
Lab #4
Advanced Make

Due in Lab, September 22, 2004

Name:

Lab Time:

Grade: /10

Localizing a Makefile

When installing the gnuchess program, we made use of a shell script called
configure. This shell script automatically created the makefile that was needed
to install the program. Sometimes distributions are not that nice, and you have
to edit the makefile yourself.

1. In the directory ~csci3308/src there is a tar file named lab04.tar. Copy
this file to your ~/csci3308/tmp directory.

2. Now change to your ~/csci3308/src directory and unpack the tarfile with
the command tar xf ../tmp/lab04.tar.

3. This should create a directory named lab04. Change into this directory.

4. Now read the makefile. It suggests that you change certain variables
to fit your own directory structure. List here the variables you should
change and the values you should give them. Use $(HOME) instead of ~,
and remember to surround every variable name with parentheses. Make
those changes now. Note: you may need to create a build directory for
lab04 (within your architecture-specific build directory) before running
the makefile.

5. Type make. Was the program built? Was it installed?

1

6. If the program was not built, fix any error so that the program builds
correctly. What did you have to type to get the program installed? (Note:
there are two answers to this question both equally correct. List both
answers if you can.)

7. Type rehash and where answer. Did the shell find the program? If not,
what do you need to do to make the shell find the program?

8. Type make clean. What does this do?

9. Type make install. What happened and why?

10. Type make all. How was this different from make install?

11. How could you modify the makefile so that merely typing make install
would work even if the program wasn’t built yet? Hint: This will require
that you change the rules that the makefile says you don’t need to change.
However, don’t actually make the change, just describe it.

2

12. Copy your current makefile into a file called makefile-1. Be sure to turn
in a copy of makefile-1 with your lab assignment. Type make clean again
before going on to the next section.

Using Implicit Rules

Now you will modify the makefile to use an implicit rule. We will also modify
the makefile to act more like the makefile that was used to install gnuchess in
lab 01. In particular, we are going to transform it, such that it needs to be
invoked in the build directory.

13. The first step in preparing for this new makefile is to remove all references
to the BUILDDIR macro. We can do this safely, since we already saved a
copy of our makefile in the file makefile-1. This step involves deleting the
BUILDDIR macro definition and then removing all references to BUILD-
DIR in the makefile. Thus, for instance, the very first rule will now look
like this:

answer: answer.o
g++ answer.o -o answer

The next step is to remove the rule for compiling answer.cc into answer.o.
This rule is unnecessary because make has an implicit rule for doing this.
Look at the list of make implicit rules in the reference materials section of
the class website. This list can also be found in the make man page. Find
the rule .cc.o which is a suffix rule for making .o files from .cc files.

This rule has the following structure:

.cc.o:
$(COMPILE.cc) $(OUTPUT_OPTION) $<

So, you can see that the action for this rule is created via two macros,
COMPILE.cc and OUTPUT OPTION and an automatic variable that specifies
that the first dependency (e.g. the .cc file) should be compiled by this
command. (If you look at the top of the implicit rules webpage, you will
see that the macro COMPILE.cc is further defined to consist of three other
macros. The important one, for our purposes, is CCC.

14. Remove the rule for making answer.o from the makefile so that make
will use the implicit rule. Now you need to configure the implicit rule’s
macros.

15. The implicit rule needs to know where to find the source file, answer.cc,
so you need to set the VPATH variable. Do that now.

3

16. The implicit rule also needs to know where to place the intermediate file
answer.o, so you need to set the OUTPUT OPTION variable. Use an auto-
matic variable in your definition of OUTPUT OPTION so this rule will work
for any .o file, not just answer.o. Add this macro definition to your
makefile now.

17. By default, make uses the cc compiler, but you need to use g++, so you
must set the CCC variable. Add this macro definition to your makefile now.

18. While we are at it, change the first rule of the makefile to make use of
automatic variables.

19. Now change to lab04’s architecture-specific build directory and type

make -f $HOME/csci3308/src/lab04/makefile all

What happened?

Be sure to hand in a copy of both makefiles with your lab.

4

