
Software Testing Notebook Worksheet #1
Functional Testing

Due: November 1, 2004

Name:

Lab Time:

Grade: /75

On my honor, as a University of Colorado at Boulder student, I

have neither given nor received unauthorized assistance on this work.

Signature:

The Program Under Test

You will start the testing notebook by getting familiar with the program you
will be testing, the Easy Pay System, or ezpay. The tar file ~csci3308/src/ezpay.tar
contains the files for worksheet 1. Unpack this tar file in your src directory. In
the ezpay directory, you should find the following:

spec.txt ezpay’s requirements specification
tests/ A directory containing files that represent

two test cases for the ezpay program

The program itself is located at ~csci3308/bin/ezpay. This shell script is a
wrapper for a java program contained in the file: <~csci3308/lib/ezpay-bugs.jar>.
You do not need to copy these files to your account. If you do, be sure to update
the path in the shell script to point to your version of the jar file.

To “sanity test” the program, try typing:

~csci3308/bin/ezpay --help

The program should print usage information. To make it easier to work with
this program, you should add ~csci3308/bin to your path. Once this is done,
type rehash and make sure that the program is in your path.

The second thing you should do is move the test case files into a test case
structure simliar to the one we used in lab 7. That is, create a directory called
test within ezpay’s src directory and within that directory create a direc-
tory called ts01. Then create directories for the two test cases tc01 and tc02
within the ts01 directory and move the test case files to the appropriate direc-
tories. You should rename the files such that the test case directories contain

1

three files, one called ezpay.in, one called output.expected, and one called
documentation. You can delete the tests directory once you have finished
creating the ts01, tc01, and tc02 directories.

The third thing you should do is create an architecture-independent build
directory for ezpay (even though we don’t need to actually build the program
this week) and create a testing structure within it similar to the one created
in step 2 above. (Note: you may need to create a build directory within your
~/csci3308 directory. Then create an ezpay directory within this newly created
build directory.) Thus, your architecture-independent build directory should
contain a test directory which contains a ts01 directory which contains the
tc01 and tc02 directories.

Now, similar to what we did in lab 7, run the following code within the
architecture-independent build directory (indeed you should probably put this
code within a script, so you can run it multiple times):

set srcdir = $HOME/csci3308/src/ezpay
foreach testdir (test/ts01/*)

cp $srcdir/$testdir/ezpay.in $testdir
cd $testdir
ezpay
diff $srcdir/$testdir/output.expected ezpay.out > /dev/null
echo $status
cd ../../..

end

Recall that a “0” indicates success while a “1” indicates a failure. If all went
well, then one of the sample test cases passed and one failed.

IMPORTANT: This code is only intended to get you started in automating
test cases...you will need to modify it, if you want to completely automate every
test case that you write for this week of the testing notebook. For instance, this
script only invokes ezpay with no command line arguments; thus, it cannot be
used to test ezpay’s -v and –help command flags.

ALSO IMPORTANT: The focus of your work for this assignment is the test
plan and making your test cases match your test plan. The focus is NOT on
automating your test cases. As such, it is perfectly acceptable to run your test
cases “by hand” this week. In particular, DO NOT WASTE TIME trying to
perfect a script to automate your test cases this week.

You should now develop a funcational test plan (described below) that will
help you create additional test cases that you can use to test the ezpay program.
You are welcome to use the two test cases that we have provided but be careful,
you may have to rename these test cases to match your test plan. That is, your
test plan is going to develop a set of test cases and it will specify the contents for
tc01, tc02, tc03, etc. So if, for whatever reason, your test plan has indicated
that our tc01 needs to be called tc20, then be sure to rename it accordingly.
Since this is so important, it bears repeating:

Make sure that your test cases match your test plan.

2

Functional Testing

Functional testing provides a criteria to determine how many test cases to
create for a test suite based on the functional specification of a program. A
functional test plan is created to help identify test cases. In order to write your
test plan, perform the following steps:

1. The first step in functional testing is to analyze the program’s specifica-
tion and identify its functional categories. These categories are typically
broad (such as handling a program’s command line options, sorting, de-
tecting errors, etc.) but can sometimes be quite specific (such as testing
a program’s ability to calculate a particular type of value).

2. Once the functional categories have been identified, analyze the specifica-
tion to determine the program’s specification items. A specification item
is a specific function that the program must perform. Each specification
item can typically be assigned to one of the functional categories.

3. Then, for each specification item, determine its functional equivalence
classes. That is, the specification item may need to behave differently
given different types of input. In lecture 17, an example of selecting func-
tional equivalence classes for the GreatestCommonDivisor function is pro-
vided on page 16. (Note: most items will have only one or two equivalence
classes, although more is possible.)

4. Once you have determined the functional equivalence classes for each spec-
ification item, determine test inputs for each functional equivalence class.
Many equivalence classes will only require one test input (just like the
GreatestCommonDivisor example), but some may require additional in-
puts to test boundary conditions (similar to the car database example in
lecture 19).

You are now ready to write your test plan.

The Test Plan

1. The first section of your test plan should contain a brief description of the
ezpay program and list the functional categories that you identified.

2. The second section of your test plan should be subdivided by functional
categories, where each subsection lists the specification items for a par-
ticular functional category. Each specification item should be assigned
a number (e.g. S01, S02, S03, ...) and should be described as precisely
as possible. Below the description, you should list the item’s functional
equivalence classes along with the test inputs that you have selected for
each class. Since each test input corresponds to a test case be sure to as-
sign each one a testcase number (e.g. tc01, tc02, tc03, ...). These numbers
need to increase sequentially across all specification items in this section
of your test plan. Note that these numbers are not yet final (see below).

3

3. In the third section of your test plan, identify redundant test cases. For
instance, if tc01 and tc23 use the exact same input to test two different
specification items, then you can delete tc23 and use tc01 to test both
items. As a result of this analysis, your test case numbers may change
(e.g. if you delete tc23, then tc24 becomes tc23, tc25 becomes tc24, etc.).
As such, once you have finished identifying redundant test cases, create a
final list of test cases that identifies which key specification items (which
have also been assigned a number) each test case covers. Your final list
should use a format similar to this:

tc01: S01, S02, S23
tc02: S04
tc03: S05
tc04: S06
. . .

4. In the fourth section of your test plan, show the results of running your
test suite on the buggy ezpay program. The results should show which
test cases passed, which test cases failed, and end with a summary that
lists how many cases passed and failed. Your listing should look like:

tc01: passed
tc02: failed
. . .
tc30: failed
14 tests passed, 16 tests failed

Remember, you do not need to produce the above listing via a script. You
can run each test case by hand, keep track of the results and then generate
the above listing manually.

5. In the fifth section of your test plan, list functions of EZPay that cannot be
tested. Untestable items are those in which ezpay’s behavior (i.e. expected
output) cannot be predicted from the specification.

The Test Cases

For each test case in your functional test plan, create a test case directory in
the $HOME/csci3308/src/ezpay/test/ts01 directory. Each test case should
contain an input file (if needed), an output.expected file, and a documentation
file. You will need to create a corresponding test case directory in the ts01
directory of your architecture-independent build directory. When you have fin-
ished implementing your test plan, run all of your test cases and use the output
to produce the report described in section 4 of the test plan. Then, create a tar
file of the $HOME/csci3308/src/ezpay/test/ts01 directory and upload the tar
file via Moodle. Your tar file should be named lastname-ts01.tar. In other
words, John Smith would name his tar file, smith-ts01.tar.

4

What to Hand In

You should hand in your completed test plan at lecture on November 1st
and have uploaded your tar file by that time as well.

Evaluation

Your functional test plan will be graded on your ability to identify the spec-
ification items within the ezpay requirements specification and on completing
each of the requested sections. In addition, we will check your tar file to make
sure that your “implemented” test cases match your test plan. The point break
down is as follows:

• Functional test plan complete. (50 pts.)

• Functional test cases written correctly and match functional test plan.
(25 pts.)

5

