

• Why should I care about it?

• Answer: multi-core computers

• Growth rates for chip speed are flattening

• You can no longer say “lets wait a year and our system will run faster!”

• Instead, chips are becoming “wider”

• more cores, wider bus (more data at a time), more memory on chip

• As chip are not getting faster (the same way they used to), a single-threaded, 
single process application is not going to see any significant performance 
gains from new hardware
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New Model

• Instead, the way in which software will see performance gains with new 
hardware is if they are designed to get faster the more processors they have 
available

• This is not easy: the computations that an application performs has to be 
amenable to parallelization (that is, being split up into multiple parts that 
can be computed separately)

• If so, such an application will see noticeable speed improvements as it is put 
on machines with more and more processors.

• Laptops currently have 2-cores, will soon have 4-cores, and for high-end 
machines Intel has an 80-core beast waiting in the wings

• A system written for n-cores could potentially see an 80x speed-up 
when run on such a machine 
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Basics: Multi-thread, Multi-Process, Single Machine
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Basics: Multi-everything
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Applications are Dead! Long Live Applications!
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Due to the ability to have multiple threads, multiple processes, and 
multiple machines work together on a single problem, the notion of 
an application is changing. It used to be that:
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Data/Code
Application == 



Now… we might refer to this as “an application”
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Terminology

• When we execute a program, we create a process

• A sequential program has a single thread of control

• A concurrent program has multiple threads of control

• A single computer can have multiple processes running at once

• If that machine, has a single processor, then the illusion of multiple 
processes running at once is just that: an illusion

• That illusion is maintained by the operating system that coordinates 
access to the single processor among the various processes

• If a machine has more than a single processor, then true parallelism can 
occur: you can have N processes running simultaneously on a machine 
with N processors

12



Another View: Sequential Program
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Another View: Concurrent Program
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The problem with concurrency?
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The potential for interactions… two threads hitting the same method 
at the same time, potentially corrupting a shared data structure
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Output for Non Thread-Safe Singleton Code

• s9 = Singleton@45d068
• s8 = Singleton@45d068
• s3 = Singleton@45d068
• s6 = Singleton@45d068
• s1 = Singleton@45d068
• s0 = Singleton@ab50cd
• s5 = Singleton@45d068
• s4 = Singleton@45d068
• s7 = Singleton@45d068
• s2 = Singleton@45d068

Whoops!

Thread 0 created an instance of the Singleton class at memory location 
ab50cd at the same time that another thread (we don’t know which one) 
created an additional instance of Singleton at memory location 45d068!
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Remember this slide 
from Lecture 22?
(Program on next 
slide)



Program to Test Thread Safety

public class Creator implements Runnable {1

2

    private int id;3

4

    public Creator(int id) {5

        this.id = id;6

    }7

8

    public void run() {9

        try {10

            Thread.sleep(200L);11

        } catch (Exception e) {12

        }13

        Singleton s = Singleton.getInstance();14

        System.out.println("s" + id + " = " + s);15

    }16

17

    public static void main(String[] args) {18

        Thread[] creators = new Thread[10];19

        for (int i = 0; i < 10; i++) {20

            creators[i] = new Thread(new Creator(i));21

        }22

        for (int i = 0; i < 10; i++) {23

            creators[i].start();24

        }25

    }26

27

}28

29

Creates a “runnable” object 
that can be assigned to a 
thread.

When its run, its sleeps for a 
short time, gets an instance of 
the Singleton, and prints out 
its object id.

The main routine, creates ten 
runnable objects, assigns 
them to ten threads and starts 
each of the threads

17

Since we didn’t protect Singleton.getInstance(), this program is 
not safe.
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Concurrency: processes & threads 25
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threads in Java

A Thread class manages a single sequential thread of control.

Threads may be created and deleted dynamically.

Thread

    run()

MyThread

    run()

The Thread class executes instructions from its method

run(). The actual code executed depends on the

implementation provided for run() in a derived class.

class MyThread extends Thread {

public void run() {

//......

}

}

Creating a thread object:

Thread a = new MyThread();
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threads  in Java

Since Java does not permit multiple inheritance, we often

implement the run() method in a class not derived from Thread but

from the interface Runnable.

Runnable

run()

MyRun

run()

public interface Runnable {
public abstract void run();

}

class MyRun implements Runnable{

public void run() {

      //.....
   }

}

Thread
target

Creating a thread object:

Thread b = new Thread(new MyRun());
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thread life-cycle in Java

An overview of the life-cycle of a thread as state transitions:

Created Alive

Terminated

new Thread()

start()

stop(), or

run() returnsstop()

The predicate isAlive() can be

used to test if a thread has been started but

not terminated. Once terminated, it cannot

be restarted (cf. mortals).

start() causes the thread to call its

run() method.
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thread alive states in Java

Once started, an alive thread has a number of substates :

Runnable Non-Runnable
suspend()

resume()

yield()

Running

dispatch

suspend()

start()

stop(), or

run() returns
Also, wait() makes a Thread Non-Runnable,

and notify() makes it Runnable

(used in later chapters).

sleep()

Alive
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4.1  Interference

Garden

West

Turnstile

East

Turnstile

people

People enter an ornamental garden through either of two
turnstiles. Management wants to know how many people
are in the garden at any time.

The concurrent program consists of two concurrent
threads and a shared counter object.

Ornamental garden problem:
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ornamental garden Program - class diagram

The Turnstile thread simulates the periodic arrival of a visitor to

the garden every second by sleeping for a second and then invoking

the increment() method of the counter object.

setvalue()

NumberCanvas

Applet

init()

go()

Garden

Thread

Turnstile

run()

Counter

increment()

displaydisplay

east,west people

eastD,
westD,

counterD
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ornamental garden program

private void go() {
  counter = new Counter(counterD);
  west = new Turnstile(westD,counter);
  east = new Turnstile(eastD,counter);
  west.start();
  east.start();
}

The Counter object and Turnstile threads are created by the

go() method of the Garden applet:

Note that counterD, westD and eastD are objects of

NumberCanvas used in chapter 2.
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Turnstile class

class Turnstile extends Thread {
  NumberCanvas display;
  Counter people;

  Turnstile(NumberCanvas n,Counter c)
    { display = n; people = c; }

  public void run() {
    try{
      display.setvalue(0);
      for (int i=1;i<=Garden.MAX;i++){
        Thread.sleep(500); //0.5 second between arrivals

        display.setvalue(i);
        people.increment();
      }
    } catch (InterruptedException e) {}
  }
}

The run()
method exits

and the thread

terminates after

Garden.MAX
visitors have

entered.
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Counter class

class Counter {
  int value=0;
  NumberCanvas display;

  Counter(NumberCanvas n) {
    display=n;
    display.setvalue(value);
  }

  void increment() {
    int temp = value;   //read value

    Simulate.HWinterrupt();
    value=temp+1;       //write value

    display.setvalue(value);
  }
}

Hardware interrupts can

occur at arbitrary times.

The counter simulates a

hardware interrupt during an

increment(), between

reading and writing to the

shared counter value.

Interrupt randomly calls

Thread.sleep() to force

a thread switch.
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ornamental garden program - display

After the East and West turnstile threads have each
incremented its counter 20 times, the garden people
counter is not the sum of the counts displayed. Counter
increments have been lost.  Why?
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concurrent method activation

Java method activations are not atomic - thread
objects east and west may be executing the code for
the increment method at the same time.

eastwest

increment:

   read value

   write value + 1

program
counter program

counter

PC PC
shared code
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Interference and Mutual Exclusion

Destructive update, caused by the arbitrary
interleaving of read and write actions, is termed
interference.

Interference bugs are extremely difficult to
locate.  The general solution is to give methods
mutually exclusive access to shared objects.
Mutual exclusion can be modeled as atomic
actions.
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4.2  Mutual exclusion in Java

class SynchronizedCounter extends Counter {

  SynchronizedCounter(NumberCanvas n)
     {super(n);}

   synchronized void increment() {
        super.increment();
   }
}

We correct COUNTER class by deriving a class from it and

making the increment method synchronized:

Concurrent activations of a method in Java can be made

mutually exclusive by prefixing the method with the keyword

synchronized, which uses a lock on the object.

acquire
lock

release
lock
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mutual exclusion - the ornamental garden

Java associates a lock with every object. The Java compiler inserts

code to acquire the lock before executing the body of the

synchronized method and code to release the lock before the

method returns. Concurrent threads are blocked until the lock is

released.
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Java synchronized statement

Access to an object may also be made mutually exclusive by using the

synchronized statement:

synchronized (object) { statements }

A less elegant way to correct the example would be to modify the

Turnstile.run() method:

 synchronized(people) {people.increment();}

Why is this “less elegant”?

To ensure mutually exclusive access to an object,

all object methods should be synchronized.



If synchronized is so great, what’s the downside?
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Performance
Lots of synchronized methods can significantly impact a 
program’s performance, as time is spent acquiring and 

releasing locks; if there is no thread contention that time is 
simply wasted.

You only want to incur this penalty when it is likely that 
that multiple threads will stomp on shared data.



Lots of work on making this easier
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• Intense focus on multi-core programming in research settings and industry

• Apple’s Grand Central: <http://www.apple.com/macosx/snowleopard/>

• “New” languages being developed

• Erlang for instance is a functional programming language developed by 
Ericsson to support distributed, fault-tolerant, soft-real-time, non-stop 
applications

• To avoid the problems we’ve seen today, Erlang programs consist of 
processes that communicate by passing messages. There is no 
mutable state (functional programming mainstay), no shared memory, 
as a result no need for locks!

• An Erlang program run on one processor can potentially become n 
times faster if run on n processors

• as long as it has lots of (Erlang) processes, that don’t interact much 
and there are no significant sequential bottlenecks

• Other languages: Go, Scala, Clojure (the latter two build on the JVM)

http://www.apple.com/macosx/snowleopard/
http://www.apple.com/macosx/snowleopard/
http://en.wikipedia.org/wiki/Erlang_(programming_language)
http://en.wikipedia.org/wiki/Erlang_(programming_language)
http://en.wikipedia.org/wiki/Ericsson
http://en.wikipedia.org/wiki/Ericsson
http://en.wikipedia.org/wiki/Fault-tolerance
http://en.wikipedia.org/wiki/Fault-tolerance
http://en.wikipedia.org/wiki/Real-time_computing
http://en.wikipedia.org/wiki/Real-time_computing


Alternative Approaches

• As a result of these concerns, computer scientists have searched for other 
ways to exploit concurrency

• in particular using techniques from functional programming

• Functional programming is an approach to programming language design in 
which functions are

• first class values (with the same status as int or string)

• you can pass functions as arguments, return them from functions and 
store them in variables

• and have no side effects

• they take input and produce output

• this typically means that they operate on immutable values
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Example (I)

• In python, strings are immutable

• a = “Ken @@@”

• b = a.replace(“@”, “!”)

• b

• 'Ken !!!'

• a

• 'Ken @@@'

• Replace is a function that takes an immutable value and produces a new 
immutable value with the desired transformation ; it has no side effects
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Example (II)

• Functions as values (in python)

• def Foo(x, y):

• return x + y

• add = Foo

• add(2, 2)

• 4

• Here, we defined a function, stored it in a variable, and then used the “call 
syntax” with that variable to invoke the function that it pointed at
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Example (III)

• continuing from previous example

• def DoIt(fun, x, y): return fun(x,y)

• DoIt(add, 2, 2)

• 4

• Here, we defined a function that accepts three values, some other function 
and two arguments

• We then invoked that function by passing our add function along with two 
arguments ;

• DoIt() is an example of higher-order functions: functions that take functions 
as parameters

• Higher-order functions is a common idiom in func. prog.
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Relationship to Concurrency?

• How does this relate to concurrency?

• It offers a new model for designing concurrent systems

• Each thread operates on immutable data structures using functions 
with no side effects

• A thread’s data structures are not shared with other threads

• Work is performed by passing messages between threads

• If one thread requires data from another that data is copied and then 
sent

• Such an approach allows each thread to act like a single-threaded program; 
no danger of interference
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Map, Filter, Reduce

• Three common higher order functions are map, filter, reduce

• map(fun, list) -> list

• Applies fun() to each element of list; returns results in new list

• filter(fun, list) -> list

• Applies boolean fun() to each element of list; returns new list containing 
those members of list for which fun() returns True

• reduce(fun, list) -> value

• Returns a value by applying fun() to successive members of list (total = fun
(list[0], list[1]); total = fun(total, list[2]); …)
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Examples

• list = [10, 20, 30, 40, 50]

• def double(x): return 2 * x

• def limit(x): return x > 30

• def add(x,y): return x + y

• map(double, list) returns [20, 40, 60, 80, 100]

• filter(limit, list) returns [40, 50]

• reduce(add, list) returns 150
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Implications

• map is very powerful

• especially when you consider that you can pass a list of functions to it and 
then pass a higher-order function as the function to be applied

• for example

• def DoIt(x): return x()

• map(DoIt, [f(), g(), h(), i(), j(), k()])

• But the real power, with respect to concurrency is that map is simply an 
abstraction that can, in turn, be implemented in a number of ways
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Single Threaded Map

• We could for instance implement map() like this:

• def map(fun, list):

• results = []

• for item in list:

• results.append(fun(item))

• This would implement map in a single threaded fashion
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Multi-threaded Map

• We could also implement map like this (pseudocode):

• def Mapper(Thread):

• def __init__(… fun, list): …

• def run():

• self.results = map(fun, list)

• def xmap(fun, list):

• split list into N parts where N = number of cores

• create N instances of Mapper(fn, list_i)

• wait for each thread to end (in order) and grab results

44

Note: threads can 
complete in any order 
since each computation 
is independent



Super Powerful Map

• We could also implement map like this:

• def supermap(fun, list):

• divide list into N parts where N equals # of machines

• send list_i to machine i which then invokes xmap

• wait for results from each machine

• combine into single list and return

• Given this implementation, you can apply a very complicated function to a 
very large list and have (potentially) thousands of machines leap into action to 
compute the answer
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Google

• Indeed, this is what Google does when you submit a search query:

• def aboveThreshold(x): return x > 0.5 <-- just making this up

• def probabilityDocumentRelatedToSearchTerm(doc): …

• searchResults =

• filter(aboveThreshold,

• map(probabilityDocumentRelatedToSearchTerm,

• [<entire contents of the Internet]))
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Difference between map and xmap?

• The team behind Erlang published results concerning the difference between 
map and xmap

• They make a distinction between

• CPU-bound computations with little message passing vs.

• lightweight computations with lots of message passing

• With the former, xmap provides linear speed-up (10 CPUs provides a 10x 
speed-up, then declining) over map

• the latter less so (10 CPUs provided 4x speed-up)

• Indeed, xmap’s performance in the latter case tends to max out at 4x no 
matter how many CPUs were added
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Linear speed-up: Hard to achieve!

• On my machine a program to double each member of a large list actually runs 
faster in single threaded mode!!

• When using map, you are building just one results list and do not incur any 
overhead with respect to threading

• When using xmap, three lists are being created (one per thread, one to 
collect the results) and

• you incur overhead to

• create each thread

• wait for each one to start running

• wait for each one to join the main thread

48
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Agent Model

• The functional language Erlang is credited with creating an approach to 
concurrency known as the agent model

• A concurrent program consists of a set of agents

• Each agent has its own set of data structures that are not shared with 
other agents

• Agents can perform computations and send messages

• Messages sit in an actor’s mailbox until it is ready to process them; they 
are always processed one at a time

• An actor does not block when sending a message

• An actor is not interrupted when a message arrives
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Examples

• Examples will be presented in Scala

• Scala is a language which nicely combines both the imperative and 
functional programming styles

• It is implemented on top of Java and thus is cross platform

• I won’t spend much time explaining Scala; I’ll just focus on the agent 
model
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Example 1

• import scala.actors._

• object SillyActor extends Actor {

• def act() {

• for (i <- 1 to 5) {

• println(“I’m acting!”)

• Thread.sleep(1000)

• }

• }

• }

• }

• object SeriousActor extends Actor {

• def act() {

• for (i <- 1 to 5) {

• println(“To be or not to 
be”)

• Thread.sleep(1000)

• }

• }

• }



Running Example 1

• SillyActor.start() ; SeriousActor.start()

• Demo

• From this example we can see that Actor is a class that can be sub-
classed (just like Thread in Java)

• You start an actor by calling start()

• At some point, the scheduler calls the actor’s act() method

• The actor will be active until that method returns

• This is just like Thread’s run() method, only the name has changed
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Processing Messages

• To process a message, an actor must call either receive or react

• react is a special case of receive that we’ll discuss below

• You can think of receive as a “switch” statement that specifies the structure 
of the different type of messages it wants to receive

• When an actor calls receive, it looks at the mailbox and attempts to find a 
waiting message that matches one of the branches of the “switch” 
statement

• it processes the first match that it finds

53



Example

• val echoActor = actor {

• while (true) {

• receive {

• case msg =>

• println(“received message: “ + msg)

• }

• }

• }

• This actor loops forever and prints out any message it receives

54

A message is sent with the ! operator:

echoActor ! “hi there”
echoActor ! 25

Demo



Conserve Threads

• When an act() method calls receive(), it tells the scala run-time system that 
this actor needs its own thread

• The actor may be spending its time switching between processing 
messages and performing a long computation

• Since threads in Java are not cheap, scala provides the react keyword to tell 
the runtime that all this thread does is react to messages

• This means it spends most of its time blocked

• Scala uses this information to assign “react actors” to a single thread, 
thus conserving threads in the overall system
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Example

• object NameResolver extends Actor {

• …

• def act() {

• react {

• case (name: String, actor: Actor) =>

• actor ! getIp(name)

• act()

• case “EXIT” =>

• println(“quitting”)

• }

• …

56

Note: no explicit loop; 
that’s because react 
doesn’t return (enables 
sharing of multiple 
actors on a single 
thread)

instead, react must call 
act() if it wants to keep 
waiting for messages



Results

• To test Scala’s claim that react helps conserve threads

• I wrote a program that can create a specified number of NameResolvers 
that either

• use receive or

• use react

• Results: when creating 100 NameResolvers

• using receive: 104 threads created

• using react: 7 threads created (!)
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Returning to the Ornamental Garden

• With the Agent model of concurrency, you can easily avoid interference 
problems

• Here’s an example of the ornamental garden problem

• No need for mutual exclusion: create two agents that act as turnstiles 
and have them send increment messages to a shared counter agent

•
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Wrapping Up

• We have looked at a few alternative models to the “locks and shared data” 
model of concurrency that

• draw on functional programming techniques

• do not allow threads to share data

• allow threads to communicate via asynchronous messages

• Deadlock and Race conditions are still possible in this model but harder to 
achieve

• However, interference is simply not possible in this model

• Functional techniques seem like a promising method for tackling concurrency 
on multi-core hardware
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