
Software Testing Notebook Worksheet #2
Structural Testing

Due: Friday, November 5, 2004

Name:

Lab Time:

Grade: /50

On my honor, as a University of Colorado at Boulder student, I

have neither given nor received unauthorized assistance on this work.

Signature:

jcoverage

This week you will be using a tool called jcoverage to create a structural
test set. A structural test set is complete when it achieves complete coverage of
the program’s control flow graph. jcoverage records coverage information for
test cases executed by ezpay.

To get started, we need to configure your environment. First, you need to
add the following directory to your command path:

~csci3308/ant/bin

. Make sure it appears before the directory /usr/bin.
Second, you need to add the following lines to your .cshrc file:

setenv ANT HOME ~csci3308/ant
if (-d /usr/java/j2sdk1.4.2 06) then

setenv JAVA HOME /usr/java/j2sdk1.4.2 06
else

if (-d /usr/lib/jdk-1.4.2 03) then
setenv JAVA HOME /usr/lib/jdk-1.4.2 03

endif
endif

You also need to create a file called .antrc in your home directory and place
the following line in it:

ANT HOME=/home/nsa/csci3308/ant

1

The above lines of code will allow you to work on worksheet 2 while logged
into a machine in the Whitewater lab or while logged into csel.cs.colorado.edu
via ssh.

Third, logout and login and verify that your new environment reflects these
changes. You should see the two new environment variables and the new di-
rectory in your PATH environment variable. The output of the command
“which javac” should be /usr/bin/javac for any of the Whitewater ma-
chines and should be /usr/lib/jdk-1.4.2 03/bin/javac while logged into
csel.cs.colorado.edu. The output of the command “which java” should pro-
duce similar results.

ezpay source code

Copy ~csci3308/src/ezpay2.tar to your src directory. This tar file is
designed to be unpacked into your existing ezpay directory:

tar xvf ezpay2.tar

Your ezpay directory now contains the following new items:

• A build.xml file

• An ezpay shell script

• A run-tests shell script

• A src directory

• A test/ts02/tc01 directory

Take a look at the src directory and examine the source code for ezpay.
You can also take a look at the run-tests script. This script can serve as a
basis for writing a script to automate your test cases for this week. It is slightly
different from the script shown in worksheet 1, due to a requirement imposed
by the jcoverage tool (explained in more detail below).

IMPORTANT: You can look at the build.xml file and the ezpay script if
you want, but please do not change them.

Building the ezpay program

The build.xml script is designed to make it easy to build the ezpay program
and to make it easy to generate jcoverage reports. To build ezpay, type the
following:

ant

...and that’s it! (If you are curious, ant is a build management system
similar to make. The build.xml file contains all of the instructions needed to
build ezpay and integrate it with the jcoverage tool.) Note that the build
process created a file called jcoverage.ser that keeps track of the lines of code
that have been executed by your test cases. You are now ready to generate
your first jcoverage report. (Hint: since we haven’t run any test cases yet, our
report is not going to have much to show!) Type the following:

2

ant report

This command has created a report directory. You can view the report by
loading report/index.html into a Web browser. In your web browser, go to
the file menu and select the “Open File” menu item and then navigate to the
$HOME/csci3308/src/ezpay/report/index.html file.

Running a Test Case

Now, lets execute a test case and update our report. Type:

./run-tests

You should see a message that tc01 of ts02 passed. Now, type:

ant report

and reload the coverage report in your Web browser. You will see that
this single test case has executed a good chunk of the EZPay program. (Run-
ning the jcoverage-instrumented version of ezpay caused ezpay to update the
jcoverage.ser file with information about which lines of code the test case
executed.)

NOTE: It is important that you invoke ezpay in the directory contain-
ing the jcoverage.ser file. Otherwise, ezpay will not be able to update the
jcoverage.ser file and you will therefore not make progress in trying to achieve
complete coverage of ezpay’s source code. This is why the run-tests script for
this week is different from last week’s script in two major ways. First, we are
not making use of the architecture-independent build directory that we created
last week. Second, we are not cd’ing into the test case directory. Instead we are
executing ezpay in the current directory and reaching down into the testcase
directory to access the input and output.expected files.

You are now ready to start creating your own test cases for ts02. Your goal
is to achieve at least 98% line coverage and 100% branch coverage for ezpay.
Feel free to reuse test cases from ts1. I recommend adding one test case at a
time, running ezpay on that test case and updating the coverage report. This
will allow you to track your coverage results incrementally. The report will help
guide your testing process since you will naturally start to write test cases to
hit unvisted lines in the program.

If you ever want to “start over”, you can execute the command:

ant clean-all

This will take you back to the state you were in just after unpacking the
ezpay2.tar file. You should then re-run the commands above to compile ezpay
and recreate the jcoverage.ser file.

3

What to Turn in

This worksheet is worth 50 points. You must turn in a hard copy report of
the following:

• A list of the test cases needed to achieve 98% line and 100% branch cov-
erage. (This should be all of the test cases in your ts02 directory.) This
description should include the test case’s number, its input file, and its
documentation file. If you could not achieve the target line and branch
coverage, then be sure to include a paragraph or two explaining why it
was not possible. (25 points).

• A paragraph or two describing your thoughts on using the jcoverage tool.
(5 points).

• The output of your structural test run, including a summary, e.g. how
many test cases passed and how many failed, and the details, e.g. which
test cases passed and which ones failed. Remember that each test case
should produce output that can be compared with the expected output
to indicate whether or not the program passed or failed the test case
according to the ezpay specification. Note: this output should match the
format requested in section 4 of the functional test plan developed for
worksheet 1. (10 points).

In addition upload a tar file to the class moodle that contains ts02 and your
final coverage report. Your tar file should be named lastname-ts02.tar. You
can create this tar file with the command:

tar cvf lastname-ts02.tar report test/ts02

Remember to use your own last name in the command above. (10 points).

4

