
Lab #2
Find and Grep

Due in Lab, September 8, 2004

Name:

Lab Time:

Grade: /10

Find

The find command is used to locate files in a file system. The find command
starts at a single directory and descends recursively into all of its subdirectories
to locate files. The find command is very useful, but it has an obscure syntax
that can be hard to understand. The format of the find command is as follows:

find path operators

Type the following:

find ~/csci3308 -print

-print is an operator that prints the file name of a file. The directory
~/csci3308 says to start from that directory and apply -print to every file
in every directory below it. This will print a lot of files, and could also be
accomplished with ls -R.

Now type this:

find ~/csci3308 -name bin -print

This will print only files and directories named bin in your directory struc-
ture. This is the purpose of find: to locate files and directories that match
specified characteristics.

You can also search for wildcard expressions. Type the following:

find ~/csci3308 -name *.c -print

This should print every file that ends with .c. The backslash is used to
prevent the shell from interpreting the asterick in the above command line.
Another way of writing the same command is:

find ~/csci3308 -name ’*.c’ -print

1. Write a find command to print all files under your csci3308 directory whose
names are exactly three characters.

1

Quoting in the Shell

The quotes above are necessary because you want *.c to be interpreted by
the find program, and not the shell. Without the quotes the shell will process
the * character and find will never see it. Find knows how to interpret shell
wildcards, but you need to keep the shell from replacing them before find can
see them.

There are three types of quotes in tcsh, single quotes, ’, double quotes, ", and
backslash, \. The purpose of quotes is to make the shell ignore characters that
it would normally interpret or replace. Single and double quotes must come
in matching pairs, and they affect everything between the quotes. Backslash
affects only the single character immediately following the backslash. There are
some minor differences between single quotes and double quotes. Finding the
right quotes for a particular situation can sometimes be a process of trial and
error.

Here is a brief summary of the differences between single quotes and dou-
ble quotes when using them at the command line. Single quotes protect all
metacharacters from interpretation, with the exception of the history character
(i.e. !). Metacharacters are characters which have special meaning to the shell
like * or \. Double quotes protect all metacharacters from interpretation, with
the exception of the history character (!), the variable substitution character
($), and the back quote, which is used for command substitution (see below).

For a complete description of quoting-related issues, see the tcsh man page,
or a book that covers Unix-related topics.

2. Type the following and record the results for each line next to it below:

echo $shell $term
echo ’$shell $term’
echo "$shell $term"
echo \$shell $term

3. Why is the output of the first and third lines the same?

In addition to quoting, there is the backward single quote, ‘, also called
back tick or back quote. The back quote invokes command substitution, and
its purpose is to cause more substitution, not less. Anything between two back
quotes is considered to be a command. This command is executed and its output
is placed on the command line where the original command used to be. Try the
following:

echo date
echo ‘date‘

2

Back to Find

-name and -print are just two operators, and find has many more. Type
the following:

find ~/csci3308 -perm -004 -print

This should find all files in your csci3308 directory that have read permission
for the others category. You can use this command to check what files in your
directory are publically accessible to other users.

4. Rewrite the command above to locate those files whose permissions are
exactly “004”. Use the find man page for help.

Look at the find operators in the find man page.

5. Write a find command that prints all files in your ~/csci3308 directory
accessed less than 5 days ago. Try this command out to make sure it
works.

6. Write a find command that prints all files in your ~ directory that are of
type directory, and whose names contain a numeric character.

Find can create more complicated boolean expressions with its operators.
The exclamation point stands for not. The following command finds files un-
derneath the current directory whose names do not end in .c.

find . ! -name ’*.c’ -print

Sometimes parentheses must be used for grouping especially when using -a
(and), or -o (or). The parentheses must be quoted with either quotes or a
backslash so that the shell does not interpret them.

find . \(-type f -o -type d \)
-a \(-name ’program*’ -o -name bin \) -print

3

Find has two operators, -exec and -ok that can be used to run other pro-
grams on the files that are found. Try the two commands below:

find . -type d -name bin -exec echo {} is cool \;
find . -type d -name bin -ok echo {} is cool \;

7. What is the difference between -exec and -ok?

In every -exec or -ok command you can use the two characters {}. When
the command is run these characters are replaced with the name of the file being
found. If multiple files are found the command is run once for each file, and each
time {} is replaced with a new name. Also, any -exec or -ok command must
end with a semicolon (’;’) which must be quoted, in this case with backslash.
If the semicolon is missing, the shell will report a syntax error.

Grep

Grep searches the contents of a file to find lines that match a pattern. Grep
uses regular expression syntax for its pattern matching, which is different than
shell wildcards. Once again, patterns have to be quoted to keep the shell from
trying to evaluate them. In this lab we will be using egrep, expression grep,
which is grep with a few extra features. In general, we will use the words grep
and egrep interchangeably. In most cases, grep and egrep return the same
results...we will try to highlight cases in which their output is different. For
instance, the two commands below produce different output (You can look at
the file /usr/dict/words if you want):

egrep ’^b.*(na)+$’ /usr/dict/words
grep ’^b.*(na)+$’ /usr/dict/words

8. What is the output for each command and why is it different?

Returning to our discussion, grep is different from find in another way. Find
only matches a filename if the entire filename matches a pattern. grep will
display a line as a “match” if any part of the line matches an input pattern.
Try this:

egrep fly /usr/dict/words

4

Grep finds not just the word fly, but every word that contains the word fly.
If you want to match exactly your pattern and nothing more use the beginning
and end of line characters, ^ and $.

egrep ^fly /usr/dict/words
egrep fly$ /usr/dict/words
egrep ^fly$ /usr/dict/words

Sometimes, you need to keep grep from interpreting special characters too.
For example, you may want to find all lines with matched parenthesis in your
.cshrc file. You start by trying this:

egrep ’(.*)’ ~/.cshrc

the shell sees ’(.*)’ and it knows not to evaluate special characters in this
word. It strips off the quotes and passes (.*) to egrep. However, egrep uses
parentheses for grouping. egrep assumes you want to find the pattern .*, and
you put parentheses around it just to be careful. So egrep tries to match the
pattern .* which matches anything and prints every line of your file. What you
actually wanted was the literal character left parenthesis, (, then anything, .*,
and then a literal right parenthesis,). You need to put backslashes in front of
the parentheses to make egrep treat them as literal characters.

egrep ’\(.*\)’ ~/.cshrc

So the single quotes are for the shell, and the backslashes are for egrep. You
still need the single quotes or the shell would try to interpret the backslashes
and asterisk. Sometimes getting the exact pattern you want can be tricky.

Note: this is an instance where grep and egrep return different results. grep
does not assign special meaning to parentheses so the parentheses do not need
to be quoted when using grep. egrep has a more powerful regular expression
engine than grep in which parentheses are assigned a special meaning, which we
will cover later in the semester.

9. Write an egrep command to search a file named text for lines that contain
a backslash. To test this create a sample file named text in your tmp
directory with some lines that contain a backslash, and some that don’t.

5

Using Grep with Find

Grep and find can be combined to create a powerful search tool. Write a
find command, and then add the -exec operator to run a grep command on
the files that it finds. The following command finds all .c files in your directory
structure that contain the word help:

find ~ -name ’*.c’ -exec egrep help {} \; -print

6

